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1. INTRODUCTION

Symmetry plays a central role in our pursuit of a better understanding of
nature. Through the preservation or artful breaking of symmetry, powerful models
have been developed which describe the fundamental forces and which have, so
far, withstood all tests. Indeed, any endeavour to go beyond this standard model
also has, at its heart, an appropriate symmetry argument.

An immediate consequence of symmetry is that it permits for a reduction
in the relevant degrees of freedom needed to describe a given problem. In a
gauge theory this reduction implies that not all the degrees of freedom present
in the formulation of the theory correspond to physical degrees of freedom. So,
for example, in Quantum Electrodynamics, with its U(1) gauge symmetry, the
potential A,,, which naively has four degrees of freedom, describes the photon,
which has just two physical degrees of freedom. Understanding how this type
of reduction should best take place and how the process of quantizing a system
interacts with the symmetry, has driven many of the important advances in our
understanding of gauge theories [1].

In many cases, the reduction to the true physical degrees of freedom in a field
theory has been fruitfully studied through simpler, finite-dimensional systems. In
particular, coset spaces of the form G/H, where G and H are finite-dimensional
Lie groups, have provided much insight [2] into how global and topological
properties of these configuration spaces can be encoded into the quantization
process via generalized notions of reduction to the true degrees of freedom [3].

In all investigations to date, specific details on dynamical aspects of the
reduction to G/ H have been restricted to groups for which manageable parame-
terizations of the group elements exist. Essentially this has restricted attention
to groups directly related to the rotation group and its covering, SU(2). How-
ever, recently there has been much progress in finding suitable parameterizations
for the higher-dimensional unitary groups [4-7] and particularly for the group
SU(3) [8,9]. These advances open the door to detailed investigations of dy-
namics on spaces such as the five-sphere, SP, now viewed as the reduction from
SU(3) to SU(3)/SU(2). By exploiting our concrete description of this reduc-
tion we shall see a new phenomenon for this system: different metric structures
emerge depending on whether the five-sphere is viewed as the coset space or via
its natural embedding in six-dimensional Euclidean space. This is, to the best of
our knowledge, the first explicit example of this metric property of reduction.

The plan of the paper is as follows. We will conclude this introduction with a
brief summary of the classical Hamiltonian reduction procedure. Then, in Sec. 2,
we will see how this procedure is applied to the group SU(2). This section



does not contain any new results, but fixes notation and introduces themes that
will prepare us for the reduction on the configuration space SU(3) which will
be presented in detail in Sec. 3. Then, in Sec. 4 we will investigate the possible
Riemannian structures that arise on the quotient space S° and discuss the possible
metric and geodesic correspondences. In Appendix we will collect together the
details of our consistent parameterization of SU(3).

1.1. Hamiltonian Reduction. Consider the special class of Lagrangian sys-
tems whose configuration space is a compact matrix Lie group G. This means
that the state of a system at fixed time ¢ = 0 is characterized by an element of
the Lie group ¢g(0) € G and the evolution is described by the curve g(¢) on the
group manifold [10,11]. The «free evolution» on the semi-simple group G is, by
definition, the Riemannian geodesic motion on the group manifold with respect
to the so-called Cartan—Killing metric [12,13]

dsZ =k Tr (gfldg ® gfldg) ,

where x is a normalization factor. The geodesics are given by the extremal curves
of the action functional

T
K 1. 1.
S[g] :5/ dtTr (g7 997 "9). (1.1)
0
This action is invariant under the continuous left translation

9(t) — 9(e)g(t),  e=(e1,82,.. ,€dima),

and therefore the system possesses the integrals of motion 77 ,Z>,... ,Z4im G-
The existence of these integrals of motion allows us to reduce the number of
degrees of freedom of the system using the well-known method of Hamiltonian
reduction [10,11].

For a generic Hamiltonian system defined on 7" M with symmetry associated
to the Lie group G action, the level set of the corresponding integrals of motion

M. =T ), (1.2)

where ¢ is a set of arbitrary real constants ¢ = (¢1, ... ,Cdimc), determines the
reduced Hamiltonian system on the reduced phase space F. C M.. The subset
F. is described by the isotropy group, G, of the integrals level set M,

F.=M./G..

Here we are interested in a special case when the manifold M is itself a group
manifold and the symmetry transformation are group translations. Now the level
set M, is a subset of the trivial cotangent bundle 7*G which can be identified



with the product of the group G and its algebra, G x g. The level set given by

the integrals 7y = ¢ ,Z3 = c2,... ,Zny = ¢y, N < dim G, defines the isotropy
group G, C G and the so-called orbit space
0=G/G.. (1.3)

The relationship between the orbit space O and the reduced phase space F. can
be summarized as follows (see, e.g., [10,11]):

o the reduced phase space F. is symplectic and diffeomorphic to the cotan-
gent bundle T*O;

o the dynamics on the reduced degrees of freedom is Hamiltonian with a
reduced Hamiltonian given by the projection of the original Hamiltonian
function to F.

These results are the modern generalizations of the classical theorems proving
that the collection of holonomic constraints defines a configuration manifold M
as a submanifold of R™ and that, in the absence of forces, the trajectories of
mechanical system are geodesics of the induced Riemannian metric.

Note that the above results do not claim that the reduced phase space and the
dynamics on the orbit space are isometric. Indeed, we know that on the reduced
phase space we can define, at least locally, an induced metric that arises from the
kinetic energy energy part of the reduced Hamiltonian

1
Ko = 3 g0(&a> &) Pa P (1.4)

On the other hand, the map 7 : G — G/G. induces the metric

8o = T80 (1.5)
We now pose a question about the relation between these two metrics.

When are the metrics go and gy isometrically or, more weakly,
geodesically equivalent?

We do not know the general answer to this question, so in the present work we
will focus our study on two examples: geodesic motion on the SU(2) and SU (3)
group manifolds.

We start with a well-known example of Hamiltonian reduction SU(2) —
SU(2)/U(1) and show that the reduced space is indeed in isometrical corre-
spondence with the cotangent bundle T*S? and the standard induced metric on
the two-sphere S2. The case of the SU(3) — SU(3)/SU(2) reduction gives an
example of the opposite result: the metric defined by the Hamiltonian flow on
the orbit space SU(3)/SU(2) is not isometrically equivalent to a standard round
metric on the five-sphere S®. Furthermore, in this case, the stronger result is true:
the reduced configuration space and the standard S° are not even geodesically
equivalent.



2. GEODESIC FLOW ON SU(2)

In this section we discuss the example of reduction of free motion on the
SU(2) group manifold. We start with a presentation of the key geometrical
structures found on this group which are necessary for any further dynamical
analysis.

2.1. The Euler Angle Parameterization. The special unitary group SU(2),
considered as a subgroup of the general matrix group GL(2,C), is topologically
the three-sphere S? embedded into C?. This correspondence SU(2) ~ S follows
immediately from the standard identification of an arbitrary element g € SU(2)

as
_ [ & —& 2 2 _
g:= ( P > , |z1]° + |22 = 1. (2.1)
The three-sphere S? is a manifold which requires more than one chart to cover
it and therefore there is no global parameterization of the SU(2) group as a
three-dimensional space. The local description usually adopted is given by the
conventional symmetric Euler representation [14] for a group element

g = exp (z% 03) exp (zg 02> exp (zg 03) (2.2)

with the appropriately chosen range for the Euler angles o, 3,7 .
In this representation the generators of the one-parameter subgroups are the
standard Pauli matrices o1 , 02, and o3,

m:(gg), @z(?'j), mz(é_ﬂ), (2.3)

satisfying the su(2) algebra

Tu0h — Op0q = 21 €Eqbe Oc - 2.4)

Writing the complex numbers in (2.1) as z; = 2! + 422 and z; = 23 + iz* in

polar form

21 = e cosh, 29 := €'V sinf (2.5)

and comparing (2.1) with the explicit form of the Euler matrix (2.2)

i ey AT g
€ COSs E [ S11 5 e
9= a—r Ck-’-’)’ ) ()

—e_i 2 sin<§> e_i 2 COS<§>



we have

9="2. 2.7

The Euler decomposition (2.2) corresponds to the following parametric represen-
tation of the three-sphere embedded in R*:

xt CcoS (OH_’V) cos <é> 22 = sin (a—i—y) Ccos <g>
2 2 ’ 9 9 3
2 = —cos (%) sin (g) ; z* = sin (?) sin (g) .

(2.8)
To be more precise, though, this is not a valid parameterization for the entire
three-sphere. In particular, the neighbourhood of the identity element of the
group in this decomposition turns out to be degenerate. The identity element of
SU(2) corresponds to the whole set: 3 =0 and o+~ = 0. In order to properly
cover the whole group manifold it is necessary to consider an atlas on the SU(2)
group and used different parameterizations on the different charts. Bearing this in
mind, we proceed by assuming that we are working in a chart (U, ¢) where «, 3
and ~ serve as good local coordinates on S? and calculate the Maurer—Cartan
forms on SU(2).

Using the following normalization:

. 3
— 7/ a
g 'dg = 5; Oa ® W, (2.9)
i 3
dgg™! = 3 > oa ® wh (2.10)

Il
—

a

and performing the straightforward calculations with the Eulerian representation
(2.2) we arrive at the well-known expressions for left-invariant 1-forms

wy = cosvysinfda —sinydg,
w? = sinfBsinyda + cosydg, (2.11)
w? = cosfda+dy
and the corresponding dual vectors, w?(X[F) = d¢, a,b=1,2,3,
cosy 0 ) 0 0
XL — - a - t 3 _
i —sinﬁ £ mnyaﬁ co ﬁcosvav,
siny 0 0 . 0
Xt = — 57 == — cot Bsiny — 2.12
3 Snj 9a +c0578ﬁ co ﬁbln’}/a’y, ( )
0
Y



The right-invariant 1-forms and the corresponding dual vectors, w%(XF) =
oy , are:

wp = sinadf —cosasinfdy,
wh = cosadB+sinasinfdy, (2.13)
wh = da+cosfdy.
0 ) d cosa O
Xf?‘ = cosacotﬁa—i—sma%—ma,
) 0 0 sina 0
X2R = —smacotﬁ%—&—cosa%—&—smﬂa—ry, (2.14)
0

The vector fields X2 and X[ obey the su(2) ® su(2) algebra with respect to the
Lie brackets operation

(XE XE] = —eac XE, (2.15)
[vaXlF] = Eachfa (2.16)
(xL x[f] = o. (2.17)

Any compact Lie group can be endowed with the bi-invariant Riemannian
metric build uniquely (up to a normalization factor) from the Cartan—Killing form
over the algebra. It is convenient to choose the following normalization for the
bi-invariant metric on the SU(2) group:

1 _ _
gsue) = —5 Tr(g 'dg@ g~ "dg) . (2.18)
In terms of this left/right-invariant nonholonomic frame, (2.18) reads
(w @l +w} ®wi + wi ®w?}) (2.19)

gsu@) —

(wh ® Wk + Wk @ Wk + wh QW) . (2.20)

=]

Substitution of the expressions (2.11) and (2.13) for the Maurer—Cartan forms wy,
and wp yields the metric in the coordinate frame da,dS3,dy basis

1
gsu(2 = 3 (da®@da+df®dB+dy®@dy+2cosfda®dy) . (2.21)

In order to understand the metrical characteristics of a group manifold viewed
as an embedded space, it is instructive to compare this invariant metric with the



metric induced from the ambient four-dimensional Euclidean space on the unit
three-sphere (2.8)

g8s = dz1 ® dz; +dzs ® dzg = (2.22)

1
= Z(da@da+dﬂ®dﬂ+dv®d7+2cosﬂda®d7).

Comparing the metrics, (2.21) and (2.22), we conclude that the bi-invariant metric
on SU(2) is the same as the standard metric on the unit three-sphere S* and its
bi-invariant volume is

Vol(SU(2)) = / \/det gsu(@da AdB A dy =

1 3 p2m 4 ™
(—) / da/ d’y/ dp sin(B) = 27% = Vol(S?). (2.23)
2) Jo 0 0

As a Riemannian manifold the SU(2) group endowed with the metric (2.21)
is a three-dimensional space of constant curvature with the Riemann scalar
Rsu(z) = 6 and the Ricci tensor Ry given by

_ Rsv(2)

Rab 3

Gab = 2 Yab - (224)

The Gaussian curvature K of an n-dimensional manifold and the Riemann scalar

are related via
R

K=—— 2.25
therefore Kgrr(2) = 1, in agreement with the volume calculation (2.23).
2.2. Quotient SU(2)/U(1). Here we recall the key ingredients of the con-
struction of a quotient space G/H by considering the transitive action of the
group GG on a certain base space M. We have the result that*:

If the group G acts transitively on a set M with H C G being an
isotropy subgroup leaving a point xo € M fixed

H={9geG|g:  zo=uwu},

then the set M is in one-to-one correspondence with the left cosets
gH of G.

*For a rigorous statement we refer to Theorem 3.2 in [13].



The explicit form of this map for the SU(2) group is as follows. We identify
the su(2) algebra with R? by the map, 2¢ € R3 — X € su(2)

3
X = Z %0, . (2.26)
a=1

Consider now the adjoint action of SU(2) on an element of its algebra X € su(2)
Ad(g)(X) =gXg".

The base point zp = (0,0,1) (corresponding to the element o3) has a one-
parameter isotropy subgroup

H:exp(i%ag) .

The orbit space of o3
Ad(g)(o3) =gosg™"

is the coset SU(2)/U(1). The proper atlas covering the SU(2) group manifold
provides the coset space parameterization. When SU(2) ~ S? is parameterized

in terms of two complex coordinates z; and 29 and the two-sphere is described

by a unit vector n = (n!,n?,n3), then the projection S* — S? reads explicitly

(21,22) — (n',n? n?) = (2R[Z122], 29([z122), |21]® — |22)?) . (2.27)

This is the famous Hopf projection map 7 : SU(2) — S? showing that SU(2) is
a fibre bundle over S? with nonintersecting circles U (1) = S! as fibres

St SU(2) 5 $2.
Using the Euler decomposition (2.6) the coset parameterization reads
gosg ' =n"0,, (2.28)
with the unit 3-vector
n=(—sinfcosa, sinGsina, cos ). (2.29)

2.3. Lagrangian in Euler Coordinates. The bi-invariant Lagrangian

Lave = =3 T (70 o0 7 (05000 ) 2.30)



in terms of left/right-invariant Maurer—Cartan forms (2.9) reads
Lsvey = > igwiigw
= - ’L'Uw% iUw% , (2.31)

where i, is the interior contraction of the vector field U=a a% + ﬂ % + 5 3% .

Covering the group manifold with an atlas and considering the chart where
the parameters «, /3,y in the Euler decomposition (2.2) serve as good coordinates,
we arrive at

1 /. . ) ..
Love = (a2 LR A2 cos(ﬁ)ow) . (2.32)

Comparing (2.32) with expression (2.21) for the bi-invariant metric on SU(2) we
conclude that

Lsu(2) = 8sv@ (U, U). (2.33)

2.4. Hamiltonian Dynamics on 7*SU(2). The Hamiltonian dynamics on
the SU(2) group is defined on the cotangent bundle 7*SU(2) which can be
identified with the trivialization 7*SU (2) ~ SU(2) x su(2)r, or with T*SU(2) =
SU(2) x su(2)g.

The canonical Hamiltonian describing geodesic motion on SU(2) can be
obtained by a Legendre transformation of the Lagrangian function (2.31). Intro-
ducing the Poincare—Cartan symplectic 1-form

O = poda +pgdf + pydy

with the canonically conjugated pairs

{a,pa} =1,  {B,ps}=1, {v.py} =1,

the Hamiltonian on T*SU (2) is defined as

3
ek,
a=1

3
YRk, (2.34)
a=1

Hsy 2

where €& and ¢ are the values of the 1-form © on the left/right-invariant vector
fields X, X spanning the algebra su(2)r r

¢E=0(xt), =0 (Xh).



The set of functions ££ and &7 obey the su(2)r x su(2)g relations with respect
to the Poisson brackets

{55 vglf} = —€abe chv (2.35)
{55755} = €abc 6?7 (2.36)
(& &' = 0. (2.37)
In the coordinate frame (2.32) the Hamiltonian (2.34) becomes
2 2
Pa 2 p'Y 2 COS(/B)
Hsu) = =5 = +Ps+ - oDy - 2.38
SU@ = G2 (B) Ps sin?(3) sin?(3) Paby (2.38)

Now noting that the components of the inverse of the bi-invariant metric (2.21)
are

4 1 0 —cos(B)
—1 )
Isu2) = “3 0 sin”(83) 0 , (2.39)
sin® () — cos(f) 0 1
the Hamiltonian can be rewritten as
1
Hsu) = 7 8st(2(©,0). (2.40)

2.5. Hamiltonian Reduction to the Coset SU(2)/U(1). The system with
Hamiltonian function (2.38) has an obvious first integral

Pa = k7 {paaHSU(Q)} = 07 (241)

where k can be an arbitrary constant. The Hamiltonian on the level set M} :=
p, (k) is, by definition, the projection of (2.38) onto this subspace:

2 2
D 2 cos(f) k
HWY = Hgy o =ph+ g ke py . (242)
@) pak s sin?(3) sin?(8) 77 sin?(B)
The inverse Legendre transformation gives
1/. . . .
LSU(Q)/SU(l) = Z (,62 + Sll’l2(ﬁ) 72) + k COS(IB)’Y . (243)

The interpretation of the system so obtained is the following [3]: the first two
terms correspond to a particle moving on the two-sphere S? endowed with the
standard embedding metric, while the last term describes the particle interaction
with a Dirac monopole whose potential is

Ay =k (1—cos(B)).

10



3. GEODESIC FLOW ON SU(3) USING GENERALIZED EULER
COORDINATES

3.1. Generalized Euler Decomposition of SU(3). Now we pass on to the
description of the Euler decomposition of the SU(3) group element. The Euler
angle parameterization of the three-dimensional rotation group has been general-
ized for the higher orthogonal SO(n) and special unitary SU (n) groups [5-7, 15,
16] and [17]. Special attention has been paid to the study of the SU(3) [18-21]
and SU(4) [4] groups.

The starting point for the derivation® of the Euler angle representation of
the SU(3) group is the so-called Cartan decomposition which holds for a real
semi-simple Lie algebra G. A decomposition of the algebra G into the direct sum
of vector spaces C and P

G=KaoeP (3.1)
is a Cartan decomposition of the algebra G if
K, Kl c K, (3.2)
K, P]CP, (3.3)
[P,PlCK. (3.4)

The Cartan decomposition for a Lie algebra induces a corresponding Cartan
decomposition of the group G
G=KP, (3.5)

where K is a Lie subgroup of G with Lie algebra K, and P is given by the
exponential map P = exp(P).

An explicit realization of the Cartan decomposition for SU (3) can be achieved
using the standard traceless 3 x 3 Hermitian Gell-Mann matrices A\, , (¢ = 1,...,8)
(the explicit form of the A matrices is given in Appendix (A.1)). Indeed, from
the expressions for the commutation relations

8
Na» M) =20 > fabe Ac s (3.6)

c=1

where the structure constants f,;. are antisymmetric in all indices and have the
nonzero values

f123 = 17
f1a7 = fous = fos7 = fau5 = f516 = feo37 = 1/2, (3.7)
fy58 = fors = V/3/2,

*We follow the method of Robert Hermann [22], who attributed this construction to C. C. Moore.

11



it follows that the set of matrices (A1, A2, A3, g ) can be used as the basis for
the vector space IC while the matrices (A4, A5, A¢ , A7 ) span the Cartan subspace
P. Noting that the set of matrices (A1, A2, A3, As) comprise the generators
(M, A2, A3) of the SU(2) group, one can locally represent K as the product of
the SU(2) subgroup and a one-parameter subgroup

K = SU(2) e (3.8)

The second factor, P = exp(P) in the Cartan decomposition (3.5) can be repre-
sented as a product of one-parameter subgroups. Moreover, based on the algebra
(3.6), it can be represented as a product of a one-parameter subgroup generated
by an element* from A4,..., A7 «sandwiched» between two different copies of
K. Fixing this generator to be, say, A4, we have

P =K' K", 3.9)

Now observing that [\s, 4] = iv/3\s5, the product K P can be reduced to
G = SU(2) e SU(2) e (3.10)
Therefore, finally choosing the Euler representation for the elements of two sub-

groups U € SU(2) and V € SU(2)" in terms of two sets of angles («, 3,) and
(a,b,c)

U(a, B,7) exp (z % )\3) exp (z § )\2) exp (z % )\3) , (3.11)

b
V(a,b,c) = exp (z g )\3) exp (z 3 Ag) exp (z g )\3) , (3.12)
we arrive at the generalized Euler decomposition of an element of g € SU(3)

g=Ul(a,3,7) Z(0,¢) V(a,b,c), (3.13)

with
Z(0,¢) :=e'fro el s (3.14)

Now it is necessary to fix the range of angles in (3.13). Just as in the case
of the SU(2) group where the Euler parameterization was not a global one, the
SU(3) group manifold cannot be covered by one chart. However there is a range
of parameters such that the parameterization covers almost the whole manifold

*The freedom of choice in the one-parameter subgroups is analogous to the «x» or «y» Euler
angle representation of SU(2) with freedom to choose either o1 or oa.

12



except the set whose measure in the integral quantities, e.g. such as the invariant
volume, is zero. The following ranges for the angles in (3.13)

O<aa<?2r, 0<pBb<m, 0<vy,c<dm, (3.15)
ogegg, 0< ¢ < Van (3.16)
lead to the invariant volume for SU(3)
Vol(SU(3)) :/ 1=V3nr". (3.17)
5U(3)

Below this result will be checked by an explicit calculation of the volume of
the SU(3) manifold considered as the Riemannian space endowed with the bi-
invariant metric

1 _ _
gsu() = 5 Tr (9 'dgw g 'dg) . (3.18)
In terms of the nonholonomic frame built up from the left/right-invariant forms
P
gy = 5D M @wp, (3.19)
A=1
;S
dgg~! = 5 Z A ® wh, (3.20)
A=1
the Cartan—Killing metric (3.18) has the diagonal form
1
gsu@3) = Z(wi@wi—kw%@w%%—...%—w%@w%) (3.21)
1
= (whOwh+whr@uwi+ ... +whRWy), (322

while in the corresponding coordinate frame, with the Eulerian coordinates
(a,B,7,a,b,c,0,¢), presented in Appendix (A.2), it becomes

(da®@da+dB®@dB+dy @ dy +2cos fda @ dvy)+

1
1 (da@da—|—db®db—|—dc®dc—|—2003bda®dc)—|—

1
gsu(3) = 1
+

1
+5 cosf| sin(a +v)(sin Sda ® db + sinbd8 ® dc)+
o VER
+cos(a+7)(dB®db—sin fsinbda®dc) | — —sin 6( cos Bda + dy) ® dp+

(1 + cos®0)( cos Bda + dy) ® (da + cosbde) + df @ df + d¢ ® d¢.
(3.23)

| =

_|_

13



Fixing the range of the Euler angles according to (3.15) and noting that the
determinant of the Cartan—Killing metric (3.23) is

12
detgsy(s) = (%) sin® () cos?(0) sin? () sin?(b),

one can check that the group-invariant volume on SU(3) agrees with (3.17)

Vol(SU(3 / det g daANdBAdyAdOAdaAdbAdecAde =
U@ \/ SU(3)

) [ [ [ e [
dg sin(8 " df cos(0) sin® db sin(b) = V37°. (3.24)
<[ s [ o [

This volume is in accordance with the general formula established by I. G. Mac-
donald in [23] and expresses the volume element of a compact Lie group in terms
of the product of volume elements of odd-dimensional unit spheres

Vol(SU(3)) = ‘/g x Vol(S®) x Vol(S?) = \/; x w8 x 21% . (3.25)

In (3.25) the multiplier \/5/ 2, comes from the volume of the maximal torus
in SU(3), interpreted sometimes as the «stretching» factor [24,25]. This fact
explicitly shows that the SU(3) group is not a trivial product of the two spheres,
S? and S°.

The SU(3) group endowed with the bi-invariant metric (3.23) has a constant
positive Riemann scalar curvature

Rsua) =24,
and the Ricci tensor obeys the relations™

Rsu(s)
8

Ruw = w = 3 8uv- (3.26)

*However, in contrast to the SU(2) group the basic relation defining a space of constant
curvature

R
Ruvor = m (g;wgm - g,u)\gucr)

-1
is not valid for the SU(3) group.
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3.2. Geometry of the Left Coset SU(3)/SU(2). The group SU(3) can be
viewed as a principal bundle over the base S° with the structure group SU(2)

SU((2) — SU(3) = S°,

with the canonical projection 7 from the SU(3) onto the left coset
SU(3)/SU(2) ~ S5. This map can be realized in the following manner. Consider
the general linear group GL(3,C). An arbitrary element M3x3 can be written in
the block form

23
M
M3 = Moz 2 | = >z a (3.27)
Y Y2 |2’1 b ‘Zl

for complex 2 X 2 matrix Maxo and 21,22, 23,y1,%2 € C. The U(3) subgroup
of the GL(3,C) group is defined by the two matrix equations

M3><3M;r),><3 =I3x3, M§X3M3x3 =I3x3. (3.28)

When M3sy3 is represented in block form, (3.27), the conditions (3.28) reduce to
the quadratic equations

21 + [z2” + |25 = 1, (3.29)
1+ g + 2> = 1 (3.30)
and to the set of 2 x 2 matrix equations
My, oMi ) +aal = Ipo, (3.31)
M£x2M2x2 +b'b = Iso, (3.32)
z1a+Mayxoa = 0, (3.33)
Zb+Mi,b = o0 (3.34)

Now let S® be the five-sphere characterized by a unit complex vector Z :=
(Zl y %2 ZS)T

Z'Z=1.
The SU(3) group element g then acts on this through left translations:
Z -7 =gZ. (3.35)

Let Z( be the base point on this five-sphere with coordinates Zy = (0,0,1)7
whose isotropy group is

SU2) o

Hsys = (3.36)

15



Then the coset SU(3)/SU(2) can be identified with the orbit

Z=g-(0,0,1)".

(3.37)

Using the explicit form of the representation (3.13), the subgroup SU(2) is
embedded into SU(3) as follows:

a+c b a—c b
—1 —1
e 2 cos <5> —e 2 sin <5> 0
SU(2) - SU(3), V = ia—c b i‘H‘C b
2 sin|( = e 2 cos| = 0
¢ 2 2
0 0 1
(3.38)
So the parameterization of a group element is
g=U2ZV =WV,
where the factor W reads
1 1 2
i+ —=¢) i0+ —=0) iu— —=9)
cos 0 cos Ee V3 sin 56 V3 sin 6 cos ge V3
Cio— —=¢) g —ilu— —=¢) (v + —=¢)
W= — cos @ sin ge V3 cosge V3 _gin6sin ge V3T
X iy
—sin@e\/§ 0 cosfe V3
u = o+ 7y o= o — 7y
2 2

Using these representations in (3.37) we easily identify the projection onto the
left coset as a five-sphere:

m:9g€SU®B) — (21,22,23) €S°,

which explicitly reads

2,
z1 = cosfe V3 , (3.39)
) 4
—sa=—v+—=9)

29 = —sin@singe 2 V3T (3.40)

7 4
Slat+y——=09)
23 = sin9005562 V3 . 3401

16



Under this projection the Euclidean metric Tr(dMdMT) on GL(3,C) induces
the following metric on a unit S°:

g8, = dz; ®dzy +dZ ® dzg + dzs @ dzg =

1
:sin29<Z (da®da+dB®dS+dy®dy +2cos fda ® dy)—

~ 2 (cos Bda + dv) ®d¢> +df®de + gd(b@dqﬁ, (3.42)

V3
whose determinant is 1
detg, = 5 sin®(#) cos?(6) sin () . (3.43)
The metric (3.42) defines a unit five-sphere S® as a constant curvature Rie-
mann manifold Res = 20, (3.44)

which is in accordance with its Gaussian curvature

Ko = — 1 1,
5(5—1)

as well as with its volume

Vol(S5):/ \/detg da AdBAdyAdIAdY =

1 2 A V3 T . /2 s 5
= m/o da/o dv/O dd)/o dg sin(pB) /0 df cos(8) sin®(9) = 7°.

(3.45)

3.3. Lagrangian on SU(3) in Terms of Generalized Euler Angles. Consider
the Lagrangian describing the geodesic motion on the SU(3) group manifold with
respect to the bi-invariant metric (3.18)

1 d d
Lsvw = 3T (57 0o O 5a0) . G40

Using the generalized Euler angles on SU(3) as the configuration space coordi-
nates and (3.23) for the bi-invariant metric, one can write the Lagrangian (3.46)
as

1 . .
Lsu@) = Z(0'42+52M2+2cosﬁow+a2+b2+é2+2cosbaé)+
+5 cos 6 (sm(a +7)(sin B éb + sinb 5¢) + cos(a + ) (b — sin Bsinb ac)) -
_@\. 2 P g 1 2 P N /- g o 2
5 sin 9(cosﬁa+7)¢+4(1+cos 6)(cos Bé+)(a+cosbe)+6%+¢°.
(3.47)

17



From this expression and (3.23) for it follows that:

Lsu) = gsu) (2, Z), (3.48)
where Z is the vector field on the tangent bundle 7'.SU(3)
0 8 6 8 e,
Z=d—+f—+4— 9 = b 4e—. (349
a + ﬂ o3 + 7 + + (25 a¢ —|— ET ac ( )

It is worth to note that the Euler decomposition (3.13) for elements of SU (3)
in terms of the SU(2) subgroups,

SUBB)=U(w, 8,7) exp(if A5) V(a,b,c) exp(i¢Ag),

allows for the expression of the SU(3) Lagrangian (3.47) in terms of the corre-
sponding left- and right-invariant elements of the SU(2) Maurer—Cartan 1-forms:

3 3 2

1 . . 1 . . 1 . L
Lsy@) = 1 Z igwi igwi + 1 Z iywi iyw + 3 cos® Z ipWw iy wr—
a=1 a=1 a=1

1 3 S
— 0+ cos? ) igwd igwh - g sin0igwd é+ 62 + §2. (3.50)

Here iy, and iy, denote the interior contraction of the vector field on each copy
of the SU(2) group, U and V, respectively,
. 0 .0 0 . o .0 0
U=a2 — 4=, V=a—+b—+c—. 3.51
“9ato5 0y “a o e G0
3.4. Hamiltonian Dynamics on SU(3). Performing the Legendre transforma-
tion, we derive the canonical Hamiltonian generating the dynamics on the SU(3)
group manifold:

1 % 2 2 1 ) 2 cos 3
Hsu@) = —5= | —a— +p4+ —2—— papy +
SUE) sin® 6 [sin2 3 Ps ( sin? 3 P in? 8 PaPy
1 1 1 cosb
+ sin?6 1+ = cot? 3 2 2—2—a0]+
( 4 b) P sin? b sin? bp P
cosf .
+2 —5—————| cos(at+7)|(pa — cos Bp,)(pc — cosbp,) —sinbpgpy | —

sin“ fsin Bsinb

— sin(a +7) ( sin b(pa — cos Bp~)py + sin B(p. — cos bpa)m)] +

1, 1 3 5 V3 ppe V3 1

2= (14— v Y2 (1 ) pape.

+4p9+16< T o 9) Pot 3 o264 T sz ) Pee
(3.52)
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The Hamiltonian (3.52) can be rewritten in a compact form using the left- and
right-invariant vector fields on the two SU(2) group copies, U and V' used in the
Euler decomposition (3.13):

3 2
1
Hgye) = Y ¢l + ey D (Er —cos )+
a=1 a=1

1

sin?26

1 1
(268 — (1 4+ cos?6) (& - v3 sin? 0pg)® + —pg + = pj.  (3.53)

+ 2 4 4

Here ¢£ and ¢ are functions defined through the relations
&=0(Xy) . Gh=e(vf),

with the SU(2) left-invariant vector fields X% on the tangent space to the U
subgroup, T'U, and the right-invariant fields Y,* on T'V, correspondingly.

3.5. Hamiltonian Reduction to SU(3)/SU(2). The representation (3.53) is
very convenient for performing the reduction in degrees of freedom associated
with the SU(2) symmetry transformation. Due to the algebra of Poisson brackets
(2.35) the functions ¢F, (¥, and ¢ are the first integrals

{¢F, Hsyz)} = 0.
Let us consider the zero level of these integrals
(=0, (=0 (=0 (3.54)

Noting the relation between the left- and right-invariant vector fields on a group
one can express the functions ¢ entering in the Hamiltonian as

=AMV Gy s
where Ad(V) is an adjoint matrix of an element V' € SU(2). From this one can

immediately find the reduced Hamiltonian on the integral level (3.54). Indeed,
projecting the expression (3.53) on (% = 0 we find

3
1 L +L
Hsus)y/sue) = Zd Z §a §at+
a=1

1

+ R
sin?240

V3 1 1
(26 — 5 sin*0py)* + 795 + 705, (355
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or more explicitly in terms of the canonical coordinates

1 pi 2 2 1 2
Hgusy/sue) = ==, <—Sm25 +pp+ (tan 0+ sinZ 3 Py~

sin” #
cos 3 N 1 5, 1 3 9
— 2 —— Dpa —t 0 - —([14+ —— . (3.56
snZ g Pobr Ty tan p7p¢>+4p9+16 T ooz ) Per B9

Performing the inverse Legendre transformation we find the Lagrangian
1 .., 1 9, 9, .2, m 1 2 g\ 22
Lsusy/su) = 7 Sin 0 (1 — 7 08 [ sin 9) a“+p —1—1 (3—|— cos 9) v+

+ % cos B (3 + cos® ) &% — 2v/3 (cos B + 7)45) +6%+¢%. (3.57)

Now one can consider the bilinear form (3.57) as the metric go on the orbit space
O =5U(3)/SU(2)

1 1 1
gO:ZSin29<(1—ZCOSQﬁSiH2 9)da®da+dﬁ®dﬁ+z(3+0052 9)><

X dv@dv—k% cos 3 (3 + cos® ) da®d7—2\/§(cosﬂda+d7)®d¢> +
+d0®d0+do®dd.  (3.58)

Using our previous calculations (3.45) of Vol(S®) with respect to the metric (3.42)
induced by the canonical projection to the left coset 7 : SU(3) — SU(3)/SU(2)
and noting that the determinant of the new orbit metric (3.58) induced by the
Hamiltonian reduction is

detgo = 6i4 sin® () cos?(0) sin? () , (3.59)
we find
Vol(SU(3)/SU(2)) = ‘/75 Vol(S?), (3.60)

with the same stretching factor \/5/2 as found in (3.25) for the bi-invariant
volume of the SU(3) group.

4. RIEMANNIAN STRUCTURES ON THE QUOTIENT SPACE

Now we are ready to answer the questions about the relation between metric
(3.42) induced on the left coset SU(3)/SU(2) by canonical projection from the
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ambient Euclidean space and the metric (3.58) obtained as a result of performing
the Hamiltonian reduction of the geodesic motion from SU(3) to SU(3)/SU(2).

Performing a straightforward calculation of the Riemannian curvature with
respect to the metric (3.58) yields

R(gsvw ) =21, (4.1)

ST (2)

while, from the embedding argumentation we used before, the Riemann scalar of
the unit five-sphere S° with standard metric induced from the Euclidean space is

R(g,) = 20. 4.2)

Furthermore, even though the Riemann scalar is a constant, calculations show
that the metric (3.57) is not the metric of a space of constant curvature.

So, we have found that the Lagrangian of the reduced system defines local
flows on the configuration space which are not isometric to those on S® with its
standard round metric.

We have shown above that the orbit space SU(3)/SU(2) considered as
a Riemannian space with metric g induced from the Cartan—Killing metric on
SU(3) is not isometric to the S® with the standard round metric ggs. The next
natural question is whether the metrics g and ggs are geodesically /projectively
equivalent.

There are several criteria on metrics to be geodesically equivalent. According
to L. P. Eisenhart [26], two metrics g and g on n-dimensional Riemann manifold
are geodesically equivalent if and only if

2(n+1)Vi(g) 8, = 28, O + 8, O;A + 8, I, (4.3)

where V;(g) is covariant with respect the metric g and the scalar function A is

A=In (jﬁtg) . (4.4)

According to our calculations

3
det(go) = ; det(gss)

and
Vi(gs5) go,r #0,

and therefore ggs and g are not geodesically Iprojectively equivalent.
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CONCLUSION

In this paper we have presented, for the first time, the explicit Hamil-
tonian reduction from free motion on SU(3) to motion on the coset space
SU(3)/SU(2) ~ S®. This has been made possible through a consistent pa-
rameterization of SU(3) that generalizes the Euler angle parameterization of
SU(2). The full details for this parameterization of SU(3) are, for completeness,
collected together in Appendix. The results presented there have been checked
independently using the computer algebra packages Mathematica 5.0 and Maple
9.5.

Through this analysis we have seen that the resulting dynamics is not equiv-
alent to the geodesic motion on S° induced from its standard round metric. This
result prompts the following questions.

e Is it possible to identify, a priori, the induced metric on the coset space in
terms of the properties of SU(3)?

e Is it possible to formulate the dynamics on SU(3) so that the reduced
dynamics is the expected geodesic motion on S°?

e What happens if we reduce to a nonzero level set of the integrals (3.54)?

Progress in answering these questions will, we feel, throws much light on
the dynamical aspects of the Hamiltonian reduction procedure and hence leads to
a deeper understanding of the quantization of gauge theories.

APPENDIX

1. The SU(3) Algebra Structure. The eight traceless 3 x 3 Gell-Mann
matrices providing a basis for the SU(3) algebra are listed below

01 0 0 —i 0 1 0 0
M=[10 0], =3¢ 0 0o}, 3= 0 -1 0 |,
00 0 0 0 0 0 0
00 1 00 —i 00 0
M=l00 0], =00 0], xx=[00 1],
100 i 00 010
00 0 L (10 0
M=1l00 —i |, =—[01 o0
0 i 0 V3o o -2
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Sometimes it is convenient to use instead of the Gell-Mann matrices the anti-
Hermitian basis t, := 5)\(1 , obeying the relations
1

N —

8
1
ta tb - _6 5ab I+ (; (fabc - Zdabc) tc 5 (AQ)

where the structure constants dg,p. are symmetric in their indices and the non-
vanishing values are given in Table 1, the coefficients f,;. are skew symmetric
in all indices. The constants f ;. determine the commutators between the basis
elements

8
[ta 7tb] - Z fabc tc . (A3>

c=1

Table 1. The symmetric coefficients d .

(abe) || (118)(228)(338) | (146),(157)(256)(344)(355) | (247)(366)(377) | (448)(558)(668)(778)(888)
1 1 1 1
dabc = S . S 5
V3 2 2 2v/3
Table 2. Structure of the SU(3) algebra
folelo] = v [ e [ v [ |
t|| O t t Ly Ly Ly Le 0
1 3 2 2 7 2 6 2 5 2 4
t t 0 t Ly Ly Ly Le 0
2 3 1 2 6 2 7 2 4 2 5
ts|| t t 0 Ly Ly Ly Ly 0
3 2 1 2 5 2 4 2 7 2 6
1 1 1 - 1 1 V3
tal|— = tr|— = te|— =t 0 Lig4+ V¢ St ~t —Y2¢
4Ty trmy e T, ts 3t3+ 5 ts 5 b2 5t 5 b
1 1 1 1 V3 1 1 V3
ts|| —te |- t7| —ta|—-ts— —t 0 ——t —t ¢
5 2 6 2 7 2 4 2 3 2 8 2 1 2 2 9 4
1 |1 1 1 1 1. V3 V3
to||— = ts| —ta | =t -t —t 0 ——tyt——tg| -2t
6|7t gt 5t7 5 b2 5t 2 3+ 5 8|7 tr
1 1 1 1 1 1 V3 V3
tr|| —ta | —ts |—= to -t ——t —t3———t 0 “Ztg
7 2 4 2 5 2 6 2 1 2 2 2 3 2 8 2 6
ts| 0 [ 0 | o §t5 —gtzl gw —gtﬁ 0
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2. The Basis of Invariant 1-Forms on the SU(3) Group

a) The left-invariant 1-forms. Using the generalized Euler decomposition
(3.13) for the SU(3) group element, it is straightforward to calculate the left- and
right-invariant 1-forms. The results are given below

wi = (cos[ﬂ} sin[b] cos|c](1 — %sin2 [0])+
+ cos|f] sin[3] (cos[b] cos|c] cos[a + ] — sin[c] sin[a + 7})) da—
— cos|f] (cos[a + 7] sin[e] + cos[b] cos|c] sin[a + 7]) ds+

+ cos[d] sin[b] (1 — % sin”[0])dy + cos[c] sin[b]da — sin[c]db,

w? = (cos[ﬂ] sin[b] sin[c](1 — %sinQ [0])+
+ cos|f] sin[3] (cos[b] cos|a + 7] sin[c] 4 cos[c] sin[a + 7})) da+
+ cosl[d] (cos[c] cos|a + ] — cos[b] sin|c] sin[a + 7]) ds+

1
+ sin[b] sin¢](1 — 3 sin?[])d~y + sin[b] sin[c]da + cos[c]db,

w? = (Cos[b] cos[G](1 — % sin?[0]) — cos[a + ] cos[d] sin[b] sin[ﬁ]) da+

+ cos[f] sin[b] sin[a + v]dB + cos[b](1 — % sin?[4])d~y 4 cos[b]da + dc,

wi = sin[f] (cos[ﬁ] cos|d)] cos[g} cos [a ;_ ‘4 V3] -
— cos [a g ‘4 v —V3¢] sin[g] sin[ﬂ})doﬂ—
+ sin[g] sin[f] sin [a g ‘4 v —V3¢]dB+
+5 cos[g] cos [a ;_ ° \/§¢] sin[26]dy — 2 cos[g] sin [a ;_ ‘4 \/§¢] dé,
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a—cC

w? = sin[d] (sin[g] sin[A] sin | 5

+ cos[g} cos|f3] cos[f] sin [a ey \/§¢]>da+

+7 = V3g]+

2

a—c
-I-COS[ 5

+7—V39¢] sin[g] sin[0]dS+

a—+c

1 b, . . a+c
+§cos[§}sm[29]sm[ 5

2

+V3¢]dy + 2 cos[g] cos |

a —

2

w8 = sin[d] (cos[ﬁ] cos[f] cos | ‘i \/§¢] sin[%]—&—

+ sin[g] cos [a ;_ <

+v—V3¢] COS[%])de—

- cos[g} sin[f] sin [a ;_ <

+7 - V3¢]ds+
-

5 5

. £+ V36]do,

L1
— COS
2

¢ + \/§¢] sin[g] sin[26]dy — 2 sin[g] sin [

w] = sin[f] (cos[ﬂ] cos|f)] sin[g] sin [ 2 5 4+ V3e]—

_ cos[g] sin[] sin [a ;_ ¥ v — \/§¢]>da—

a+c
2

- cos[g] cos | + 7 — V3¢] sin[0]dB+
+% Sin[g] sin[26] sin [~ a-°

2

+V3¢]dy + 2 cos [ +V3¢] sin[g}de,

w§ = —? cos|B]sin?[¢]da — ?shﬁ [0]dy +2de.

b) The right-invariant 1-forms.

wh = sinfa]dB — cos[a] sin[B)dy — cos[a] sin[8)(1 — %Sin2 10]) dat
+cosld] (cos[a + 4] sinfa] + cos|a] cos[d] sinfa + ﬂ) db+
+ ( cos[6] sin[b] ( — cos[a] cos[B] cosla + 7] + sina] sinfa + 7]) -

— cos|a] cos[b] sin[F](1 — % sin? [9])) de + V/3 cos|a] sin[f]sin?[6]dg,

25
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w¥ = cos[a]df + sin[a] sin[B]dy + sin[a] sin[8](1 — % sin®[0])da+
+ cosl[d] (cos[a] cosla + ] — cos[f] sin[a] sin[a 4+ 7]) db+
+ ( cos|d] sin[b] ( cos[B] cosla + 7] sin[a] + cos[e] sin[a + 7])+

+ cos[b] sin[a] sin[F](1 — % sin? [9})) dc — V3 sin[a] sin[F]sin?[]d¢

w? = da + cos[B]dy + cos[F](1 — % sin?[0])da + cos[f] sin[3] sin[a + y]db+-
+ ( cos|b] cos[F](1 — % sin?[f]) — cos[a + 7] cos[f] sin[b] sin[ﬁ}) de—
—/3 cos[B]sin?[f]dg,

4 By . at+vy,., 1 B a+y
wR—Qcos[Q]sm[ 1dé 2COS[Q]COS[ 5

| sin[26]da—

2
— sin[ ] sinfa - 2 o 7] sin[6)db + sin[6)] (cos[a — 2 gy sin[g]_
— cos|b] cos[g] cosld) cos[a ;— 7]) de—
-3 cos[g] cos[a i 7] sin[26]d ¢,
ws = cos[g] cos[a i W]dﬁ + % cos[g} sin[a ; 7] sin[26]da+

+cos[a — 2 5 7 sin[g] sin[0]db + sin[6] ( sin[b] sin[g] sinfa — & 5 T}t

+ cos[b] cos[g] cos[f] sin[a ;_ ry])dc + \/gcos[g] sin[a ;_ ry] sin[26]d¢,

o —

2
a ;_ ’y] sin[f]db + sin[6] (cos[g] cosla + a ;_ 2

Wl =2 Sin[g] sin[ < 5 1146 + %cos[ 7 sin[g] sin[26]da—

—COS[E] sinfa + | sin[b]+

o —

2

o —

7] sin[%}) de + /3 cos| 5

+ cos[b] cos[f] cos]

2 sm[g} sin[20]de ,
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wh=-2 cos[a - 7] sin[g}dﬁ + % sin[g] sin[a ; 7] sin[26]da+
+ Cos[g} cosla + ot 7] sin[f]db + sin[0] (cos[g] sin[b] sinfa + aTﬂ]—F

+ cos[b] cos[d] sin[g] sin[a ; ’y]>dc + \/gsin[g] sin[a ; ’y] sin[26]d¢,

wh = —‘/gsnﬁ [0]da — */; cos[bJsin?[f]dc + (2 — 3 sin?[0])d¢.

3. The Basis of the Invariant Vector Fields on the SU(3) Group. The
expressions for the left-invariant vector fields basis in the Euler angles coordinate
frame are given below

a) The left-invariant vector fields

0 0
Xt = ij[[;]] 5 = sinfe] 77 — cot[t] cos[dl 5,
31 0 0
Xk = :iﬂg % + COS[C]% — cot[b] sin[c]% ,
0
X?{/ = &,
sin[=] sin[b]
_ 2 a—c K 2l . ra—c Kl
Xt =~ e < 2 V39l gty s V3l g5t
b b
sin[3] a—c s 2eoslg] a4 Vel | 2
+ Snlf] cot[d] cos | +7—V3¢]+ Sn20] cos | 5+ 3¢] e
_% cos[g] sin [a ;_ ° V3¢) % - % cot[Z] + Cos[g] tan[d] | x
COS[§]
0 by 0 t[0
X €08 [a —2|_ ‘4 V39¢] 30 + cot[d] sm[5] sin [a ;_ ‘i V34¢) T 2Ccoos[[é] X
X €08 [a te + V3] & + +§ cos[é] cos [a e + V3¢ tan[@]i,

4 2 2

o
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sin[=] _ P
_72 . a—c _
X = e T o P V30t

) ot sin [ 20sy] | ate 5
— (sin[ﬁ] cot (3] sin [T+7—\/§¢] — Sn20) sin [T+\/§¢] _7+

2 2 cos[-]

1 b o 1 t[0 b
+3 cos[=] cos [a re, V39 9 2 (CO[b] + 008[5] tan[e]) X
2

xsin[a;‘C ”5%3 cos [a;‘C V3] cot[@]sin[g]% B cot[ﬁ})
¢ 2003[5]
X sin [a e + V38| & + \/_§ cos[é} sin [a te + \/gqi)] tam[&}3
Jc 4 9 2 8(15’
cos[ =] cos[b]
_ 2 fate,  oma 0 TPl gate, g0
; sin[] sin[6] cos [ 2 Nt \/§¢] da sin|f] ° [ 2 Y \/§¢] )]
cos[=] 2qi [b]
5 in[— _ o
_ (Sm[g] cot eos [F5+7—V30] ~ gy os [azcwgdj]) 57
- sm[g] sin | ;C + V3¢ % - % (:l(:[[z}] + sin[g] tan[&}) X
2
X cos [a g = V39| 83 - cos[g] cot[f] sin [a ; “r V39] % + cot[ﬁg X
¢ 2sin[§]
X COS [a 4 V3g] L + ? cos [a 5 4 V39 sin[g] tan[e}% ,
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b b
cos[5] 44 o cos[5] + 0
Xt= = e 0 [ V36l 5oy <o [ 1Vl g5+
cos[b} 2sin(]
9 . ra+c 2 a—c 0
+ (sm[e] cotlfsin [S5m4r=V3d] + g sin [2+\/§¢]> ot
1 — b0 1 t[0 . b
+35 cos [a 5 S V39] sm[§]% -3 (:lc;[[b}] + sm[§] tan[ﬁ}) X
2
. ja—c¢ 0 b a—c 0 cot[d)
X sin | + V3¢ = + cos[=] cos | +V/3¢] cot[f] = + X
2 da 2 2 b QSin[g]
X sin [a ; ‘4 V3o & + \/Tg sin[b] sin [a ; ¥ V39 tan[@]%,
1
L_—- —~
Xt =355
b) The right-invariant vector fields
0 9] sla] 0
XE = cos[a] cot[ﬁ]a—a + sin[a]% - Z?;[[g]] pE
9] 9 i 0
XF = —sinla] Cot[ﬁ]% + COS[O{]% :ﬂg 5
0
R_ ~
Xy = da’



e e st
2

+cos[a;w] (;;ts[[ﬁ}] - cos[g] tan[G]) % + % Cos[% sm[a;ﬁ%—

ol a0 ) e Y
_ (sin[ﬂ cosla — ]sm[E] + 2] cos| 5 (2 — 3sin [9])) 5

sin[g} . a—ry. 8 sin[g] a0

~ sin[f)] sinla 2 }% * sin[b] sin[6] cosfa - T]%_
—? cos[g}cos[a;—ﬁy}tan[ﬁ}%,

_ cotlf] . a+y,0 + 5 3.0
X5R__2cos[é] sin| 5 ]3__ [ 5 ]Cot[ﬁ}sm[a]%—

2

.oty cot[d) o 1 B a+ry, 0

— sin| 5 ] (QCOS[ﬁ} — cos[]tan[@]) 5 +3 cos[=] cos|
2
cot[b] — 7y Cos[g} +

~| sop [a — 5 ]51n[§] ~ Sl sin| ](2 — 3sin?[0)) %%—

sin[g] a+v. 0 sin[g] - a—vy. 8
i) T 5 g T e e T T2 gt

V3 Bty 0
+T cos[g} sin| 5 }tan[@]%,
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X§= 2(::1[[%] COS[a ; ry]% + cos[g] cot[d) sin[a ; 7]%_
2
a— cot[d) 1 a—7,0
— cos| 5 ] QSin[g] — sin[=] tan[6] p +3 sm[Q] sin| 5 ]%
2
cot[b] aty, . f Sin[g] - 0
~ | snjg] cosla + T] 5[5] oY) cos| 5 ](2 — 3sin?[0)) Er
Cos[g] .0 COS[Q] .0
~ sin[f] sinfa + 2 ]% sin[b] sin[6] cosla + T]§+
+? Cos[a ; ’y] sm[g] tan[@]%,
X = cc.)t[ﬁé sm[a g 7]% - cos[g] cos[— ]cot[@]%_
28111[5]

. - cot 6] 0 1 — . 0

— sin| 5 ] 2Sin[é] — sin[=] tan[6] 7 3 cos| 5 ]sm[—]%—
2
il G asq Sl .,
~ | smig cos[a} sinfa + 5 | — S0 sin| 5 1(2 — 3sin?[0)]) 52+
Cos[g] a+v. 0 cos[g] . a+r. 8

+ sin[6] cosfa + T}% - sin[b] sin[6] sina + T]%—’_
+? sin[g] sin[a ; ’y] tan[d ]8(9(;5
Xf = \/— VB %.
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