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Neural Networks, Cellular Automata, and Robust Approach Applications
for Vertex Localization in the OPERA Target Tracker Detector

A neural-network (NN) approach for neutrino interaction vertex reconstruction
in the OPERA experiment with the help of the Target Tracker (TT) detector is
described. A feed-forward NN with the standard back propagation option is used.
The energy functional minimization of the network is performed by the method of
conjugate gradients. Data preprocessing by means of cellular automaton algorithm
is performed. The Hough transform is applied for muon track determination and the
robust ˇtting method is used for shower axis reconstruction. A comparison of the
proposed approach with earlier studies, based on use of the neural network package
SNNS, shows their similar performance. The further development of the approach
is underway.

The investigation has been performed at the Dzhelepov Laboratory of Nuclear
Problems, JINR.
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INTRODUCTION

The OPERA experiment [1] is designed for a direct observation of ντ appear-
ance in the CNGS long baseline beam (from CERN to Gran Sasso Laboratory)
as a result of νμ → ντ oscillation.

OPERA exploits nuclear emulsions as very high resolution tracking devices
for the direct detection of τ leptons produced in the charge current (CC) interaction
of the ντ with matter of the detector. The target part of the detector (see Fig. 1)
consists of 62 target brick walls (photoemulsion layers, interlaced with led layers,

Fig. 1. General view of the OPERA setup

are organized in bricks). Each wall consists of ∼ 3300 bricks. It is accompanied
by two planes (XÄY ) of electronic Target Tracker (TT) detectors. The TT
planes consist of 256 scintillator strips, each is ∼ 7 m long. The strips are read
out by WLS ˇbers optically coupled to photodetectors on both ends of a strip.
The TT mainly serves for a location of the event vertex's position, i. e. for a
Brick Finding (BF) Å a procedure of a target brick identifying where a neutrino
interaction occurred.
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A neural network (NN) approach was successfully employed in [2, 3] for
the purpose of the BF. The NN used there had been generated by the Stuttgart
NN Simulator (SNNS) [10] with feed-forward, standard back-propagation option.
Input data were previously ˇltered by a kind of Hough transform method. The NN
was trained separately on different classes of events. The BF strategy proposed in
[2, 3, 4] was also different for muonic and non-muonic events, although in both
cases it uses the idea of intersection of the previously found brick wall with either
muon track or hadronic shower axis. In case of τ decay the total BF efˇciency
achieved in [2, 3] was 72.4% for muonic, 68.1% for hadronic, and 72.5% for
electronic events.

The goal of this work was to develop a BF program based on our NN code
and on some other data handling algorithms developed by the JINR's OPERA
group. As a ˇrst step of validation of our BF approach we tried to reproduce the
results of the previous studies [2, 3].

In our study we also split the BF task in two steps: we identify, ˇrst, the
vertex wall, i. e. look for Z position of the vertex, and then, use it to locate a
brick with the vertex of the given event.

1. EVENT CLEANING WITH THE HELP OF A CELLULAR
AUTOMATON

If one would try to identify the brick wall, containing neutrino interaction
vertex, straightforwardly, as a wall in front of the ˇrst TT plane, containing some
hits, it would often give a wrong result because of a presence of back-scattering
(BS) particles. BS is particularly dangerous since it is correlated with the vertex.
Since for the vertex reconstruction the tracking information is most useful, isolated
hits (the product of neutron or gamma interactions with the detectors, natural
radioactivity background, PMT noise, etc.) are misleading in most of the cases.

So, to facilitate the vertex location some preliminary event cleaning off
isolated hits is needed. We propose the procedure, based on the cellular automaton
(CA) approach [5].

A cellular automaton can be regarded as a simpliˇed local form of neural net-
works. It is a dynamical system that evolves in discrete, usually two-dimensional,
space consisting of binary cells.

The evolution rules are local, i. e. the system dynamics is determined by an
unchanged set of rules, for example, a table, in accordance with which the new
state of a cell is calculated on the basis of the states of the nearest neighbors
surrounding it. It is important that this change of states is made simultaneously
and in parallel, and the time proceeds discretely. An example of CA realization
is the famous ®Life¯ game.
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We tested a set of different survival rules in order to eliminate more efˇciently
or, at least, reduce the number of disconnected hits which can distort the topology
of the events. The results can be seen in Table 1. Here BS = 0 means that there

Table 1. Tuning of CA rules

BS = 0 BS = 1 BS = 2 CL
Without cleaning 45.8% 43.1% 11.1% 0.0%
With cleaning

NAP DR NN
2 5 1 64.4% 32.6% 3.0% 0.2%
2 4 1 65.5 31.9 2.6 0.2
2 3 1 67.1 30.8 2.1 0.3
2 2 1 69.8 28.8 1.4 0.5
2 5 2 64.0 34.1 1.9 0.3
2 4 2 65.6 32.9 1.5 0.4
2 3 2 67.7 31.2 1.0 0.5
2 2 2 71.0 28.4 0.6 1.5
4 5 1 59.8 34.7 5.5 0.1
4 4 1 60.6 34.3 5.1 0.1
4 3 1 61.7 33.8 4.6 0.2
4 2 1 63.6 32.6 3.8 0.4
4 1 1 67.2 30.2 2.6 2.1
4 5 2 60.9 34.3 4.8 0.2
4 4 2 62.1 33.9 4.4 0.2
4 3 2 63.8 32.6 3.7 0.3
4 2 2 66.6 30.6 2.7 0.6
4 1 2 72.2 26.3 1.5 0.3

Fig. 2. An example of CA selected strips for a νμ CC event. Cross ®+¯ marks the vertex
real position
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is no BS particles, BS = 1 Å there is one hitted TT wall before the vertex wall,
BS = 2 Å there are two hitted walls before the vertex wall. NAP Å number
of adjacent walls in which neighbors are being found, DR Å distance along an
adjacent wall measured in strip widths. NN Å number of neighbors needed for
a hit survival. CL Å cleaning losses.

Finally, the cleaning method consists in removing of each hit that has none
of 14 nearest neighbors in two adjacent walls. In Fig. 2 the selected CA hits are
shown with respect to all hits for one of the νμCC events.

2. CLASSIFICATION OF NEUTRINO EVENTS BY THEIR
TOPOLOGY IN TT

The CNGS νμ beam is optimized for ντ appearance search. The number of
neutrino interactions expected for 5 years of operation is more than 32000. The
number of interacting ντ is expected to be 240. Thus, overwhelming majority
of neutrino events will be the νμ interactions. For each neutrino interaction the
brick, containing the vertex, has to be identiˇed, extracted and the emulsions
have to be analyzed. A brick removed from the brick wall for emulsion analysis
is not coming back again. So, to preserve a mass of the OPERA detector and
to decrease the scanning load it is important to identify a vertex brick of any
neutrino event with the highest efˇciency. Only after comprehensive scanning
analysis a conclusion on a type of the neutrino event can be made.

The neutrino interaction events can be separated in a few classes according to
their topology in the TT detector. The BF procedure can be optimized differently
for those classes depending on presence of muon track and hadronic showers.

CC muon neutrino interactions can be either quasi-elastic (QE) or deep in-
elastic scattering (DIS) events. The ˇrst event kind is characterized by a long
muon track while in the second case the muon track is accompanied by a hadronic
shower.

Neutrino events were separated in three categories depending on the number
of the hitted walls and on the mean number of hits per TT plane. This separation
is motivated by a fact that the NN performance used to locate the vertex wall
is improved by separating events with small shower development from those of
important one. The ˇrst kind of the events more likely corresponds to the QE
interactions and the second one to DIS, where the BS is quite frequent. The three
classes of the events are deˇned as follows:

1) Events with one or two hitted TT walls;
2) Events with more than two hitted walls and a mean number of hits/plane

less than 2.5;
3) Events with more than two hitted walls and a mean number of hits/plane

more than 2.5.
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The procedure of BF is described below only for the second and the third
classes of the events because for the ˇrst class some other procedure should be
applied.

3. MUON TRACK DETERMINATION BY MEANS OF THE
HOUGH TRANSFORM

In νμ CC and τ → μ events a muon is produced which can be recognized by
its long track. So we can try to determine the neutrino interaction vertex using a
muon track information.

In case of the muonic events after CA ˇltering we use the method of variable
slope histograms (VSH) for a muon track recognition.

The VSH method [6] is a particular case of the Hough transform [7] for
straight lines revealing. The idea of the method consists in fragmentation of an
inspected region by narrow parallel bands in every of which the number of hits is
calculated (see Fig. 3). A slope of the bands is gradually changed from αmin to
αmax. When one of such slopes coincides with some of tracks, it would produce
a maximum in the histogram corresponding to this slope.

Fig. 3. Graphic example of the VSH method principle

The method of projection is used for bins inˇlling. All hits are projected
onto Y axis on a ˇxed angle by rule Ypr = y − xα (see Fig. 4) and values
of corresponding histogram bins are increased. Starting from αmin we increase
gradually the projection angle in the following way: for the kth direction αk is
calculated as αk = αmin + kΔy/Xmax.

The criterion of the muon track deˇnition is that a bin of histogram with the
maximum value must contain at least 10 counts. When the maximal bin is found,
the directions corresponding to 95% of maximum are ˇxed. If the number of
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Fig. 4. The method of projection

such directions is less than 3 their parameters are used to determine then a vertex
brick. Otherwise only a shower axis is reconstructed. In Fig. 5 the muon track
found by the VSH method is shown.

Fig. 5. Muon track found by the VSH method

4. PRINCIPAL SHOWER AXIS RECONSTRUCTION USING A ROBUST
LINE-FITTING METHOD

The TT detector has a pitch of 26 mm and it is difˇcult to single out distinct
tracks near the vertex of the event. In that case the reconstruction of a shower
axis may be more useful for ˇnding a general direction to the vertex.

For this purpose it is necessary to employ some line-ˇtting method. However,
usual Least Square Method (LSM) may fail in case of our events because of
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presence of points-outliers or/and strong contamination. In both cases the crucial
LSM assumption of residual normality is violated. So we propose to replace the
Least Square functional

L( p) =
∑

i

ε2i (1)

by a functional

L( p, σ) =
∑

i

ρ(εi), (2)

where p is the vector of parameters, εi are residuals and ρ(ε) is a compact
contribution function.

The functional (2) minimization with respect to its parameters can be per-

formed by solving the equation
∂L(p)

∂p
=

n∑
i=1

∂ρ(εi)
∂εi

∂εi

∂p
= 0. As it can be

demonstrated [8], that equation by denoting w(ε) =
1
ε

∂ρ(ε)
∂ε

can be modiˇed

to the form
∂L(p)

∂p
=

n∑
i=1

w(εi)
∂εi

∂p
εi = 0, which is similar to the normal LSM

equations, but with the replacement of numerical weight coefˇcients by the weight
function w(ε) to be recalculated at each step of the iterative procedure.

It gives a weight to each measured point depending on its distance ε from
the ˇtted curve. The weight function must quickly decrease with growing the
residual ε.

To determine a principal shower axis we use the robust ˇt of a straight line
to all hits excluding those of the found muon track, but including hits that belong
to the ˇrst 3 walls with the energy deposition exceeding the average hit amplitude
(to take into account double hits in some strips close to the vertex). We also take
into account amplitude information (see Fig. 6) in such a way that a robust weight
of each point changes accordingly to the energy deposited in the corresponding
hit. Equation (3) describes a 2D weight function which is shown in Fig. 7.

w(E, d, σ) = A exp
(
− d2

2σ2

)
, (3)

where A = 4

√
E

Emax
and σ decreases gradually during an iteration process.

The robust ˇt starts from an initial approximation, which is a line passing
through the center of gravity of all hits and parallel to Z axis.

In Fig. 8 the shower axis reconstructed by a robust ˇtting method is shown
for one of the τ → h events.
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Fig. 6. Hit amplitudes

Fig. 7. 2D weight function

Fig. 8. Axes for hadronic shower reconstructed by the robust ˇt
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5. VERTEX WALL DETERMINATION

For the purpose of the vertex wall determination we use a neural network
approach based on a multilayer perceptron (MLP).

A typical MLP network consists of a set of source nodes forming the input
layer, one or more hidden layers of computation nodes (artiˇcial neurons), and
an output layer of nodes (see Fig. 9). Each layer is fully connected to the next

Fig. 9. MLP structure

one. The multiple real-valued input signal propagates through the network layer-
by-layer according to a set of weights of neurons putting each subsequent output
through some nonlinear activation function g(x) (Fig. 10).

Fig. 10. Activation function

MLPs are still the most usable NN type in physics due to possibilities of
their training by Monte-Carlo data and nonexpensive hardware implementation.

We use MLP with standard back propagation training algorithm [9]. The
energy functional minimization of the network is performed by the method of
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conjugate gradients (CG). Our ˇrst goal was to reproduce the results of [2, 3]
making use of our own NN code and we started with about the same input
parameters. The numbers of neurons in the input and hidden layers are equal to
14. Input variables estimated for the ˇrst 3 hitted TT walls are as follows:

• Total amplitude of hits in a particular wall;

• Number of the hits in the wall;

• Dispersion of the hits in the wall;

• The mean distance of the hits in the wall with respect to the event
shower axis.

In addition to those variables, ratios of energy in the next wall with respect
to the previous one, E2/E1 and E3/E2, are also included to the input parameters
to train the NN. Their distributions for different kinds of BS are shown in Fig. 11.

Fig. 11. E2/E1 and E3/E2 ratio distributions

As can be seen in Fig. 12 the most signiˇcant input parameters, for example,
for τ → μ type of event are mean distances of hits in the ˇrst three walls with
respect to the event shower axis.
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Fig. 12. Relative signiˇcance of the input parameters

6. MLP(CG) vs. SNNS COMPARISON

Stuttgart Neural Network Simulator (SNNS) package [10] includes vast spec-
trum of different NN architectures and training algorithms and it is intended for
solving wide range of problems. Our net (or the MLP(CG)) was elaborated es-
pecially for the OPERA data analysis, therefore it is simple, compact and can be
directly built in OPERA software. We found it to be more 	exible and easy to
use than SNNS with similar performance.

The comparative study of MLP(CG) and SNNS with analogous training and
minimization algorithm shows that corresponding mean square errors (MSE) after
8000 epochs are approximately equal to each other. Comparison results are shown
in Table 2.

Table 2. MLP(CG) vs. SNNS

MLP(CG) SNNS
Efˇciency MSE Efˇciency MSE

τ → μ 2cl. 84.4 ± 2.9 0.249 84.5 ± 3.3 0.247
τ → μ 3cl. 84.1 ± 3.4 0.199 84.2 ± 3.2 0.198
νμ CC 2 cl. 85.2 ± 3.6 0.224 85.1 ± 3.1 0.228
νμ CC 3 cl. 84.9 ± 2.6 0.207 84.9 ± 2.8 0.209
νμ NC 2 cl. 79.9 ± 4.6 0.269 78.8 ± 3.8 0.285
νμ NC 2 cl. 83.2 ± 3.5 0.226 83.2 ± 3.4 0.225
τ → e 3 cl. 89.5 ± 3.6 0.178 89.8 ± 3.8 0.174
τ → h 3 cl. 84.4 ± 3.1 0.197 85.3 ± 2.7 0.187
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7. VERTEX BRICK IDENTIFICATION

After the vertex wall is selected by the NN, we use its position and a muon
track or a shower axis parameters to determine xÄy coordinates of the vertex
brick in the wall.

The distributions of vertex residual for τ → μ and νμCC events (approxi-
mated by the sum of two Gaussians for comparison) can be seen in Fig. 13 and
Fig. 14, correspondingly. The sigma values are comparable with that given in [4].

Fig. 13. τ → μ vertex resolution

Fig. 14. νμ CC vertex resolution

8. PRELIMINARY RESULTS

In our studies we were restricted by the ofˇcially MC statistics which is not
probably sufˇcient in some cases.

Wall ˇnding (WF) and brick identiˇcation (BI) efˇciencies calculated for
available simulated data sets are presented in Table 3. Total BF efˇciency is a
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multiplication of those two. The uncertainty of these results is about 5%. For a
comparison purpose efˇciency for various types of ντ events obtained in [2, 3]
are shown in Table 4.

Table 3. Wall ˇnding (neural network), brick identiˇcation, and total BF efˇciency

WF BI BF
τ → μ 84.3 78.2 66.0
τ → e 89.5 75.8 67.8
τ → h 84.4 75.4 63.6
νμ CC 85.1 80.9 68.8
νμ NC 82.1 67.1 55.1

Table 4. Corresponding efˇciencies obtained earlier

WF BI BF
τ → μ 88.6 81.7 72.4
τ → e 86.1 84.2 72.5
τ → h 83.8 81.3 68.1

9. CONCLUSION AND OUTLOOK

We have created the BF program, based on some algorithms usually applied
for similar purposes.

The wall ˇnding efˇciency for the studied neutrino reactions is found to be
the same as in the previous works, however, the current BF efˇciency is still
lower. It may be because of lack of MC statistics, of some difference in MC
samples, etc., however, it is clear that a further optimization of the algorithms is
necessary.

As the next steps, we plan
• to work on a further algorithm optimization;
• to implement the BF strategy with identiˇcation not just one but few most

probable vertex bricks;
• to make better separation of neutrino events to classes;
• to generate sufˇcient statistics of realistic MC events making use of the

information of calibration and commissioning of the TT.
Acknowledgements. The authors express their gratitude to A.Krasnoperov
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work.
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