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OcunwIsuy HEUTPUHO B CXeMe CMEIIUB HUS 3 PAAoB (KOHCT HT CBA3Ei)

B cT HA pTHOU TeopuM OCUWIIALUI HEHTPUHO HCIONB3yeTCd CXEM M CCOBBIX
CMEILIMB HUii, T.€. I p METPhl OCLUMIUIALMI BBIP X I0TCA YEpE3 DJIEMEHTBI M CCOBOM
M Tpulbl. B 1 HHO# p GoTe p ccM TPHB I0TCS OCLIJUISILIMK HEUTPUHO, TEHEPUPOB H-
HbIe CMEIIMB HUEM 3 psIOB (KOHCT HT CBsi3el ¢l ObIX B3 MMopnelcTsuii). [lomyuens
BBIP XKEHUS IJI YIJIOB CMELIUB HUSA U JUIMH ocLUIauuil. T KxXe BbIYMCIIEHBI BBIP -
KEHHS U1 BEPOATHOCTEH NEpPEeXON0B TPEX HEHTPHUHHBIX OCHMIIALMN. OCHWUISLIH
HEUTPHHO B 3TOH cxeMe (MeX HU3Me) ABIFI0TCS PE JIbHBIMHU, €CIIM M CChl HEUTPUHO
P BHBL, ¥ BUPTY JIbHBIMH, €CIIM M CChl HETPUHO HE P BHBL.
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Neutrino Oscillations in the Scheme of Charge (Couple Constant) Mixings

In the standard theory of neutrino oscillations, a scheme of mass mixings is used,
i.e. oscillation parameters are expressed in terms of mass matrix. In this work,
neutrino oscillations generated by charge (the weak interaction couple constant)
mixings are considered. Expressions for angle mixings and lengths of oscillations
are obtained. The expressions of the probability for three-neutrino oscillations are
given. Neutrino oscillations in this scheme (mechanism) are virtual if neutrino masses
are not equal and real if neutrino masses are equal.
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1. INTRODUCTION

The suggestion that, by analogy with K O,FO oscillations, there could be
neutrino—antineutrino oscillations (v — ) was considered by Pontecorvo [1] in
1957. It was subsequently considered by Maki et al. [2] and Pontecorvo [3] that
there could be mixings (and oscillations) of neutrinos of different flavors (i.e.
Ve — vy, transitions).

In the general case there can be two schemes (types) of neutrino mixings
(oscillations): mass mixing schemes and charge mixing scheme (as it takes place
in the vector dominance model or vector boson mixings in the standard model of
electroweak interactions) [4].

In the standard theory of neutrino oscillations [5] it is supposed that physically
observed neutrino states v, v/,,, V> have no definite masses (in this case we cannot
formulate the law of energy momentum conservation in strict form in the reactions
with neutrino participations [4]) and they are directly produced as mixture of the
V1, Vg, V3 neutrino states. And if neutrino oscillations are generated by the neutrino
mass matrix, then neutrino mixing parameters are expressed via elements of the
neutrino mass martrix.

The mass Lagrangian of two neutrinos (v, v,) has the following form (for
simplification the case of two neutrinos is considered):

1 _ _ _ _
Ly =—5 [muEVeVe + My, Ul + My, (VeVp + V;J,Ve)] =

I My, My, Ve (1)
:—5(1/@71/“) )
My,ve M, vy

which is diagonalized by rotation on the angle 6 and then this Lagrangian (1)
transforms into the following one (see [5]):

1
Ly = —3 [mitrv1 + mabars), (2)
where
1 9 9 1/2
miz =5 |y, +my,) & (my, —my,)? +4m?, )
and angle 6 is determined by the following expression:
2My, .,
tg(20) = : (3)



Ve = cosBuvy + sin Ovo,
v, = —sin Ov1 4 cos vy

Then v, v,, masses are

m,, = mycos? 6 + mq sin? 10,

‘ (5)

my, =mi sin? 6 + moycos? 0,

in contrast to the primary supposition that v, v, it neutrinos have no definite
masses.

The probability of v, — 1, is given by the following expression:

P(ve — ve) = 1 — sin? (260) sin” ((m3 — m3)/2p)t, (6)

where

1 |my,, —my, |
inf=—|1- = = 7
Ee] Y/ o e "
or
2 VeV, 2

sin? (26) = SN (8)

(my, — mVH)Q + (2myel’p.)2.

Then the nondiagonal mass term m,,,, of the mass matrix in (1) can be inter-
preted as width of v, < v, transitions [4].

In this standard theory of neutrino oscillations, neutrino oscillations are real
even if neutrino masses are different; therefore, the law of energy momentum
conservation is violated. In the corrected theory of neutrino oscillations [6] the
law of energy momentum conservation is fulfilled and neutrino oscillations are
virtual if neutrino masses are different and real if neutrino masses are equal.

It is necessary to note that in physics all the processes are realized through
dynamics. Unfortunately, in the above considered mass mixings scheme the
dynamics is absent. Probably, this is an indication of the fact that this scheme
is an incomplete one, i.e. this scheme requires a physical substantiation. Below
we consider neutrino oscillations which appear in the scheme of charge (couple
constant) mixings, i.e. by using dynamics [4].

2. THEORY OF NEUTRINO OSCILLATIONS IN THE FRAMEWORK OF
CHARGE MIXINGS SCHEME

At first we consider a case of two-neutrino mixings (oscillations) and then
we consider the case of three-neutrino oscillations.



2.1. The Case of Two-Neutrino Mixings (Oscillations) in the Charge Mix-
ings Scheme. In this scheme (or mechanism) the neutrino mixings or transitions
can be realized by mixings of the neutrino fields by analogy with the vector
dominance model (7 — p° and Z° — ~ mixings), the way it takes place in the
particle physics. Then, in the case of two neutrinos, we have

vy = cos v, — sin Oy,
vy = sin O, + cosfy,.

(9)

The charged current in the standard model of weak interactions for two lepton
families has the following form:

a _ (55 feY Ve
] —(G/L)L’YV(VM >L7

_ ( cosf —sin 0 ) 10)

sinf® cos 0

and then the interaction Lagrangian is

9

L=-2=*W} +he. 11
57 Wa (11)
and
Ve = co8 vy + sin Ouo, (12)
v, = —sin Ovq + cos Ouvs.
The Lagrangian (10), (11) can be rewritten in the following form:
£=-LjWt the, (13)

V2

where j¢ is

And the mass matrix is
mia 0
0 mao ’

In this case the neutrino oscillations cannot take place, and even if neutrino
oscillations take place, then there must be 11 < vo neutrino oscillations but not
Ve <> v, oscillations.

At this point some questions arise. Where have we taken v, v, neutrinos if
in the weak interactions, given by expression (13), v, 5 neutrinos are produced?
From the all existent accelerator experiments it is well known that in the weak
interactions ve, v, neutrinos are produced and that the [,,,[,, lepton numbers



are well conserved ones. Obviously we must solve this problem. So, 1,15
neutrinos are eigenstates of the weak interactions when we take mixing matrix
V into account and v., v, neutrinos are eigenstates of the weak interactions with
W, Z° boson exchanges. Then we have to rewrite the Lagrangian of the weak
interaction in the correct form to describe neutrino productions and oscillations
correctly. Then

g .
£=-L;"WF+he., 14
TSI W + e (14)

where j¢ is
. __ 1%
j* = (e )N“(f > '
r /L

How are the lepton numbers violated? It is necessary to suppose that after v, v,
production the violation of lepton numbers takes place, i.e.

v, v cos  —sin 6
¢ =v( '), v=(" , (15)
v ), 2 sin@ cos 6
and then v,, v, neutrinos become superpositions of vy, v, neutrinos:

Ve = cos vy + sin Ouo,

v, = —sin vy 4 cos Ovs. (16)
Taking into account that the charges of vy, 15 neutrinos are gi, g2, we get
gcos 0 = g1, gsin 0= gy, (17)
ie.
0059:2, sin 6 = 92 (18)
g g
Since sin® 0 + cos? § = 1, then
9=1/9%+9
and g1 92
cos l = ———, sinf=——. (19)
Vo + g3 Vi + 93
Since we suppose that g1 =2 go = \%, then
) 1
cos f =sin § = —. (20)

V2

In the general case the couple constants g;, g2 and g can have no connections
and then we obtain only expressions (19).



What happens with the neutrino mass matrix in this case? The primary
neutrino mass matrix has the following diagonal form:

my, 0
( . ) , (21)

since in the weak interactions (with W, Z° bosons) the lepton numbers are con-
served and then v,, v, are eigenstates of these interactions.

It is interesting to note that the same situation takes place in the quark
sector when we consider K O,FO oscillations. In the strong interactions only
d,s,b quarks are produced and the aroma numbers are well conserved in these
interactions, i.e. these states are eigenstates of the strong interactions. Then
oscillations appear at violating the aroma numbers by the weak interactions with
the Cabibbo—Kobayashi-Maskawa matrices.

Then due to the presence of terms violating the lepton numbers, the nondi-
agonal terms appear in this matrix and then this mass matrix is transformed into
the following nondiagonal matrix (the case when C'P is conserved):

m m
e M), (22)
m’/u Ve mV/A,
then the mass Lagrangian of neutrinos takes the following form (v = vp):

1 _ _ _ _ _
Ly =—3 [mu.veve + Mo, Dplp + Moy, (Vely + Duve)| =

1/— — My, My, Ve
= —5(Ve, v . 23
2(7e, ) ( My,p, My, > ( vy > (23)

Mass Lagrangian of the new states obtained by diagonalizing this matrix while
rotating on angle 6 has the following form (these states are namely the same weak
interaction states considered above):

_ 1 - = —1 ml/1 0 Ve _
Ly = —§(V6,VH)V ( 0 e )V( v, ) =

- 1(17 7)) mycos?0 + masin®0  (ma — my)cosOsing Ve \ _
= es Up (mo — my)cosfsin®  mqsin?6 + maocos0 vy, )

1
= 5 [m11711/1 + m21721/2] , (24)

where 11, o are eigenstates and mq,mq are their eigenmasses. From expressions
(23), (24) we obtain
v1 = cos Oy, —sin v,
vy = sin Ov, + cos Oy,

(25)



my, =my cos? 0 + meq sin? 0,
my,, =mi sin? 0 + mo cos? 6, (26)
My, = (M2 —my)cos Osin 0

or
(m,, cos? 0 —m,, sin® 0)

myp = ,
! (cos? 6 — sin? ) 27)
(m,, sin® 0 — m,,, cos® 0)
mo = )
2 (cos? 6 — sin? 0)
where sin 6, cos § are given by expressions (19).
Then Am? = m% — m? is
) (m2 cos* § —m,, sin* 0)
Am* = > (28)

(cos? @ — sin? 6)2

The expression for time evolution of v, v, neutrinos (see (25)-(27)) with
masses my and msy 1S

vi(t) = e P (0),  wa(t) = e P (0), (29)

where
E}=p*+mi), k=12

If neutrinos are propagating without interactions, then

ve(t) = cos Oe=E1ty1(0) + sin fe = E215(0),

vu(t) = —sin e~ E1ty1(0) + cos feE211y(0). (30)

Using the expression for v and v, from (25), and putting it into (20), one can
get the following expression:

ve(t) = [e7F1t cos? 0 + e~ "F2tsin® 0] v (0)+
+ [e7 Bt — e B2 sin 6 cos 01, (0),
vu(t) = [e7F1tsin?g + e~ *F2! cos? 0] v,(0)+

+ [efiElt _ efiEzt} sin 6 cos v (0).

(31)

The probability that neutrino v, produced at time ¢t = 0 will be transformed
into v, at time ¢ is an absolute value of amplitude 1/,(0) in (31) squared, i.e.

P(ve — vu) = (vu(0) - ve(t)) [*=

= %sin2 (20) [1 — cos ((m3 — m%)/2p)t] , (32)



where it is supposed that p > mi,mo and Ey ~ p + mi/2p.

The expression (32) presents the probability of neutrino flavor oscillations.
The angle 6 (mixing angle) characterizes the value of mixing. The probability
P(v. — v,) is a periodical function of distances, where the period is determined
by the following expression:

2p
M5 -
| m3 —m7 |

Lo =2 (33)

And probability P(v, — v,) that the neutrino v, produced at time ¢ = 0 is
preserved as v, neutrino at time ¢ is given by the absolute value of the amplitude
of v(0) in (31) squared. Since the states in (31) are normalized states, then

Plve »ve)+ P(ve —v,) =1 (34)

So, we see that flavor oscillations caused by nondiagonality of the neutrinos
mass matrix violate the law of the —¢. and ¢,, lepton number conservations.
However in this case, as one can see from (34), the full lepton numbers ¢ = (. +-¢,,
are conserved.

It is necessary to stress that neutrino oscillations in this scheme (mechanism)
are virtual if neutrino masses are different and real if neutrino masses are equal
and these oscillations are preserved within the uncertainty relations.

2.2. The Case of Three-Neutrino Mixings (Oscillations) in the Charge
Mixings Scheme. In the case of three neutrinos we can choose parameterization
of the mixing matrix V in the form proposed by Maiani [7]:

1 0 0 Cca 0 S Co S 0
V = 0 Cy S~ 0 1 0 —Sp Co 0 ) (35)
0 -5, ¢ —sg 0 cg 0 0 1

: 2 2
Cep = €08 0 S =sin b, ¢, +s;, =1

= = si 2 2 =1, 36

Cer = €08 B, Ser =sin B, ¢, +s., =1; (36)
Cpur = COS Syur = sin Ao+ =1
nT Y, pnT s wT pT T

It is not difficult to come to consideration of the case of three neutrino types
V€7 V}u VT'
For the first and second families (at v., v, neutrino oscillations) we get

cos 0 = cos 0,,,, = %,
. 29192
Sin (29) = - 3-
91 + 93



Then the probability of v, — v, is given by the following expression:
P(ve — ve) = 1 — sin?(20) sin? (nt(m2 — m?)/2p,.),

In the case g1 = g9
1

7

For the first and third families (at v,, v, neutrino oscillations) we get

sin GVEVM = cos 9%,M =

cos B =cos By, = %,
5 91 + 93
. 9193
sin (203) = i
) 91 +93

Then the probability of v. — v, is given by the following expression:
P(ve — ve) = 1 —sin?(23) sin? (wt(m3 — m?)/2p,,.).
In the case g1 = g3 X
€08 B, 0 B, = o

For the second and third families (at v,, v; neutrino oscillations) we get

g2
COS 7Y = COS Yy, p, = ———,
" V5 + 93
sin (2v) = 29293
95+ 93

Then the probability of v, — v, is given by the following expression:
Py, —v,)=1- sin2(2'y) sin? (mﬁ(m% — m%)/Zpl,M).

In the case g2 = g3
1

7

COS Yy, v, = SIN Yy, =

(40)

(41)

(42)

(44)

(45)

So the neutrino mixings (oscillations) appear due to the fact that at neutrino
production the eigenstates of the weak interactions (i.e. ve, v, V7 neutrino states)
are generated but not the eigenstates of the weak interaction violating lepton
numbers (i.e. vy, V2, v3 neutrino states). And when neutrinos are passing through
vacuum, they are converted into superpositions of v1, v5, ¥3 neutrinos, and through
these intermediate states the oscillations (transitions) between v,, v, V> neutrinos

are realized.



3. CONCLUSIONS

It is necessary to note that in physics all the processes are realized through
dynamics. Unfortunately, in the standard theory of neutrino oscillations based on
the mass mixings scheme (mechanism), the dynamics is absent. Probably, this is
an indication of the fact that this scheme is an incomplete one, i.e. this scheme
requires a physical substantiation.

In this work, neutrino oscillations generated by the weak interaction couple
constant (charge) mixings were considered [4] (as it takes place in the model
of vector dominance [8] or in the electroweak interactions model [9] at vector
boson mixings). Expressions for angle mixings and lengths of oscillations were
obtained. The expressions of probabilities for three-neutrino oscillations were
given. Neutrino oscillations in this scheme (mechanism) are virtual if neutrino
masses are different and real if neutrino masses are equal.
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