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Instanton Field Conˇgurations and Black Holes

The role of vacuum relativization in QCD and nucleus theory is discussed. It
is shown that relativistic vacuum must be described by vacuum Einstein equations.
Black Holes have to make their appearance in QCD because of Schwarzschildean
solution of these equations. Instanton conˇgurations of any ˇelds do not change
vacuum Einstein equations and their solutions, because their energy-momentum ten-
sors are zero. But they make it possible to determine a space-time topology, which
cannot be deˇned by differential Einstein equations. Therefore, Black Holes num-
ber in space-time is possibly connected with instanton conˇgurations of ˇelds and
other matter. Instantons do not fall into Black Holes and are the very matter which
surrounds them.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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1. RELATIVIZATION OF VACUUM

Any physical ˇeld describing interactions between particles can be regarded
as a gauge ˇeld (see [1]). In this approach, different Lie groups of symmetry
transformations correspond to different kinds of forces. If these groups are global,
their transformation parameters do not depend on a choice of space-time point.
It means that the domain in which the symmetry transformations are realized is
the whole space-time. In this case, vacuum must be also given globally and its
properties can not depend on space-time point. Practically it is a nonrelativistic
situation. In this sense Special Relativity is only a relativistic theory in 3D space,
but in 4D space-time it must be considered as a nonrelativistic one. It is a
corollary of the symmetry transformations of SR that are globally carried out in
	at Minkowski space-time V4.

When we go over to 4D relativistic theory, we have to assume that all
symmetry transformations are realized locally, i.e. their parameters depend on
space-time point. It concerns both internal and space-time symmetries. Local-
ization of internal symmetries leads to gauge ˇeld appearance, and localization
of space-time symmetries leads to gravitational ˇeld appearance. Therefore, lo-
calization of vacuum arises [2]. General Relativity does inevitably come to the
gauge ˇeld theory, both classical and quantum forms of it. GR is connected with
localization of space-time point coordinate transformations: xμ′ = fμ(xν), where
fμ are arbitrary continuous functions of point coordinates xμ.

Einstein equations describe world geometry formation process step by step
when invariant square form ds2 = gμνdxμdxν is given to start with. Although
we can always choose the local geometry to be 	at, the whole space-time will be
curved. Its properties are described by Riemannian geometry without torsion.

So, in a real 4D relativistic theory global vacuum should be replaced by
inˇnite set of vacuums, where each vacuum corresponds to some point of 4D
Riemannian space-time [2]. Each local space-time is 	at and coincides with
Minkowski V4 in inˇnitesimal neighbourhood of Riemannian V4. Both the whole
4D space-time and set of the local vacuums are described by vacuum Einstein
equations. This relativistic vacuum is universal for all kinds of matter and their
interactions. Any ˇeld equation system must be supplemented with Einstein
equations if vacuum is regarded as a relativistic and local one.

In the next section it will be shown that in General Relativity both global and
local vacuums are the solutions of self-duality equations of Riemannian curvature
tensor.
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2. INSTANTON FIELD CONFIGURATIONS

In the quantum ˇeld theory, instantons are classical trajectories connect-
ing vacuums among themselves. They are being used for description of tunnel
processes between vacuums [3]. All calculations are usually carried out in Euclid-
ean space-time. But now we are interested in pseudoeuclidean space-time. In
such a space with metrics of hyperbolical signature it is possible to deˇne ob-
jects which satisfy equations similar to self-duality equations of Euclidean space.
Earlier I named similar objects ®hyperbolical instantons¯ [4, 5]. Here for the
sake of brevity all solutions of self-duality equations will be named ®instantons¯
independent of metrics signature.

In the Euclidean version of the gauge ˇeld theory (GFT) instantons are the
solutions of self-duality equation

F a
μν = ∓∗F a

μν . (1)

Here F a
μν is the gauge ˇeld strength tensor and * means dual conjugation.

In Euclidean version of GFT there are examples of nontrivial solutions of
self-duality equations. But it is evident that trivial solutions of (1) satisfying
equation

F a
μν = 0 (2)

exist in both Euclidean and pseudo-Euclidean cases. They are named ®pure
gauges¯. Vector-potential of the gauge ˇeld Aa

μ in this case is Aa
μ = ∂μεa(x),

where εa(x) are gauge transformation parameters depending on space-time point
x.

When the gauge ˇeld is gravitational one in pseudo-Riemannian space-time
there is an analog of Eq. (2) having the form

R τ
μνλ = 0, (3)

where R τ
μνλ is Riemannian curvature tensor of space-time V4. It means that

space-time is globally 	at, i.e. it is Minkowski space-time. It is trivial instanton,
and simultaneously it is global vacuum in GR and GFT.

Moreover in GR, Eq. (1) has a nontrivial analog [5]

R τ
μνλ = ∓∗R τ∗

μνλ . (4)

It follows from (4) that
Rμν = ∓∗R∗

μν (5)

and
R = ∓∗R∗. (6)

Therefore
Rμν = 0. (7)
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This is vacuum Einstein equations. Their derivation from self-duality equa-
tions (4) was carried out in [5]. Hence, all vacuum solutions of Einstein equations
are nontrivial instantons (more exactly, hyperbolical instantons). In particular,
Schwarzschildean solution is a gravitational instanton.

Very important property of all instanton solutions is vanishing of energy-
momentum tensor Tμν . It is a corollary of their deˇnition by Eqs. (1) and (4) in
the gravity case.

Another important property of all instantons is transmutation of gauge ˇeld
action integral into a topological constant characterizing number of ˇeld singu-
larities.

If nongravitational gauge ˇelds or other kinds of matter form any instanton
conˇguration, i.e. their energy-momentum tensor Tμν is zero, they cannot change
Eq. (7). Therefore, all instanton conˇgurations of ˇelds and matter correspond to
vacuum Einstein equations. They are the matter without gravity. Instantons do
not fall into Black Holes and they are the very matter which surround them.

Both Minkowski space-time and vacuum Einsteinian spaces are instanton
ˇeld conˇgurations (trivial and nontrivial ones, respectively).

So, vacuum solution of Einstein equations describe relativistic localized vac-
uum in GR and GFT.

3. BLACK HOLES

Black Holes are known as objects of radius r � rg . Gravitational radius rg is
just value of corresponding parameter r in Schwarzschildean metrics which make
it singular one. This metrics has the form [6]

dτ2 = [1 − 2Mγ

r
]dt2 − [1 − 2Mγ

r
]−1dr2 − r2dθ − r2 sin2 θdφ2, (8)

where dτ is invariant eigentime; r, θ, φ are usual spherical polar coordinates; γ is
gravitational constant; M is integral constant.

Under r = rg = 2Mγ metrics, components grr become inˇnite. Therefore,
on the Black Holes' surface, gravity becomes so strong that any signal cannot
leave it.

Moreover, by Birkhoff theorem, space spherical symmetry of metrics (8)
leads to its statical character [7]. Even internal pulses of spherically symmetric
object can not generate radiation. This result is valid both in Newtonian theory
and GR. Black Holes can be objects both of Newtonian gravity and Einsteinian
one. We see that Newtonian gravitational potential appears in Schwarzschildean
metrics. This vacuum solution of Einstein equations includes a parameter M ,
which gets sense of energy of some object when Schwarzschildean metrics is
considered with respect to the 	at Minkowski one. In Minkowski space-time, one
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can calculate integral components of energy-momentum vector Pμ corresponding
with Schwarzschildean metrics. They are the following: Pi = 0 (i = 1, 2, 3);
P0 = M (see [8]). Therefore, usually the parameter M is interpreted as an object
mass. But really we have only potential energy of gravity ˇeld. In Newtonian
mechanics this energy corresponds to gravitational energy of massive body whose
center coincides with point r = 0 of Schwarzschildean metrics. But in GR we
have nobody in our problem! We have only relativistic vacuum and its potential
energy relative to 	at global vacuum. Only singularity in spherically symmetric
metrics exists in Riemannian V4 but not any massive body.

One of Einsteinian ideas just consists in the fact that elementary particles (in
particular electron) are singularities of force lines of gravitational ˇeld. Einstein
with his collaborators showed that these singularities move along geodesic lines
of Riemannian V4 like real test bodies [9, 10, 11].

In Newtonian mechanics the situation is contrary: gravity is only generated by
massive bodies and, hence, in spherical symmetric case, gravitational singularities
can only be inside continuous massive body but not by itself. It is necessary
to note that inside a spherical shell the solution of Eq. (7) corresponds to 	at
Minkowski space-time. Similar result is also known in Newtonian mechanics
(gravity is absent inside a spherical shell).

In support of Einsteinian point of view one can say that optics knows many
examples when singularities of force lines appear and move by itself. Maybe it
is a common property of all ˇeld theories especially nonlinear ones.

So, how can Black Holes radiate? Because of static character of Schwarz-
schildean metrics Black Holes cannot radiate. The question is Hawking pseudo-
radiation [12]. It is a 	ow of real particles to the inˇnite generated by quantum
effects of vacuum polarization. Hawking assumed that in gravitational ˇeld of
Black Hole some virtual particles of pairs can diverge too far from each other
and turn into real ones. Then one of them can fall into Black Hole and the other
one will 	y away to the inˇnite. Just the 	ow of such particles on the inˇnite
is implied when Black Holes radiation is under discussion [13]. It is assumed
that such a radiation can be experimentally registered. It must have blackbody
spectrum and ˇnish by explosion. Temperature of Hawking radiation is correlated

with Black Hole mass MBH and is equal to T ∼ 10−7 M�
MBH

K . Small Black

Holes must be rapidly disappearing in consequence of Hawking process.

Black Holes with mass ∼ 1015 g have radius r ∼ 10−13 cm, i.e. they are
similar to elementary particles. Their lifetime is similar to Universe age. The
temperature of their radiation is T ∼ 1012 K or kT ∼ 100 MeV [14]. If really
Hawking process exists, Black Holes can be registered in modern experiments.
In this connection one must take into account the relation between instanton ˇeld
conˇgurations and singularities of corresponding ˇelds.
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