
E7-2005-157

R.K.Utamuratov1,2, A. I.Muminov2, A. K.Nasirov1,2

PROPRIETY OF APPROXIMATION FOR

CALCULATIONS OF NUCLEAR MATRIX

ELEMENTS BY WOODSÄSAXON WAVE

FUNCTIONS

Submitted to ®Yadernaya Fizika¯

1 Joint Institute for Nuclear Research, Dubna, Russia
2 Institute of Nuclear Physics, Uzbekistan Academy of Sciences, Tashkent



“É ³Ê· Éμ¢�.Š., ŒÊ³¨´μ¢ �.ˆ., � ¸¨·μ¢�.Š. E7-2005-157
�· ¢¨²Ó´μ¸ÉÓ ¶·¨¡²¨¦¥´¨Ö ¤²Ö ¢ÒÎ¨¸²¥´¨Ö ³ É·¨Î´ÒÌ Ô²¥³¥´Éμ¢
¸ ¶μ³μÐÓÕ ¢μ²´μ¢ÒÌ ËÊ´±Í¨° ‚Ê¤¸ Ä‘ ±¸μ´ 

�¤´μÎ ¸É¨Î´Ò¥ ³ É·¨Î´Ò¥ Ô²¥³¥´ÉÒ ´Ê±²μ´´μ£μ ¶¥·¥Ìμ¤  ¢ÒÎ¨¸²¥´Ò ¸ ¢μ²-
´μ¢Ò³¨ ËÊ´±Í¨Ö³¨ ¶μÉ¥´Í¨ ²  ‚Ê¤¸ Ä‘ ±¸μ´ , ¶μ²ÊÎ¥´´Ò¥ ·¥§Ê²ÓÉ ÉÒ ¸· ¢´¨-
¢ ÕÉ¸Ö ¸ ·¥§Ê²ÓÉ É ³¨, ¢ÒÎ¨¸²¥´´Ò³¨ c ¶μ³μÐÓÕ  ¶¶·μ±¸¨³ Í¨¨ ¸μ ¸Ë¥·¨Î¥-
¸±μ° Ö³μ°. �μ± § ´μ, ÎÉμ  ¶¶·μ±¸¨³ Í¨Ö ¸·¥¤´¥£μ ¶μ²Ö Ö¤¥· ¶·¨ ¸Éμ²±´μ¢¥´¨ÖÌ
ÉÖ¦¥²ÒÌ ¨μ´μ¢ ¸μ ¸Ë¥·¨Î¥¸±μ° Ö³μ° Ï¨·μ±μ ¶·¨³¥´Ö¥É¸Ö ¢ ³μ¤¥²¨, μ¸´μ¢ ´´μ°
´  ±μ´Í¥¶Í¨¨ ¤¢μ°´μ° Ö¤¥·´μ° ¸¨¸É¥³Ò.

� ¡μÉ  ¢Ò¶μ²´¥´  ¢ ‹ ¡μ· Éμ·¨¨ É¥μ·¥É¨Î¥¸±μ° Ë¨§¨±¨ ¨³. �.�. �μ£μ²Õ¡μ¢ 
�ˆŸˆ.

�·¥¶·¨´É �¡Ñ¥¤¨´¥´´μ£μ ¨´¸É¨ÉÊÉ  Ö¤¥·´ÒÌ ¨¸¸²¥¤μ¢ ´¨°. „Ê¡´ , 2005

UtamuratovR.K., Muminov A. I., NasirovA.K. E7-2005-157
Propriety of Approximation for Calculations of Nuclear Matrix Elements
by WoodsÄSaxon Wave Functions

Single-particle matrix elements of nucleon transfer were calculated by WoodsÄ
Saxon potential wave functions and results are compared with ones calculated by
spherical well approximation. The application of the approximation of the mean-
ˇeld of nuclei at heavy-ion collisions by the spherical well, which is widely used in
the model based on dinuclear concept, is proved.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
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INTRODUCTION

The role of the shell structure of colliding nuclei in the reaction mechanism at
low energies was demonstrated in theoretical analysis of the nonequilibrium share
of the excitation energy (nonproportional to the masses of fragments) between
reaction fragments at heavy-ion collisions [1Ä3] and of the observed ˇne structure
in the mass distribution of the ˇssion products [4]. These phenomena indicate
that the nuclear shell structure plays an important role in nuclear reaction and in
formation of the reaction fragments [5, 6]. So, the theoretical methods used to
describe and analyze the above-mentioned phenomena should contain the realistic
schemes of single-particle states, nucleon separation energy and single-particle
matrix elements of the particle-hole excitations in nuclei caused by in	uence of
ˇeld of projectile and matrix elements of nucleon exchange between interacting
nuclei. One of these models was developed and applied to describe and inter-
pret the experimental data [2Ä4, 7Ä11]. The calculations were performed based
on dinuclear system concept [6, 8] which implies conservation of shell struc-
ture of the interacting nuclei. To simplify calculations of the matrix elements
of nucleon transfer, the authors of the above-mentioned model used the wave
functions of the spherical symmetric well in internal part of nuclei [9] instead
of the WoodsÄSaxon wave functions. But the effect of shell structure was taken
into account due to using of the eigenvalues of the WoodsÄSaxon potential as
single-particle energies in the interacting nuclei. Nevertheless, the results ob-
tained in the framework of this model for the observable quantities are in good
agreement with the experimental data and allowed one to explain nonequilibrium
distribution of excitation energy between the reaction products. The matrix el-
ements calculated by the above-mentioned method were used in calculations of
the collective transition coefˇcients of the master equation describing the yield
of the ˇssion [4] and quasiˇssion [10, 11] products. In this paper, we com-
pare the results which were obtained by the above-mentioned approximation and
by using of the WoodsÄSaxon energy eigenvalues and wave functions for the
single-particle states in both of the interacting nuclei. Our aim is to show that
calculation of the matrix elements gPT of nucleon transfer by the wave functions
of the spherical symmetric well in internal part of nuclei [9] is appropriate to
calculate the relevant physical quantities. The necessity of using this method is
caused by the fact that the calculation of the matrix elements gPT by the realistic
WoodsÄSaxon wave functions of the interacting nuclei is a laborious task. This
way of calculations to explore heavy-ion collision dynamics is cumbersome even
using modern computer resources.

The method of calculation of the matrix elements describing nucleon transfer

1



between nuclei is presented in Sec. 1. In Sec. 2, we compared the matrix elements
calculated by the former method [8] and ones obtained in this work. It is reason-
able to compare the observable physical quantities being determined by the matrix
elements calculated by two methods under discussion. Therefore, widths of the
charge distributions of the reaction products and a friction coefˇcient for the ra-
dial motion of colliding nuclei obtained by making use of the matrix elements of
both ways of calculation are discussed and compared with the experimental data.
The conclusions of paper are in Sec. 3.

1. CALCULATIONS OF MATRIX ELEMENTS OF NUCLEON TRANSFER
BETWEEN INTERACTING NUCLEI

The colliding nuclei are suggested to be spherical, and wave functions are
found by solving of the Schréodinger equation with the WoodsÄSaxon potential(
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The WoodsÄSaxon potentials for neutrons and protons have different depths
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V0 = 53 MeV, r0 = 1.24 fm, a = 0.63 fm. So, the spin-orbital part of the potential
is proportional to derivation of the central part V (r). The WoodsÄSaxon wave
functions are presented in the well-known form:
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Hn is the Hermitian polynomial and Y
li1/2
jimi

(r/r) is the spherical function. The
coefˇcients Nn, b, b1, a, and energies of single-particle states are found by numer-
ical solving of the Schréodinger equation with the WoodsÄSaxon potential [12].
These wave functions describe single-particle states of the mediate and heavy nu-
clei better than other approximated wave functions such as harmonic oscillator's
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wave functions or wave functions of the symmetric rectangular potential well,
particularly at the periphery of nuclei.

In the model of the dinuclear system concept, the friction coefˇcient and dy-
namical changes of nucleusÄnucleus interaction potential for calculation of relative
motion of interacting nuclei [2, 3] as well as the collective transition coefˇcients
of the master equation describing the yield of the reaction fragments [4, 7] are
calculated making use of the single-particle matrix elements of nucleon transi-
tions between nuclei (nucleon exchange) gPT (R). In the coordinate presentation,
these matrix elements describing the nucleon transfer from projectile-like to the
target-like nuclei of a dinuclear system (DNS) are presented by the following
form [8, 9]:

gPT (R) =
∫

d3r · Ψ∗
T (r)

[
1
2
{UT (r) + UP (r − R)}

]
ΨP (r − R), (3)

where {UT (r) + UP (r − R)} is a total single-particle potential of DNS, R is a
distance between centers of DNS nuclei; the single-particle states are characterized
by set of quantum numbers P = (npjplpmp) and T = (ntjtltmt) in projectile-
and target-like nuclei, respectively. Using Fourier images of wave functions

Ψnlj(p) = ϕni(p) · Y li1/2
jimi

(p/p) (4)

and the Schréodinger equation(
− �
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ΨP (T )(r) = εP (T )ΨP (T )(r), (5)

we can get the following expression for matrix elements of nucleon transfer:
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After integrating (5) over angular variables, we get
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The integral (6) cannot be integrated analytically because of complexity of
the WoodsÄSaxon wave functions (2), and results of numerical calculations of (7)
are presented in Sec. 2. Note that these numerical calculations at determination
of the dynamical trajectories of heavy-ion collisions are time consuming even
with modern computers. In the case of spherical symmetric well approximation,
the integral (7) was analytically calculated in Ref. [9].

In this paper, the obtained values of gPT are used to calculate the mean
square 	uctuation of the fragments proton number at deep inelastic collisions of
heavy ions

σ2
Z(t) = 2

∑
PT

|gPT (R(t))|2
(εT − εP )2

[
1−cos

t

�
(εT −εP )

]
[nP (1−nT )+nT (1−nP )], (8)

and friction coefˇcient for the radial motion of nuclei
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where
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and

nP (T ) =
[
1 + exp

(
εP (T ) − λP (T )

θ

)]−1

(11)

is the proton occupation number in the single-particle states; λK is the chemical
potential of nucleons in nuclei (K = P, T ); θ is the effective temperature of
nuclei which is determined by the total kinetic energy loss Eloss during collision

θ = 3.46

√
Eloss

(AP + AT )
, (12)

where AP and AT are mass numbers of the projectile and target nuclei, respec-
tively; τPT = τP τT /(τP + τT ), where τiK = �/ΓiK , τiK and ΓiK are the lifetime
and width of the single-particle states, respectively. ΓiK is calculated by using the
results of the theory of quantum liquids [13] and the effective nucleonÄnucleon
forces from [14]:
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√
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where εFF is the isospin-dependent Fermi energy. For protons and neutrons, it is
determined by

εFK = εF
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2
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,

respectively, εF = 37 MeV; NK and ZK are neutron and proton numbers in
nuclei (K = P, T ), respectively.

fK = fin − 2

AK
1/3

(fin − fex) and f ′
K = f ′

in − 2

AK
1/3

(f ′
in − f ′

ex),

where fin = 0.09, f ′
in = 0.42, fex = −2.59, f ′

ex = 0.54 and g=0.7 are the
constants of the effective nucleonÄnucleon interaction [14].

2. RESULTS OF CALCULATIONS AND THEIR ANALYSIS

In Fig. 1, matrix element gPT of the transition of nucleon from the state P =
1f7/2 of the projectile-nucleus to the state T = 1p3/2 of target-nucleus calculated
by Eq. (6) and one calculated by the corresponding equation of Ref. [9] (dashed
line) are compared. The matrix element calculated by realistic wave functions of
the spherical WoodsÄSaxon potential (solid line) has no depression at the relative
distance corresponding to the sum of radii of the half nucleon density in nuclei.
The depression of the matrix elements calculated according to the method of
Ref. [9] is caused at the cross-linking of solutions of the Schréodinger equation
obtained for the internal and external parts of nucleus for the spherical well.
This depression does not affect the calculated relevant physical quantities such
as friction coefˇcient or width of the charge and mass distributions due to two
reasons: at ˇrst, the nucleusÄnucleus interaction potential used in the models of
the DNS concept has a repulsive core at the internuclear distance corresponding
to the sum of radii of the half nucleon density in nuclei. The repulsive core
is caused by the effective nucleonÄnucleon (Migdal) forces [14], which change
its sign by the change of nucleon density on the nuclear surface. The second
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Fig. 1. Comparison of matrix elements calculated as a function of distance between nuclear
centers by the spherical well (dashed line) and WoodsÄSaxon potential wave functions
(solid line)

reason is that the cross-linking point and depth of depression are different for the
different single-particle states, consequently, at summing the resulting curve is
smoothed. The difference between absolute values of gPT calculated by the two
methods under discussion is explained by the fact that different wave functions
were used.

In Fig. 2, the curves of the dispersion of the charge distribution of reaction
products in 40Ar + 100Mo calculated as a function of the total energy loss (reaction
time) by two methods under discussion are compared with the experimental data
[15]. As seen from Fig. 2 the agreement of our results obtained by both methods
for the dependence of the dispersion of the charge distribution of reaction prod-
ucts in 40Ar + 100Mo on interaction time with the corresponding experimental
data is good. The experimental interaction time is estimated from the angular dis-
tribution of the reaction products and it is connected with total energy loss during
reaction time.

Another physical quantity, which was calculated and compared with the val-
ues obtained by the previous method [8, 9], is the friction coefˇcient [16] for the
relative motion of nuclei at deep inelastic heavy-ion collisions. The values of the
friction coefˇcient obtained for 56Fe (480 MeV) + 208Pb and 64Zn (440 MeV) +
196Pt reactions are compared in Figs. 3 and 4, respectively. As seen from Figs. 3
and 4, the calculations of friction coefˇcient of the radial motion making use of
the matrix elements by the wave functions of the symmetric spherical well and
WoodsÄSaxon potential lead to nearly the same results. The noticeable differ-
ence at the large distances between nuclei is caused by the long tail of the wave
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Fig. 2. Dependence of dispersion of measured and calculated charge distributions of the
reaction products in deep inelastic collisions on the interaction time. Full circles are
experimental data; lines are the same as in Fig. 1

Fig. 3. Comparison of the values of friction coefˇcient calculated by the wave functions
of the WoodsÄSaxon potential (solid line) and symmetrical spherical well (dashed line) for
the 56Fe (480 MeV) + 208Pb reaction

functions of the WoodsÄSaxon potential. It is clear that this difference appears
at small values of friction coefˇcient which does not lead to sufˇcient difference
for the total kinetic energy loss at initial stage of heavy-ion collisions.
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Fig. 4. The same as in Fig. 3 but for 64Zn (440 MeV) + 196Pt reaction

3. CONCLUSIONS

The mean square 	uctuations of the fragments proton numbers and radial
friction coefˇcients at deep inelastic collisions of heavy ions were analyzed to
study their dependence on the way of calculation of the used matrix elements
describing of the multinucleon transfer between interacting nuclei. It was done to
estimate the propriety of the approximation of the mean ˇeld of nuclei interacting
at low-energy heavy-ion collisions by the spherical well which is widely used in
the model based on dinuclear concept due to its simplicity. The estimation was
performed by comparison of the matrix elements calculated by using the wave
functions which were obtained by the numerical solution of the Schréodinger equa-
tion for the WoodsÄSaxon potential and those determined by analytical solution
of the Schréodinger equation for the spherical potential well. The absolute values
of the matrix elements calculated as a function of the relative distance between
nucleus centers by the former method are several times lower than those obtained
by wave functions of spherical well. The depression of the matrix elements of
the method [9] arises due the cross-linking of the wave functions of the spherical
well and free particles and its affect on the characteristic physical observables.
Use of matrix elements calculated by both methods under discussion to calculate
dispersion of the charge distribution of reaction products at deep inelastic colli-
sions of heavy ions allowed us to reach a good agreement with the experimental
data (see Fig. 2). We conclude that in spite of its simplicity the approximation
by spherical well of the mean ˇelds of interacting nuclei in the dinuclear system
concept is acceptable for the kinetic coefˇcients to study multinucleon transfer
and fusionÄˇssion reactions at heavy-ion collisions.
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