P1-2006-47

И. Ж. Бънзаров¹, Е. Н. Кладницкая, О. В. Рогачевский, Р. Тогоо², Н. Я. Чанкова-Бънзарова¹

СУММАРНЫЙ АНСАМБЛЬ π^- -ПРОПАН (C_3H_8) -ВЗАИМОДЕЙСТВИЙ, ПОЛУЧЕННЫХ НА 2-МЕТРОВОЙ ПУЗЫРЬКОВОЙ ПРОПАНОВОЙ КАМЕРЕ, ПРИ ИМПУЛЬСЕ π^- -МЕЗОНОВ 40 ГэВ/с

¹ Институт ядерных исследований и ядерной энергетики, София

² Институт физики и техники, Улан-Батор

P1-2006-47

Бънзаров И. Ж. и др. Суммарный ансамбль π^- -пропан (C_3H_8) -взаимодействий, полученных на 2-метровой пузырьковой пропановой камере, при импульсе π^- -мезонов 40 ГэВ/с

Описаны экспериментальные данные, включенные в суммарный ансамбль π^- -пропан-взаимодействий при $P_{\pi^-} = 40$ ГэВ/с, и процедура их корректировки для устранения разного рода искажений, возникающих при реконструкции событий взаимодействий частиц в пузырьковой камере.

Работа выполнена в Лаборатории высоких энергий им. В. И. Векслера и А. М. Балдина ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна, 2006

Bunzarov I.Z. et al.

P1-2006-47

Summary Ensemble of π^- -Propane Interaction in the 2-m Propane Bubble Chamber at 40 GeV/c π^- -Mesons

In this report we describe the experimental data included in the summary ensemble of π^- -propane interactions at $P_{\pi^-} = 40$ GeV/c and the procedure of their correction for the elimination of different kinds of measurement distortions that appeared during the reconstruction of particle interaction events in the 2-m JINR propane bubble chamber.

The investigation has been performed at the Veksler and Baldin Laboratory of High Energies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 2006

В работе описаны экспериментальные данные, которые включены в суммарный ансамбль π^- -пропан-взаимодействий, полученных при облучении 2-метровой пузырьковой пропановой камеры ОИЯИ π^- -мезонами с импульсом $p_{\pi^-} = 40$ ГэВ/с на ускорителе Института физики высоких энергий (ИФВЭ) в Протвино, и процедура их корректировки. Корректировка проводилась с целью устранения разного рода искажений, возникающих при измерениях и реконструкции событий взаимодействий частиц в камере.

1. РЕКОНСТРУКЦИЯ СОБЫТИЙ В КАМЕРЕ

Размеры 2-метровой пузырьковой пропановой камеры ОИЯИ $X \times Y \times Z = 65 \times 210 \times 43$ см³. Система координат камеры показана на рис. 1. Начало системы координат совпадает с центром камеры.

Рис. 1

Здесь α — глубинный угол (угол между плоскостью XY и касательной к треку в точке взаимодействия, $-\pi/2 \leq \alpha \leq \pi/2$); β — плоский угол (угол между осью и касательной к треку в точке взаимодействия в плоскости XY, $0 \leq \beta \leq 2\pi$).

Измерительные ошибки определения координат точек треков для π^- -мезонов и e^{\pm} в камере приведены в табл 1.

Таблица 1. Ошибки определения координат точек в камере

Среднее квадратичное отклонение в см	e^{\pm}	π^{-}
$\langle \sigma_x angle$	0,0095	0,0078
$\langle \sigma_y angle$	0,026	0,028
$\langle \sigma_z \rangle$	0,050	0,043

Измеренные координаты точек треков использовались в программе геометрической реконструкции событий в 2-метровой пузырьковой пропановой камере ОИЯИ GEOFIT [1] для получения кинематических характеристик и идентификации частиц, образующихся в результате взаимодействия.

Более детально методические особенности эксперимента были описаны в работах [2].

2. ВЫБОР ЭФФЕКТИВНОЙ ОБЛАСТИ РЕГИСТРАЦИИ ЗВЕЗД И $\gamma\text{-KBAHTOB}$

Для выбора эффективной области регистрации звезд в камере были построены распределения по координатам X, Y, Z, углу β в плоскости XYи тангенсу глубинного угла α , относящимся к первичным трекам, дающим звезды в I ($y \leq 0$) и II (y > 0) половинах камеры (см. табл. 2).

Таблица 2. Эффективная область регистрации звезд в камере

I половина	II половина
–4 см $\leqslant X \leqslant$ 6 см	-3 см $\leqslant X \leqslant 7$ см
–88 см $\leqslant Y \leqslant$ –33 см	15 см $\leqslant Y \leqslant$ 70 см
$22 \mathrm{cm} \leqslant Z \leqslant 28 \mathrm{cm}$	$22 \text{ см} \leqslant Z \leqslant 28 \text{ см}$
1,557 рад $\leqslant\beta\leqslant$ 1,572 рад	1,543 рад $\leqslant\beta\leqslant$ 1,562 рад
$-0.013 \leq tg \ \alpha \leq 0.009$	$-0.012 \leq tg \ \alpha \leq 0.006$

Рис. 2. Распределения γ -квантов по азимутальному углу, нормированные на число событий

Для оценки потерь γ -квантов, летящих в нижнюю полусферу, было проанализировано распределение γ -квантов по азимутальному углу φ в плоскости, перпендикулярной направлению первичного трека. Анализ показал, что это распределение отклоняется от изотропного при $\varphi = 60-120^{\circ}$ в нижней полусфере. Этот эффект обусловлен недостаточной освещенностью области, близкой ко дну камеры. Поправка к общему числу зарегистрированных γ -квантов составила 1,09. Распределения γ -квантов по азимутальному углу без поправки и с ее учетом показаны на рис. 2.

Распределение треков заряженных частиц из звезд по азимутальному углу в пределах статистических ошибок изотропно.

3. ВЫДЕЛЕНИЕ ТОРМОЗНЫХ γ -КВАНТОВ

Для выделения тормозных γ -квантов были рассчитаны эффективные массы пар γ -квантов $(M_{\gamma\gamma})$ для событий с числом γ -квантов $n_{\gamma} \ge 2$. Для пар с $M_{\gamma\gamma} \le 30 \text{ МэB/c}^2$ было построено импульсное распределение γ -квантов, имеющих меньшую величину импульса.

На основании этих данных были выбраны следующие критерии для выделения тормозных γ -квантов.

1. $M_{\gamma\gamma} \leq 30 \text{ M} \cdot \text{B/c}^2$.

2. Угол разлета γ -квантов $\theta \leq 0,025$ рад.

Тормозным считался γ -квант, имеющий меньший импульс в паре $M_{\gamma\gamma}$ и расположенный дальше от звезды. Число γ -квантов, удовлетворяющих этим критериям, составило 3 % от полного числа зарегистрированных γ -квантов.

4. ТОЧНОСТИ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ТРЕКОВ π -МЕЗОНОВ, ЭЛЕКТРОНОВ И ПОЗИТРОНОВ

Характеристикой качества измерения треков являются величины χ^2_{xy} и χ^2_z , рассчитанные на одну степень свободы. Для выбора критерия хорошего измерения были построены распределения по χ^2_{xy} и χ^2_z для первичных π^- мезонов, а также e^+ и e^- . На основе этих распределений были выбраны критерии хорошего измерения треков: $\chi^2_{xy} < 3,5$ и $\chi^2_z < 3,5$. Средние значения для треков e^{\pm} оказались равными $\langle \chi^2_{xy} \rangle = 0,74$, $\langle \chi^2_z \rangle = 0,87$ при теоретическом значении $\langle \chi^2 \rangle = 1$.

Для треков, удовлетворяющих приведенным критериям, были определены ошибки измерения импульсов и углов (см. табл. 3) в зависимости от длины трека *L*.

Средняя длина вторичных треков из звезд в I половине камеры равна $\langle L \rangle = 31,3 \pm 0,2$ см. Для $e^{\pm} \langle \Delta p/p \rangle = 12,6 \pm 0,3$ %. Средние ошибки

Таблица 3. Ошибки измерения импульсов частиц

L	< 10 см	$10\leqslant L\leqslant 20$ см	$L>20\ { m cm}$	Bce L
$\Delta p/p, \%$	$29{,}9\pm0{,}7$	$17,6 \pm 0,4$	$9{,}7\pm0{,}1$	$13{,}9\pm0{,}3$
% от полного числа	12.7	17.0	70.3	100
частиц	12,7	17,0	70,5	100

измерения углов для треков вторичных частиц из звезд равны Δ tg $\alpha = (0,0061 \pm 0,0001), \langle \Delta \beta \rangle = (0,0037 \pm 0,0001)$ рад. Для $e^{\pm} \Delta$ tg $\alpha = (0,0175 \pm 0,0005), \langle \Delta \beta \rangle = (0,0105 \pm 0,0003)$ рад.

 γ -квант считался относящимся к звезде, если для него $\chi^2_{\gamma} < 11$. При этом получено $\langle \chi^2_{\gamma} \rangle = 2,55 \pm 0,5$, теоретическое значение для этой величины $\langle \chi^2_{\gamma} \rangle = 3$.

Для проверки всей системы обработки событий были рассчитаны эффективные массы $M_{\gamma\gamma}$ для пар γ -квантов с $\chi^2_{\gamma} < 11$. Для области масс $100 < M_{\gamma\gamma} \leqslant 170 \text{ МэB/c}^2$ среднее значение $\langle M_{\gamma\gamma} \rangle$ оказалось равным $136 \pm 2 \text{ МэB/c}^2$ с $\sigma_{M_{\gamma\gamma}} = 14 \text{ МэB/c}^2$, оно хорошо согласуется с табличным значением $M_{\pi^0} = 134,975 \text{ МэB/c}^2$ (рис. 3).

Рис. 3. Эффективная масса пар
 γ -квантов для событий, имеющих только дв
а γ -кванта

Кроме этого, были рассчитаны эффективные массы для V^0 событий: Λ -гиперонов с модой распада $\Lambda \to p + \pi^-$ и K^0 -мезонов с модой распада $K^0 \to \pi^+\pi^-$. Средние значения оказались равными $\langle M_{\Lambda} \rangle = (1,1163 \pm 0,0011) \, \Gamma$ $_{9}$ B/c², $\langle m_{K^{0}} \rangle = (0,4966 \pm 0,0026) \, \Gamma$ $_{9}$ B/c².

Хорошее согласие полученных масс π^0 -, Λ - и K^0 -частиц с их табличными значениями указывает на отсутствие заметных систематических ошибок в определении импульсов и углов вылета вторичных частиц, а также в их идентификации [2].

Признаки частиц, используемые в суммарном ансамбле, приведены в табл. 4.

Таблица 4. Признаки частиц

Одиночный γ -квант	1	
K^0	2	
Λ^0	3	
π^+	5	
π^-	6	
p	7	
γ -квант из пары	81	

5. РАЗДЕЛЕНИЕ ВЗАИМОДЕЙСТВИЙ π^- -МЕЗОН–ПРОПАН (C_3H_8) НА π^- -ВОДОРОДНЫЕ и π^- -УГЛЕРОДНЫЕ

К $\pi^- p$ -взаимодействиям отнесены события по следующим критериям.

1. Четное число вторичных треков в событии и суммарный заряд всех вторичных частиц равен нулю.

2. Число идентифицированных протонов равно нулю или 1.

3. В событии нет протона, вылетающего в заднюю полусферу, отсутствует блоб в вершине звезды.

К $\pi^{-}n$ -взаимодействиям отнесены события, в которых:

1) нечетное число вторичных треков и суммарный заряд всех вторичных частиц равен -1;

2) число идентифицированных протонов равно нулю или 1;

3) в событии нет протона, вылетающего в заднюю полусферу, отсутствует блоб в вершине звезды.

Все события, не удовлетворяющие перечисленным выше критериям, классифицировались как π^- С-взаимодействия (без квази- $\pi^- p$ - и $\pi^- n$ -взаимодействий на ядре углерода).

По перечисленным критериям в группу $\pi^- p$ -событий попадают взаимодействия π^- -мезона как со свободным, так и с квазисвободным протоном ядра углерода. Используя известные сечения $\pi^- p$ - и $\pi^- C$ -взаимодействий при 40 ГэВ/с [3], можно определить число $\pi^- p$ -взаимодействий на свободном протоне и ядре углерода на статистике зарегистрированных событий ($\pi^- p, \pi^- n, \pi^-$) в камере (см. табл. 5). Некоторым событиям (типы 4, 5) невозможно однозначно приписать тип взаимодействия, однако, поскольку эти события могут быть использованы для анализа, они также включены в ансамбль.

Признак события	Взаимодействие	Статистика взаимолействий
COODITIN		взаниоденетвии
1	$\pi^- p$ (с квази $\pi^- p$)	11147
2	$\pi^{-}n$	3929
3	$\pi^{-}C$	5585
4	$\pi^- p$ (неодн.)	429
5	$\pi^- n$ (неодн.)	353
6	$\pi^- p$ (упр.)	534
7	π^- С (диффр. 3 луча)	418
	Всего:	22395

Таблица 5. Статистика зарегистрированных событий

ЛИТЕРАТУРА

- 1. Абдурахимов А.У. и др. Препринт ОИЯИ Р1-5140. Дубна, 1970.
- Абдурахимов А. У. и др. Сообщение ОИЯИ 1-6967. Дубна, 1973;
 ЯФ. 1972. Т. 16. С. 989; ЯФ. 1973. Т. 17. С. 1235;
 ЯФ. 1973. Т. 18. С. 545.
- 3. Аллаби Д. В. и др. // ЯФ. 1970. Т. 12. С. 538.

Получено 6 апреля 2006 г.

Редактор Е. В. Сабаева

Подписано в печать 29.06.2006. Формат 60 × 90/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 0,5. Уч.-изд. л. 0,61. Тираж 365 экз. Заказ № 55397.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6. E-mail: publish@jinr.ru www.jinr.ru/publish/