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INTRODUCTION

The CBM Collaboration [1, 2] builds a dedicated heavy-ion experiment to
investigate the properties of highly compressed baryonic matter as it is produced
in nucleusÄnucleus collisions at the Facility for Antiproton and Ion Research
(FAIR) in Darmstadt, Germany. The scientiˇc goal of the research program of
the CBM experiment is to explore the phase diagram of strongly interacting matter
in the region of highest baryon densities. This approach is complementary to the
activities at RHIC (Brookhaven) and ALICE (CERNÄLHC) which concentrate on
the region of high temperatures and very low net baryon densities.

The experimental setup has to fulˇl the following requirements: identiˇca-
tion of electrons which requires a pion suppression factor of the order of 105,
identiˇcation of hadrons with large acceptance, determination of the primary and
secondary vertices (accuracy ∼ 30 μm), high granularity of the detectors, fast
detector response and read-out, very small detector dead time, high-speed trigger
and data acquisition, radiation hard detectors and electronics, tolerance towards
delta-electrons.

Figure 1 depicts the present layout of the CBM experimental setup. In-
side the dipole magnet gap there are the target and a 7-planes Silicon Track-

Fig. 1. CBM general layout

ing System (STS) consisting of pixel and strip detectors. The Ring Imaging
Cherenkov detector (RICH) has to detect electrons. The Transition Radiation
Detector (TRD) arrays measure electrons with momentum above 1 GeV. The
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Time-of-Flight (TOF) detector consists of Resistive Plate Chambers (RPC). The
Electromagnetic Calorimeter (ECAL) measures electrons, photons and muons.
The CBM setup is optimized for heavy-ion collisions in the beam energy range
from about 8 to 45 A · GeV. The typical central Au+Au collision in the CBM
experiment will produce up to 700 tracks in the inner tracker (see Fig. 2). Large
track multiplicities together with the presence of a non-homogeneous magnetic
ˇeld make the reconstruction of events extremely complicated. It comprises lo-
cal track ˇnding and ˇtting in the STS and TRD, ring ˇnding in RICH, cluster
reconstruction in ECAL, global matching between STS, RICH, TRD, TOF and
ECAL, and the reconstruction of primary and secondary vertices. Therefore, the
collaboration performs the extensive analysis of different event recognition and
reconstruction methods, in order to better understand the geometry of detectors
and to investigate speciˇc features of useful events [2].

Fig. 2. Visualization of a typical CBM event

1. THE STS TRACK RECONSTRUCTION PROBLEM

The STS track reconstruction problem can be split into track ˇnding and track
ˇtting problems. Different competitive approaches to both track ˇnding and the
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reconstruction of the initial track parameters were applied by the LIT specialists.
For the track ˇnding 3D track-following and cellular automaton methods have
been used. The Kalman ˇlter and global ˇtting methods like the polynomial
approximation are applied to the problem of momentum reconstruction. The
Kalman ˇlter was also used for determination of primary and secondary vertices.

1.1. 3D Track-Following Method for STS. The track-following method re-
constructs tracks based on the hits measured in the STS tracking stations. The
algorithm should be stable with respect to initial vertex coordinates and the STS
geometry. We used some approaches known from [3]. The track recognition
procedure is accomplished in 3D space on both xÄz and yÄz projections simulta-
neously. The procedure alternates between both views, predicting a track position
on the next station and searching for hits in the vicinity of the predicted position.
Starting from the middle of the target area, this point is sequentially connected
with all hits in the ˇrst station in yÄz view, where tracks are close to straight
lines (see Fig. 3). The straight lines driven via these two points are prolonged to
the plane of the second station. All hits in an asymmetrical corridor around the
intersection point are then used for ˇtting by a parabola in the xÄz view which
is prolonged to the next station. Since several prolongations can happen, we set
aside corridors around each point predicted on the third station. A similar corridor
is set in the yÄz view on the third station. If hits are found in these limits, they
are attached to the track. We consider the hits belonging to a track, if they are
found in both planes. If for some of the track prolongations, we do not ˇnd such
a correspondence, we delete that prolongation.

The method continues the track prolongation and searching for hits in corri-
dors around the predicted position in both projections simultaneously towards the
outer stations. Having tracks found on the ˇrst stage we make a selection on the
basis of the following criterion: each point can belong to one track only. So, any
track with one or more points belonging to some other track is rejected.

Each new parabolic prolongation is done with the corresponding curvature
radius r calculated taking the magnetic ˇeld into account (see Figs. 3 and 4). It
is done in the following way. Knowing parameter a from the initial parabola
x = az2 + bz + c, we derive the momentum value Pxz for the second station as

Pxz =
0.3By(1 + (2a · z + b)2)3/2

2a
. (1)

From Pxz and the Y -component By of the magnetic ˇeld known from its map
we obtain the approximation of the curvature radius r = Pxz/0.3 ·By at the point
(x2, z2). That is enough to draw a new parabola to make a prediction on the third
station. Further prolongations are made in the same manner.

The high accuracy predictor is based on special tables with conˇdence bounds
of prediction corridors depending on the station number. Those tables were cal-
culated by statistics obtained from many thousands simulated events. Calculations
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have to be done by Monte-Carlo simulations of a considered sample of heavy-
ion events in the STS for all stations. Since the conventional approach to use
symmetrical 3σ corridors appeared to be too inefˇcient, we use the distributions
of deviations between real hit positions and their predictions for all remaining
layers.

Fig. 3. Prediction and search in Y OZ view Fig. 4. Prediction and search in XOZ
view taking into account the local track
curvature

Magnetic ˇeld knowledge gave us a striking result: the distributions and
corresponding conˇdential corridors for prediction got narrowed 6 times. That
increases substantially the accuracy of prediction and speed up the track-ˇnding
performance.

On the data simulated for the initial STS design based on hybrid pixel stations
(see [1]), 3D track-following approach has shown quite a satisfactory efˇciency
at the level 92Ä96% and very low level of ghost tracks. At the same time, for
the most recent STS design with three ˇrst stations constructed on the MAPS
technology and four other stations based on silicon strip wafers the efˇciency felt
down demanding a more elaborated predictor.

Much better results on the MAPS and strip STS design were obtained by the
second track reconstruction procedure based on combination of a cellular automa-
ton application for track-element recognitions and Kalman ˇlter as a predictor.

1.2. Cellular Automaton Based Track Finding. The cellular automaton
method [4, 5] creates short track segments (tracklets) in neighbouring detector
planes and strings them into tracks (see Fig. 5). Being essentially local and
parallel, cellular automata avoid exhaustive combinatorial searches, even when
implemented on conventional computers. Since cellular automata operate with
highly structured information, the amount of data to be processed in the course
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of the track search is signiˇcantly reduced. As a rule, cellular automata employ
a very simple track model which leads to utmost computational simplicity and
fast algorithm. By deˇnition, the reconstructed track is assigned to a generated
particle, if at least 70% of its hits have been caused by this particle. A generated
particle is regarded as found, if it has been assigned to at least one reconstructed
track. If the particle is found more than once, all additionally reconstructed
tracks are regarded as clones. The reconstructed track is called a ghost, if
it is not assigned to any generated particle (70% criteria). The efˇciency of
track reconstruction for particles detected in at least four stations is presented
in Fig. 6. Tracks of high momentum particles are reconstructed very well with
efˇciencies of 99.45%, while multiple scattering in detector material leads to a
lower reconstruction efˇciency of 89.46% for slow particles. The reconstruction
efˇciency for fast primary tracks with momentum higher than 1 GeV/c is almost
100%, while the efˇciency of all fast tracks is slightly lower because of the
presence of secondary tracks, originating far downstream from the target region.
The total efˇciency for all tracks with a large fraction of soft secondary tracks
is 96.98%. The clone rate is not a problem for the algorithm (0.01%), the ghost
level is at 0.61%.

Fig. 5. A simple illustration of the cellular
automaton algorithm. It creates tracklets,
links and numbers them as possibly situ-
ated on the same trajectory, and collects
tracklets into track candidates

Fig. 6. Track reconstruction efˇciency as a
function of momentum

2. TRACK AND VERTEX FITTING

Track and vertex ˇtting have been done using the Kalman ˇlter based proce-
dures [2, 7]. Propagation of tracks in non-homogeneous magnetic ˇeld is based
on a specially developed analytic formula [8, 9]. Mean relative momentum res-
olution for all tracks is 0.69%. Secondary tracks from D0 decay being longer
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have a slightly better momentum resolution of 0.67%. After the primary vertex
is reconstructed, tracks identiˇed as primary can be reˇtted with an additional
constraint to the primary vertex position. This improves their average track
momentum resolution to 0.63%.

The primary vertex was determined from all tracks reconstructed in the STS
excluding those which formed well detached vertices like K0

S and Λ decays. The
Kalman ˇlter based algorithm reconstructs the primary vertex with the accuracy
of 4 μm for the longitudinal and better than 1 μm for transversal components of
the primary vertex position.

Precision of the secondary vertex parameters obtained in the geometrical ver-
tex ˇt can be improved by taking into account several assumptions on tracks
associated to the vertex. Two types of constraints have been included into the
secondary vertex ˇt: a mass constraint and a topological constraint. The mass
constraint is usually applied in the case of one or several combinations of particles
in the vertex are known to originate from a narrow width mass state. The topo-
logical constraint is used to point a mother particle to the (already reconstructed)
primary vertex. The ˇnal accuracy is 44.4 μm for the longitudinal and 1.7 μm
for transversal components of the secondary vertex position for D0 decay.

3. MOMENTUM ESTIMATION

Momentum estimation has been realized by two approaches: polynomial
approximations and orthogonal polynomial sets.

3.1. Polynomial Approximations. This algorithm reconstructs the particle
momentum directly from the hits in the Silicon Tracking System (STS). It consists
of two steps. First, the track curve is ˇtted by a polynomial vector function, using
the smoothness of the trajectory. Three types of approximation were applied:
polynomials, cubic splines and B-splines. The optimization problem is described
by the residual function

F =
N∑

i=0

[(
x̂(zi) − xi

σi
x

)2

+
(

ŷ(zi) − yi

σi
y

)2
]

,

where xi, yi are the trajectory hits, x̂(z), ŷ(z) the coordinate approximations, σi
x,

σi
y are the measurement errors, and N Ä the number of hits in the tracking system.

It should be noted that F is a quadratic functional of the parameters describing
the coordinate functions x̂(z), ŷ(z). This means that the optimization problem is
reduced to a very fast procedure of multiplication of an a priory prepared matrix
with the vectors of hit coordinates.

In the second step, the constructed functions x̂(z), ŷ(z) are used to determine
the approximate value of the momentum. The momentum reconstruction is based
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on the equations of motion:

xzz =
kq(1 + x2

z + y2
z)

1
2

p
{xzyzBx − (1 + x2

z)By + yzBz},

yzz =
kq(1 + x2

z + y2
z)

1
2

p
{(1 + y2

z)Bx − xzyzBy − xzBz},

where p and q are momentum and charge of the particle, respectively, and Bx,
By, Bz the components of the nonuniform magnetic ˇeld in the point (x, y, z);
xz , yz and xzz , yzz denote the ˇrst and second derivatives of x and y with respect
to z, respectively. With the density function

f(α, z, x̂(z), ŷ(z)) = |xzz −αkq(1+x2
z + y2

z){xzyzBx − (1+x2
z)By + yzBz}|2+

+|yzz − αkq(1 + x2
z + y2

z)
1
2 {(1 + y2

z)Bx − xzyzBy − xzBz}|2

the approximated value p is derived as the inverse of minimizing functional

G(α) =

ze∫
zb

f(α, z, x̂(z), ŷ(z))g(z)dz,

where g(z) is a weight function and zb, ze are the z coordinates of the ˇrst and last
STS detector, respectively. Since G(α) is a quadratic functional of the parameter
α, a fast noniterative procedure for the evaluation of p can be constructed.

This algorithm has been applied to simulated tracks in the momentum range
1Ä10 GeV/c with hits in all seven stations of the STS. Ideal track ˇnding was
assumed. The ˇrst and second momenta of the relative momentum residual
distributions are summarized in Table 1. While in the absence of multiple scat-
tering (MS), the spline approximations give better results, the performance in
the presence of multiple scattering is similar for all three approximations (σp =
0.75Ä0.80 %).

Table 1. Mean and RMS of the momentum residual distributions

Track model 〈Δp

p
〉 [%] 〈σp

p
〉 [%] 〈Δp

p
〉 [%] 〈σp

p
〉 [%]

no MS no MS MS MS
Polynomial Ä0.02 0.28 Ä0.02 0.76
Cubic spline 0.08 0.17 0.09 0.79

B spline 0.01 0.16 0.00 0.78
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3.2. Orthogonal Polynomial Sets. The method of accurate momentum recon-
struction with orthogonal polynomial sets constructs an explicit function which
gives the momentum in terms of measurable quantities: position and direction of
a track at the entrance of the spectrometric ˇeld and the de�ection angle as the
effect of the ˇeld onto the track momentum [10Ä12]. This experimental input
information can be provided, e. g., by a Kalman ˇlter operating on hits registered
in the CBM silicon tracking system (STS).

In inhomogeneous magnetic ˇeld ϕ is a function of p, position and direction
of a charged particle at the magnet entrance

ϕ = ϕ(X1, Y1, Ax, Ay, p), (2)

(X1, Y1, Z1) are the points in the ˇrst STS, (Ax, Ay) are the tangents of the
particle trajectory in this point. The task is to construct the inverse function

p = p(X1, Y1, Ax, Ay, ϕ), (3)

which provides accurate momenta restoration [12].
The procedure consists of two steps:
1) The de�ection angles for the given magnetic ˇeld are calculated for a set

of representative trajectories.
2) The explicit function (3) is then constructed on the basis of these

trajectories.
Each trajectory is deˇned by ˇve variables:
1) (x1 = X1, y1 = Y1) Å coordinates of a point in the ˇrst STS;
2) (x3 = Ax, x4 = Ay) Å tangents of a particle trajectory in the points

(X1, Y1);
3) x5 = 1/(p · c), p is the particle momentum, c Å speed of light.
Let [Ai, Bi] be the range of ith variable: i = 1, 2, . . . , 5. Each variable is

normalized to the range [Ä1, +1]

gi =
2xi − Ai − Bi

Bi − Ai
(4)

and a discrete number of ®nodes¯, according to the Tchebycheff distribution

gi = gi(αi) = cos
(2αi − 1)π

2Ni
, αi = 1, . . . , Ni, i = 1, . . . , 5

is chosen. The set of N1, N2, . . . , N5 determines the collection of ˇxed trajec-
tories, which are traced through the magnetic ˇeld, and the set of corresponding
de�ections ϕ(x1, x2, x3, x4, x5) is calculated.

Let the range of ϕ(·) be [A6, B6]; ϕ(·) is also normalized to the range
[Ä1, +1]:

g6 =
2ϕ − A6 − B6

B6 − A6
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and a discrete number of values g6

g6 = g(α6) = cos
(2α6 − 1)π

2N6
, α6 = 1, . . . , N6, N6 � N5

is chosen. Now, applying the inverse interpolation, we can calculate the corre-
sponding values of g5.

Let g5 be in the form

g5 =
∑

ijklm

CijklmTi(g1)Tj(g2)Tk(g3)Tl(g4)Tm(g6), (5)

i = 0, . . . , N1 − 1; j = 0, . . . , N2 − 1; k = 0, . . . , N3 − 1; k = 0, . . . , N4 − 1;
m = 0, . . . , N6 − 1. The coefˇcients Cijklm are calculated using the formula

Cijklm =

∑
α1α2α3α4α6

g5α1α2α3α4α6
Ti(g1)Tj(g2)Tk(g3)Tl(g4)Tm(g6)

(
∑
α1

Ti(g1))2(
∑
α2

Tj(g2))2(
∑
α3

Tk(g3))2(
∑
α4

Tl(g4))2(
∑
α6

Tm(g6))2
, (6)

α1 = 1, . . . , N1; α2 = 1, . . . , N2; α3 = 1, . . . , N3; α4 = 1, . . . , N4; α6 = 1, . . .,
N6.

The total number of ®nodes¯ for which trajectories were calculated was 625:
N1 = N2 = N3 = N4 = 5. The trajectories were computed for each sample and
for N5 = 7 momentum values in the range 1Ä10 GeV/c and the de�ection angle
was determined. For each combination (α1, α2, α3, α4) the momentum variable
was calculated by inverse interpolation for N6 = 7 of de�ection variables. Then,
using (6), the expansion coefˇcients Cijklm were calculated: total number is 5 ×
5 × 5 × 5 × 7 = 4375. Lowering the upper limits N1, N2, N3, N4, N6, we obtain,
without changing the coefˇcients, a least-squares ˇt to the computed trajectories.
This is a consequence of the Tchebysheff polynomials being orthogonal. The
number and signiˇcant coefˇcients can be found by a Fisher test. Our analysis
has shown that without loss in accuracy, only 89 coefˇcients can be used.

In order to estimate the accuracy of the method on data close to real data,
we used the GEANT data. Figure 7 presents the distribution of p − pc and Fig. 8

shows the distribution of
p − pc

p
for positively charged tracks. One can see from

Fig. 8 that the dispersion of the distribution
p − pc

p
is 0.26%.

It must be noted that this result is obtained for positively charged particles,
because the tracing of the basic set of trajectories was realized for positively
charged particles. For a small part of tracks (≈ 10%), the parameters of which
are out of the range of variables x1, x2, x3, x4, x6, we used the approximation of
the uniform magnetic ˇeld. This reduces the overal resolution to about 0.34%.
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Fig. 7. Distribution of p−pc (in MeV/c) for
the GEANT data (for positively charged
particles)

Fig. 8. Distribution of
p − pc

p
for the GEANT

data (for positively charged particles)

In summary, the algorithm provides the possibility to reconstruct the mo-
mentum of charged particles registered in the STS system with high accuracy.
The accuracy can be further improved by separate momentum reconstruction of
particles of different charges and by subdivision of the momentum range into
subintervals.

4. PARTICLE IDENTIFICATION WITH THE RICH DETECTOR

The Ring Imaging Cherenkov detector (RICH) is designed to provide electron
identiˇcation in the momentum range of electrons from low-mass vector-meson
decays. A second task of the RICH detector is the p identiˇcation for higher
momenta in order to improve the K/p separation which quickly deteriorates for
p > 4 GeV/c if only time-of-�ight information is used. Particle identiˇcation with
the RICH detector is performed by a measurement of the Cherenkov angle/ring
radius and the momentum of the particles (see Fig.10). Assuming that tracks
with momentum are provided by the tracking system, the RICH part for particle
identiˇcation requires the following steps:

• ring ˇnding,
• determination of center and radius of ring/ Cherenkov angle,
• matching of rings with tracks.
All charged tracks being reconstructed by the tracking system are re�ected at

the mirror in order to give the center of a possible Cherenkov ring (see Fig. 9).
The number of these tracks is much larger than the number of particles really
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producing a ring. In order to combine rings and tracks each ring is to be matched
to the track having its extrapolation closest to the calculated ring center.

Fig. 9. Simulated image of the CBM RICH photode-
tector plane. Hits forming rings to be recognized are
marked by points. Track prolongations to this plane
are marked by crosses

Fig. 10. Ring radius distribution
versus the track momentum for
e± (1), μ± (2) and π± (3)

Track extrapolation was obtained using CBM Rich Projection Producer class.
Each RICH event consists of about 400 track extrapolations and about 1500 hits,
nearly 80 rings. So, the key part of any ring-ˇnder is a prior search for all ring
containing fragments. It was realized by the coarse histogramming of source data,
then by clustering hits in all separate areas of this histogram and by choosing not
all, but only hits belonging to each of those clusters.

Several methods for CBM-RICH ring recognition were elaborated on the basis
of the fast search for the areas containing RICH hits and then, either by using the
information of previously found tracks or, as a standalone program, for unguided
ring ˇnding.

4.1. Track Based RICH-Ring Recognition Algorithm. Each track extrapo-
lation could be considered as a potential ring center. However, as can be seen
from Fig. 9, the high multiplicity of CBM events, especially the great number of
secondary particles cause the track-ring matching problem. It is solved by com-
bining track and ring with closest distance. We calculate all distances between the
ring center predicted by a track and nearest hits. Each time we test these distances
to be within prescribed limits. Then, we histogram those distances and look for
a maximum. If the sum of maximum bin and two adjacent bins is exceeded a
CUT, that means that we found a ring. Natural criteria are also applied:

1) Δr Å the difference of ˇtted radius and simulated radius < 0.5 cm;
2) Δxy Å difference of ˇtted ring center and simulated center < 0.5 cm;
3) min/max potential hits (compare MC hits and associated hits) in the range

0.5Ä1.5.
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The total efˇciency of track-guided ring ˇnding shown in Figs. 11 and 12 is
on the satisfactory level.

Fig. 11. Ring-ˇnding efˇciency for elec-
trons as a function of Pt (GeV/c) (vertical
axis) and rapidity

Fig. 12. Ring-ˇnding efˇciency for pions
as a function of Pt (GeV/c) (vertical axis)
and rapidity

Fig. 13. Two tracks Å one ring Fig. 14. Wrong matches: real rings

Since we use the track extrapolation as a ring-ˇnding predictor, we have
the ring-ˇnding and track-ring matching in one. But, if we have two very close
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tracks, a mismatching problem arises (see Fig. 13). Fortunately, as could be seen
in Figs. 14 and 15, mismatching errors are at the level less than 10%, although
such circle problems need to be better studied.

Fig. 15. Matching of fake rings

The second approach to the unguided ring recognition, leading to a so-
called standalone ring-ˇnding, is of importance for various problems of the RICH
instrumental testing and for the RICH alignment with other detectors of the
CBM setup. Two different methods have been considered: based on the Hough
transform and elastic neural net approaches.

4.2. The Hough Transform Approach. It was studied as an option for a
standalone ring ˇnder for providing center and radius for each ring. It can be used
as well to give an estimate of center and radius of the rings which then can be
used as input for the ring ˇtting. The Hough transform framework is often applied
to cope with a low resolution search of rings. The Hough transform is robust
to a certain extent concerning topological gaps in rings (semicircles at detector
edges) and concerning a high noise background [14, 15]. It converts points of
the measurement space, i.e. hits, to points in the parameter space. In case of
circles in the RICH detector, the coordinates of the parameter space are the ring
centers and their radii. Through three arbitrary signal points a unique circle can be
drawn. The resulting ring centers show a wide distribution in the parameter space
and nearly ˇll the full circle of real rings. This effect can easily be understood
considering the fact, that the ring center and the radius from the neighboring hits
are only vaguely determined. Unfortunately, heavy combinatorics inherented to
any Hough transform implementation results in its very high time consuming.
Therefore, a procedure was developed to reduce the number of combinations. In
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the next step of the usual Hough transform strategy, the ring centers and radii are
determined by the search for the most populated places in the parameter space.
A simple method would consist of collecting all calculated centers (xc, yc) in
histograms of proper granularity and deˇning a cut-off value in the signal height
to select real ring centers. The radii corresponding to each center can be then
found similarly.

4.3. Elastic Neural Net for Standalone RICH Ring Finding. Standalone
ˇnding of rings in the RICH detector is based on the elastic neural net [17,
18]. The method does not require any prior track information and can be used
for triggering. Application of the method to the RICH detector of the CBM
experiment shows the efˇciency of 94.3% and high speed (5.4 ms per event with
about 1400 hits in the RICH detector). In view of its computational simplicity and
high speed, the algorithm is considered to be further implemented in hardware
which can increase the speed by few orders of magnitude.

4.4. The Ring Fitting. The ring ˇtting algorithm is implemented as the pro-
gram RFit which estimates parameters of Cherenkov rings over a set of scattered
points provided by the RICH detector.

The RFit algorithm is based on minimization of a least square function (LSF),
which is a measure of deviation between a sought ring an a given data points
(xi, yi):

σ2 =

n∑
i=1

d2
i

n
, (7)

where di =
∣∣∣√(xi − x0)2 + (yi − y0)2 − r

∣∣∣, point (x0, y0) is the ring center,

r is its radius.
RFit uses the MINUIT package [19] to perform a minimization. To be

more exact, ROOT::TMinuit class is used∗. This package was originally written
in Fortran by Fred James and part of PACKLIB (patch D506) and has been
converted to a C++ class by R. Brun.

This approach is often failed for highly contaminated data, thus, the robust
ˇt must be used [20, 21, 22]. It can be realized by replacing LSF (7) by the
weighted LSF:

σ2 =

n∑
i=1

wid
2
i

n∑
i=1

wi

, (8)

∗To use RFit both with ROOT and without it, TMinuit class is separated from the ROOT
package by the corresponding modiˇcations and is included to RFit distribution.
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where weights wi are recalculated before the minimization procedure. RFit uses
well-known Tukey's bi-square weights:

wi =

⎧⎨⎩
(

1 − d2
i

c2
T σ2

)2

, di < cT σ,

0, di � cT σ.

(9)

As a whole, the robust approach can be realized as the iteration procedure:
• setting wi = 1, calculating σ2 by (8), setting cT = 5;
• while cT > 1 doing the loop:
Å calculating wi by (9) using current values of σ and cT ;
Å minimizing σ2 given by (8);
Å reducing cT by cT / = 2.
This procedure can be speed-up signiˇcantly when some rough initial circle

parameters are know from either a guidance or a search like the Hough transform.
The robustness slows algorithm, but it is inevitable pay for repairing its accuracy
and efˇciency in highly contaminated cases. RFit supports both standard and
robust approaches.

4.5. Simultaneous Fit of Two or More Circles. As one can see from Figs. 9Ä
13, the high multiplicity of events leads often to overlapping close rings which
hinders their parameters estimation. So, a problem of simultaneous ˇtting of two
or more circles is arisen. To solve it, one needs to create the equation of such
a combined curve. It can be done by multiplying the corresponding number of
the circle equations. For instance, for the forth order curve joining two circles, it
gives the six parameter equation

F (xi, yi; a, b, c, d, R1, R2) =

= [
√

(x − a)2 + (y − b)2 − R1][
√

(x − c)2 + (y − d)2 − R2] = 0. (10)

The LSM estimation of all parameters requires the search for the global minimum
of the nonlinear functional

L(a, b, c, d, R1, R2) =
∑

i

wiF
2(xi, yi; a, b, c, d, R1, R2), (11)

with the optimal weight function

wopt(t) =
1 + c

1 + c exp(t2/2)
. (12)

The only parameter c is the ratio of the mean number of noise observations
within a strip of the width σ

√
2π to the mean number of useful observations in

the sample. Thus, it is determined by the contamination of data not in the whole
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range of the sample, but within its essential part where all useful observations are
practically concentrated. The value of c is often roughly known in experimental
models.

The solution of nonlinear minimization of (11) was again obtained by the
MINUIT program modiˇed to work with robust weights.

Denoting by k the iteration number, one obtains from (12):

w
(k+1)
i =

1 + c

1 + c exp(e(k)
i /var(k))2/2

, (13)

where
(var(k))2 =

∑
w

(k)
i (e(k)

i )2/
∑

w
(k)
i .

All variants of ring-ˇtting programs were carefully tested on a big sample of
simulated events and showed the satisfactory accuracy and efˇciency.

5. THE TRD TRACK FINDING

5.1. The TRD Geometry and Resolution. The TRD will be located between
RICH and TOF detectors (see Fig. 1). One TRD layer consists of one big chamber
4×4 m with a square hole in the center (see Fig. 16). Within the current geometry
of the CBM experiment the TRD layers are grouped into 3 TRD stations (Fig. 17)
with 3Ä4 layers each.

Fig. 16. Schematic layout of one TRD layer

The composition of the TRD chamber is identical for all chambers and is
organized via layers of different materials with a total thickness of 6 cm. The
TRD stations are placed at 4, 6 and 8 m from the target. Currently, there are
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Fig. 17. CBM TRD scheme

Fig. 18. Width of pad and resolution across the pad (σT ) are identical for all pads in each
station. Length of pad and resolution along the pad (σL) are increasing with the distance
from the beam position in discrete steps

two different geometry versions with 3 or 4 TRD layers per station. Each layer
has a pad structure for read-out, where pads are rectangular and their orientation
alternates between x and y directions from layer to layer (see Fig. 18).

5.2. Statistical Information. Some statistical information of the TRD event
is presented on the histograms in Figs. 19, 20 and 21.

Most of the tracks have momenta larger than 1 GeV/c (Fig. 19). In order to
eliminate tracks from secondary electrons, we accept only tracks with 12 hits at
minimum.

The basic tracking problem is caused by the drastic difference in measure-
ment errors on adjacent layers depending on the corresponding pad size. Their
distributions in the (x, z) and (y, z) planes are shown in Figs. 20 and 21 for some
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Fig. 19. Momentum distribution for tracks in the TRD (for 10 events) and distribution of
number of the TRD hits per track (for 10 events)

Fig. 20. Measurement errors in the (x, z) plane for the 1st, 2nd, 11th and 12th TRD layers
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Fig. 21. Measurement errors in the (y, z) plane for the 1st, 2nd, 11th and 12th TRD layers

of TRD chambers.

5.3. 3D Track-Following Algorithm for CBM TRD. In order to draw ˇrst
track-segments between ˇrst and second layers in (y, z) and (x, z) views as a
preliminary version, we use Monte-Carlo values for the track and its momentum
of the entrance of the ˇrst TRD station. Further, it can be replaced either by track
and momentum prolongation from the STS to TRD, or, in a standalone variant,
by the initial search of track segments connecting hits in the ˇrst and second
stations.

The 3D track-following algorithm for TRD could repeat this one described in
Subsec. 1.1 with the obvious simpliˇcation caused by the absence of the magnetic
ˇeld in the TRD area. However, the TRD speciˇcs brought essential tracking
problems arising due to:

• errors in TRD layers;

• multiple scattering implies big track deviations from the predicted position
(see Fig. 22);
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• large multiplicity (increasing by secondary electrons from 800 tracks on
the 1st station up to 1400 on the last one);

• noisy hits from secondary electrons.

Fig. 22. Track deviation from its predicted position

Therefore, very signiˇcant improvement of the track predictor is required.
This has been achieved by applying the Kalman ˇlter.

5.4. Kalman Filter Application in the TRD Track Finder. 5.4.1. Kalman
Filter Formalism. Kalman ˇlter is usually applied to the analysis evolution of
a linear discrete dynamical system. The system dynamics in a discrete point of
time tk is described by a linear stochastic equation

−→pk = Fk
−−→pk−1 + −→ωk, (14)

where −→pk is the state vector (the vector of the system parameters) of the analyzed
system; Fk is the deterministic transition matrix from the state k − 1 to the state
k; −→ωk is a random disturbance.

The state vector does not need to be observed directly, but a linear function
of the state vector is observed. It is a measurement vector

−→mk = Hk
−→pk +

−→
ξk , (15)

where
−→
ξk Ä the measurement error.

The vectors −→ωk and
−→
ξk are Gaussian-independent random variables with Qk

and Vk covariance matrices.
The formula of the one-step Kalman predictor has the following form:

−̃→pk =
−̃−→
pk−1

k + Kk(−→mk − Hk

−̃−→
pk−1

k ), (16)

where
• −̃→pk is the estimate of the state vector at the kth step. It represents the

mathematical expectation of the state vector −→pk, based on known k measurement
vectors: E(−→pk | −→mk,−−−→mk−1, . . . ,

−→m1).
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•
−̃−→
pk−1

k is the predicted value of the state vector at the kth step using the state

vector estimated at the previous k − 1th step:
−̃−→
pk−1

k = Fk
−̃−→pk−1.

Kk is the Kalman transition matrix which transforms the error in the mea-
surement space to the space of the system parameters

Kk = Ck−1
k HT

k (HkCk−1
k HT

k + Vk)−1, (17)

where

• Ck−1
k = cov(

−̃−→
pk−1

k − −→pk) is the covariance matrix of the predicted state
vector

Ck−1
k = FkCk−1F

T
k + Qk. (18)

• Ck = cov(−̃→pk − −→pk) is the covariance matrix of the state vector estimated
at the kth step

Ck = (I − KkHk)Ck−1
k .

5.4.2. Application to the TRD Track Finding. We assume that in the TRD
zone the trajectories of charged particles are piecewise lines consisting of frag-
ments of different straight lines. Each fragment in XOZ and Y OZ planes is
described by two equations

x = xk + tx(z − zk),

y = yk + ty(z − zk),

where xk, yk are the coordinates of the particle intersection with the kth layer and
tx, ty are the track slopes formed by multiple scattering in the material between
layers. So, we consider the particle trajectory as a linear discrete dynamic system
which changes its parameters when it passes each layer.

In order to introduce the Kalman ˇlter related to our problem, we determine
the state vector as

−→pk = (xk, yk, tx, ty, q/p)T .

Then, the corresponding transition matrix Fk is

Fk =

⎛⎜⎜⎜⎜⎝
1 0 Δz 0 0
0 1 0 Δz 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎠ , (19)

where Δz = zk − zk−1.
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The matrix Hk in our case is

Hk =
(

1 0 0 0 0
0 1 0 0 0

)
. (20)

The covariance matrix Vk is

Vk =

⎛⎜⎜⎜⎜⎝
v11 0 0 0 0
0 v22 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ , (21)

where v11, v22 are the measurement errors of x, y track coordinates in the kth
layer.

The covariance matrix Qk coincides with the multiple scattering matrix. In
our case, for thin scattering layer, Qk has the form

Qk =

⎛⎜⎜⎜⎜⎝
0 0 0 0 0
0 0 0 0 0
0 0 q33 q34 0
0 0 q43 q44 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ , (22)

where
q33 = (1 + t2x)(1 + t2xt2y)θ2

0 ,

q34 = q43 = (1 + t2y)(1 + t2xt2y)θ2
0 ,

q44 = txty(1 + t2xt2y)θ2
0

and

θ0 =
13.6 MeV

βcp
z

√
x

X0
[1 + 0.038 ln

x

X0
].

The TRD Track Finder algorithm is 3D track-following process where the
Kalman ˇlter step by step gives, using formula (8), the estimate of the track
parameters on each layer. On the last layer, we obtain the best estimate of the
track parameters. Then, using the smoothing procedure we correct the estimate
of the track parameters on each previous layer.

5.4.3. The Smoother Procedure. The smoothed state vector is introduced as

−̃→
pn

k = −̃→pk + Ak(
−̃−→
pn

k+1 −
−̃−→
pk

k+1),

where
−̃→
pn

n = −̃→pn.
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Smoother gain matrix is

Ak = CkFT
k+1(C

k
k+1)

−1.

Covariance matrix of the smoothed state vector is

Cn
k = Ck + Ak(Cn

k+1 − Ck
k+1)A

T
k .

5.4.4. Preliminary Results. In Fig. 23 one can see the scheme of the TRD
track ˇnder. During our calculation of the track ˇnding efˇciency we use rather
rigid track accepting criterion: a track is considered as accepted, if it contains 12
hits (each hit from each TRD station) and there are no hits from other tracks. As
shown in Fig. 23, the efˇciency at the level of 70% is given.

Fig. 23. Scheme of the TRD track ˇnder

The performance of the new track ˇnder program based on the Kalman ˇlter,
as a predictor, was tested by comparing the found track states with true Monte
Carlo information. To characterize this comparison, we use the χ2 on the number
of freedom degrees (see Fig. 24). We consider also such a common estimation
of the found track quality as pullx = (xrec − xtrue)/σx, where xrec is the
reconstructed value, and xtrue is its true Monte Carlo value, σx is the estimated
error, obtained from the covariance matrix of the Kalman procedure (see Figs. 25
and 26).
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Fig. 24. χ2 distribution for accepted tracks

Fig. 25. Pull distribution of X

As one can see from distributions in Figs. 24, 25, 26, if we will apply more
liberal accepting criteria (for instance, accepted track can have one common hit
with the other tracks) and with better tuning of track ˇnder algorithm parameters,
it should give the increase of the total algorithm efˇciency.
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Fig. 26. Pull distribution of Y

CONCLUSION

During the years 2004Ä2005 the JINR LIT group proposed a set of effec-
tive methods for event reconstruction in the CBM experiment and developed
corresponding algorithms implemented in the CBM framework software.

It includes the following:
• two approaches of track-ˇnding algorithms (based on 3D-following and

cellular automaton methods);
• primary and secondary vertex recognition algorithms;
• two different approaches for charged particle momentum restoration;
• Cherenkov ring ˇnding (two approaches: Hough transform, elastic neural

net) and robust ring ˇtting software;
• the TRD track ˇnder with a track predictor based on the Kalman ˇlter.
The majority of these codes is included into the CBM framework and is in

use by physicists, although some of them need further development to improve
the performance.
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