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Neutrino Oscillations in the Scheme of Charge (Couple Constant) Mixings

In the standard theory of neutrino oscillations, a scheme of mass mixings is used,
i. e. oscillation parameters are expressed in terms of mass matrix. In this work,
neutrino oscillations generated by charge (the weak interaction couple constant)
mixings are considered. Expressions for angle mixings and lengths of oscillations
are obtained. The expressions of the probability for three-neutrino oscillations are
given. Neutrino oscillations in this scheme (mechanism) are virtual if neutrino masses
are not equal and real if neutrino masses are equal.

The investigation has been performed at the Laboratory of Particle Physics, JINR.
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1. INTRODUCTION

The suggestion that, by analogy with K0, K
0

oscillations, there could be
neutrinoÄantineutrino oscillations (ν → ν̄) was considered by Pontecorvo [1] in
1957. It was subsequently considered by Maki et al. [2] and Pontecorvo [3] that
there could be mixings (and oscillations) of neutrinos of different �avors (i. e.
νe → νμ transitions).

In the general case there can be two schemes (types) of neutrino mixings
(oscillations): mass mixing schemes and charge mixing scheme (as it takes place
in the vector dominance model or vector boson mixings in the standard model of
electroweak interactions) [4].

In the standard theory of neutrino oscillations [5] it is supposed that physically
observed neutrino states νe, νμ, ντ have no deˇnite masses (in this case we cannot
formulate the law of energy momentum conservation in strict form in the reactions
with neutrino participations [4]) and they are directly produced as mixture of the
ν1, ν2, ν3 neutrino states. And if neutrino oscillations are generated by the neutrino
mass matrix, then neutrino mixing parameters are expressed via elements of the
neutrino mass matrix.

The mass Lagrangian of two neutrinos (νe, νμ) has the following form (for
simpliˇcation the case of two neutrinos is considered):

LM = −1
2

[
mνe ν̄eνe + mνμ ν̄μνμ + mνeνμ(ν̄eνμ + ν̄μνe)

]
≡

≡ −1
2
(ν̄e, ν̄μ)

(
mνe mνeνμ

mνμνe mνμ

) (
νe

νμ

)
,

(1)

which is diagonalized by rotation on the angle θ and then this Lagrangian (1)
transforms into the following one (see [5]):

LM = −1
2

[m1ν̄1ν1 + m2ν̄2ν2] , (2)

where

m1,2 =
1
2

[
(mνe + mνμ) ±

(
(mνe − mνμ)2 + 4m2

νμνe

)1/2
]

,

and angle θ is determined by the following expression:

tg(2θ) =
2mνeνμ

(mνμ − mνe)
, (3)

1



νe = cos θν1 + sin θν2,
νμ = − sin θν1 + cos θν2.

(4)

Then νe, νμ masses are

mνe = m1cos2 θ + m2 sin2 iθ,
mνμ = m1 sin2 θ + m2cos2 θ,

(5)

in contrast to the primary supposition that νe, νμ, μτ neutrinos have no deˇnite
masses.

The probability of νe → νe is given by the following expression:

P (νe → νe) = 1 − sin2 (2θ) sin2 ((m2
2 − m2

1)/2p)t, (6)

where

sin θ =
1√
2

[
1 −

|mνμ − mνe |√
(mνμ − mνe)2 + (2mνeνμ)2

]
(7)

or

sin2 (2θ) =
(2mνeνμ)2

(mνe − mνμ)2 + (2mνeνμ)2
. (8)

Then the nondiagonal mass term mνeνμ of the mass matrix in (1) can be inter-
preted as width of νe ↔ νμ transitions [4].

In this standard theory of neutrino oscillations, neutrino oscillations are real
even if neutrino masses are different; therefore, the law of energy momentum
conservation is violated. In the corrected theory of neutrino oscillations [6] the
law of energy momentum conservation is fulˇlled and neutrino oscillations are
virtual if neutrino masses are different and real if neutrino masses are equal.

It is necessary to note that in physics all the processes are realized through
dynamics. Unfortunately, in the above considered mass mixings scheme the
dynamics is absent. Probably, this is an indication of the fact that this scheme
is an incomplete one, i. e. this scheme requires a physical substantiation. Below
we consider neutrino oscillations which appear in the scheme of charge (couple
constant) mixings, i.e. by using dynamics [4].

2. THEORY OF NEUTRINO OSCILLATIONS IN THE FRAMEWORK OF
CHARGE MIXINGS SCHEME

At ˇrst we consider a case of two-neutrino mixings (oscillations) and then
we consider the case of three-neutrino oscillations.
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2.1. The Case of Two-Neutrino Mixings (Oscillations) in the Charge Mix-
ings Scheme. In this scheme (or mechanism) the neutrino mixings or transitions
can be realized by mixings of the neutrino ˇelds by analogy with the vector
dominance model (γ − ρ0 and Z0 − γ mixings), the way it takes place in the
particle physics. Then, in the case of two neutrinos, we have

ν1 = cos θνe − sin θνμ,
ν2 = sin θνe + cos θνμ.

(9)

The charged current in the standard model of weak interactions for two lepton
families has the following form:

jα =
(
ēμ̄

)
L

γαV

(
νe

νμ

)
L

,

V =
(

cos θ − sin θ
sin θ cos θ

)
, (10)

and then the interaction Lagrangian is

L =
g√
2
jαW+

α + h.c. (11)

and
νe = cos θν1 + sin θν2,

νμ = − sin θν1 + cos θν2.
(12)

The Lagrangian (10), (11) can be rewritten in the following form:

L =
g√
2
jαW+

α + h.c., (13)

where jα is

jα =
(

ēμ̄
)
L

γα

(
ν1

ν2

)
L

.

And the mass matrix is (
m1 0
0 m2

)
.

In this case the neutrino oscillations cannot take place, and even if neutrino
oscillations take place, then there must be ν1 ↔ ν2 neutrino oscillations but not
νe ↔ νμ oscillations.

At this point some questions arise. Where have we taken νe, νμ neutrinos if
in the weak interactions, given by expression (13), ν1, ν2 neutrinos are produced?
From the all existent accelerator experiments it is well known that in the weak
interactions νe, νμ neutrinos are produced and that the lνe , lνμ lepton numbers
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are well conserved ones. Obviously we must solve this problem. So, ν1, ν2

neutrinos are eigenstates of the weak interactions when we take mixing matrix
V into account and νe, νμ neutrinos are eigenstates of the weak interactions with
W, Z0 boson exchanges. Then we have to rewrite the Lagrangian of the weak
interaction in the correct form to describe neutrino productions and oscillations
correctly. Then

L =
g√
2
jαW+

α + h.c., (14)

where jα is

jα =
(

ēμ̄
)
L

γα

(
νe

νμ

)
L

.

How are the lepton numbers violated? It is necessary to suppose that after νe, νμ

production the violation of lepton numbers takes place, i. e.(
νe

νμ

)
L

= V

(
ν1

ν2

)
L

, V =
(

cos θ − sin θ
sin θ cos θ

)
, (15)

and then νe, νμ neutrinos become superpositions of ν1, ν2 neutrinos:

νe = cos θν1 + sin θν2,
νμ = − sin θν1 + cos θν2.

(16)

Taking into account that the charges of ν1, ν2 neutrinos are g1, g2, we get

g cos θ = g1, g sin θ = g2, (17)

i.e.
cos θ =

g1

g
, sin θ =

g2

g
. (18)

Since sin2 θ + cos2 θ = 1, then

g =
√

g2
1 + g2

2

and
cos θ =

g1√
g2
1 + g2

2

, sin θ =
g2√

g2
1 + g2

2

. (19)

Since we suppose that g1
∼= g2

∼= g√
2
, then

cos θ ∼= sin θ ∼=
1√
2
. (20)

In the general case the couple constants g1, g2 and g can have no connections
and then we obtain only expressions (19).
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What happens with the neutrino mass matrix in this case? The primary
neutrino mass matrix has the following diagonal form:(

mνe 0
0 mνμ

)
, (21)

since in the weak interactions (with W, Z0 bosons) the lepton numbers are con-
served and then νe, νμ are eigenstates of these interactions.

It is interesting to note that the same situation takes place in the quark

sector when we consider K0, K
0

oscillations. In the strong interactions only
d, s, b quarks are produced and the aroma numbers are well conserved in these
interactions, i. e. these states are eigenstates of the strong interactions. Then
oscillations appear at violating the aroma numbers by the weak interactions with
the CabibboÄKobayashiÄMaskawa matrices.

Then due to the presence of terms violating the lepton numbers, the nondi-
agonal terms appear in this matrix and then this mass matrix is transformed into
the following nondiagonal matrix (the case when CP is conserved):(

mνe mνeνμ

mνμνe mνμ

)
, (22)

then the mass Lagrangian of neutrinos takes the following form (ν ≡ νL):

LM = − 1
2

[
mνe ν̄eνe + mνμ ν̄μνμ + mνeνμ(ν̄eνμ + ν̄μνe)

]
≡

≡ − 1
2 (ν̄e, ν̄μ)

(
mνe mνeνμ

mνμνe mνμ

)(
νe

νμ

)
. (23)

Mass Lagrangian of the new states obtained by diagonalizing this matrix while
rotating on angle θ has the following form (these states are namely the same weak
interaction states considered above):

LM = −1
2
(ν̄e, ν̄μ)V −1

(
mν1 0
0 m2

)
V

(
νe

νμ

)
=

=
1
2
(ν̄e, ν̄μ))

(
m1cos

2θ + m2sin
2θ (m2 − m1)cosθsinθ

(m2 − m1)cosθsinθ m1sin
2θ + m2cos

2θ

) (
νe

νμ

)
=

=
1
2

[m1ν̄1ν1 + m2ν̄2ν2] , (24)

where ν1, ν2 are eigenstates and m1, m2 are their eigenmasses. From expressions
(23), (24) we obtain

ν1 = cos θνe − sin θνμ,
ν2 = sin θνe + cos θνμ,

(25)

5



mνe = m1 cos2 θ + m2 sin2 θ,

mνμ = m1 sin2 θ + m2 cos2 θ, (26)

mνeνμ = (m2 − m1) cos θ sin θ

or

m1 =
(mνe cos2 θ − mνμ sin2 θ)

(cos2 θ − sin2 θ)
,

m2 =
(mνe sin2 θ − mνμ cos2 θ)

(cos2 θ − sin2 θ)
,

(27)

where sin θ, cos θ are given by expressions (19).
Then Δm2 = m2

2 − m2
1 is

Δm2 =
(m2

νμ
cos4 θ − mνe sin4 θ)

(cos2 θ − sin2 θ)2
. (28)

The expression for time evolution of ν1, ν2 neutrinos (see (25)Ä(27)) with
masses m1 and m2 is

ν1(t) = e−iE1tν1(0), ν2(t) = e−iE2tν2(0), (29)

where
E2

k = (p2 + m2
k), k = 1, 2.

If neutrinos are propagating without interactions, then

νe(t) = cos θe−iE1tν1(0) + sin θe−iE2tν2(0),
νμ(t) = − sin θe−iE1tν1(0) + cos θe−iE2tν2(0). (30)

Using the expression for ν1 and ν2 from (25), and putting it into (20), one can
get the following expression:

νe(t) =
[
e−iE1t cos2 θ + e−iE2t sin2 θ

]
νe(0)+

+
[
e−iE1t − e−iE2t

]
sin θ cos θνμ(0),

νμ(t) =
[
e−iE1tsin2θ + e−iE2t cos2 θ

]
νμ(0)+

+
[
e−iE1t − e−iE2t

]
sin θ cos θνe(0).

(31)

The probability that neutrino νe produced at time t = 0 will be transformed
into νμ at time t is an absolute value of amplitude νμ(0) in (31) squared, i. e.

P (νe → νμ) =| (νμ(0) · νe(t)) |2=

=
1
2

sin2 (2θ)
[
1 − cos ((m2

2 − m2
1)/2p)t

]
, (32)
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where it is supposed that p � m1, m2 and Ek � p + m2
k/2p.

The expression (32) presents the probability of neutrino �avor oscillations.
The angle θ (mixing angle) characterizes the value of mixing. The probability
P (νe → νμ) is a periodical function of distances, where the period is determined
by the following expression:

Lo = 2π
2p

| m2
2 − m2

1 | . (33)

And probability P (νe → νe) that the neutrino νe produced at time t = 0 is
preserved as νe neutrino at time t is given by the absolute value of the amplitude
of νe(0) in (31) squared. Since the states in (31) are normalized states, then

P (νe → νe) + P (νe → νμ) = 1. (34)

So, we see that �avor oscillations caused by nondiagonality of the neutrinos
mass matrix violate the law of the −�e and �μ lepton number conservations.
However in this case, as one can see from (34), the full lepton numbers � = �e+�μ

are conserved.
It is necessary to stress that neutrino oscillations in this scheme (mechanism)

are virtual if neutrino masses are different and real if neutrino masses are equal
and these oscillations are preserved within the uncertainty relations.

2.2. The Case of Three-Neutrino Mixings (Oscillations) in the Charge
Mixings Scheme. In the case of three neutrinos we can choose parameterization
of the mixing matrix V in the form proposed by Maiani [7]:

V =

⎛
⎝ 1 0 0

0 cγ sγ

0 −sγ cγ

⎞
⎠

⎛
⎝ cβ 0 sβ

0 1 0
−sβ 0 cβ

⎞
⎠

⎛
⎝ cθ sθ 0

−sθ cθ 0
0 0 1

⎞
⎠, (35)

ceμ = cos θ seμ = sin θ, c2
eμ + s2

eμ = 1;

ceτ = cos β, seτ = sin β, c2
eτ + s2

eτ = 1; (36)

cμτ = cos γ, sμτ = sin γ, c2
μτ + s2

μτ = 1.

It is not difˇcult to come to consideration of the case of three neutrino types
νe, νμ, ντ .

For the ˇrst and second families (at νe, νμ neutrino oscillations) we get

cos θ = cos θνeνμ =
g1√

g2
1 + g2

2

,

sin (2θ) =
2g1g2

g2
1 + g2

2

.
(37)
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Then the probability of νe → νe is given by the following expression:

P (νe → νe) = 1 − sin2(2θ) sin2 (πt(m2
2 − m2

1)/2pνe), (38)

In the case g1
∼= g2

sin θνeνμ
∼= cos θνeνμ

∼=
1√
2
. (39)

For the ˇrst and third families (at νe, ντ neutrino oscillations) we get

cos β = cos βνeντ =
g1√

g2
1 + g2

3

,

sin (2β) =
2g1g3

g2
1 + g2

3

.
(40)

Then the probability of νe → νe is given by the following expression:

P (νe → νe) = 1 − sin2(2β) sin2 (πt(m2
3 − m2

1)/2pνe). (41)

In the case g1
∼= g3

cos βνeντ
∼= sin βνeντ

∼=
1√
2
. (42)

For the second and third families (at νν , ντ neutrino oscillations) we get

cos γ = cos γνμντ =
g2√

g2
2 + g2

3

,

sin (2γ) =
2g2g3

g2
2 + g2

3

.
(43)

Then the probability of νμ → νμ is given by the following expression:

P (νμ → νμ) = 1 − sin2(2γ) sin2 (πt(m2
3 − m2

2)/2pνμ). (44)

In the case g2
∼= g3

cos γνμντ
∼= sin γνμντ

∼=
1√
2
. (45)

So the neutrino mixings (oscillations) appear due to the fact that at neutrino
production the eigenstates of the weak interactions (i. e. νe, νμ, ντ neutrino states)
are generated but not the eigenstates of the weak interaction violating lepton
numbers (i. e. ν1, ν2, ν3 neutrino states). And when neutrinos are passing through
vacuum, they are converted into superpositions of ν1, ν2, ν3 neutrinos, and through
these intermediate states the oscillations (transitions) between νe, νμ, ντ neutrinos
are realized.
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3. CONCLUSIONS

It is necessary to note that in physics all the processes are realized through
dynamics. Unfortunately, in the standard theory of neutrino oscillations based on
the mass mixings scheme (mechanism), the dynamics is absent. Probably, this is
an indication of the fact that this scheme is an incomplete one, i. e. this scheme
requires a physical substantiation.

In this work, neutrino oscillations generated by the weak interaction couple
constant (charge) mixings were considered [4] (as it takes place in the model
of vector dominance [8] or in the electroweak interactions model [9] at vector
boson mixings). Expressions for angle mixings and lengths of oscillations were
obtained. The expressions of probabilities for three-neutrino oscillations were
given. Neutrino oscillations in this scheme (mechanism) are virtual if neutrino
masses are different and real if neutrino masses are equal.
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