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�·¥¤¸É ¢²¥´ μ¡§μ· ³¥Éμ¤μ¢ ¡¨μ¨´Ëμ·³ É¨±¨, ¢ ¦´ÒÌ ¶·¨  ´ ²¨§¥ ¡¥²±μ¢. ’ ±¦¥ ¶·¥¤-
¸É ¢²¥´Ò ¶μ¨¸± ¶μ ¡ §¥ ¤ ´´ÒÌ, ¸· ¢´¥´¨¥ ¶μ¸²¥¤μ¢ É¥²Ó´μ¸É¥° ¨ ¸É·Ê±ÉÊ·´Ò¥ ¶·μ£´μ§Ò.
„ ´Ò ¸¸Ò²±¨ ´  ¸É· ´¨ÍÒ ¢¸¥³¨·´μ° ¶ ÊÉ¨´Ò (WWW) ¶μ ± ¦¤μ° É¥³¥. � §Ò ¤ ´´ÒÌ
¸ ¡¨μ²μ£¨Î¥¸±μ° ¨´Ëμ·³ Í¨¥° · ¸¸³μÉ·¥´Ò ¸  ±Í¥´Éμ³ ´  ¡ §Ò ¸ ´Ê±²¥μÉ¨¤´Ò³¨ ¶μ-
¸²¥¤μ¢ É¥²Ó´μ¸ÉÖ³¨, £¥´μ³ ³¨,  ³¨´μ±¨¸²μÉ ³¨ ¨ É·¥Ì³¥·´Ò³¨ ¸É·Ê±ÉÊ· ³¨. �¶¨¸ ´Ò
®widespread¯-³¥Éμ¤Ò ¤²Ö ¸· ¢´¥´¨Ö ¶μ¸²¥¤μ¢ É¥²Ó´μ¸É¥°, ¢Ò· ¢´¨¢ ´¨Ö ³´μ¦¥¸É¢¥´´ÒÌ
¶μ¸²¥¤μ¢ É¥²Ó´μ¸É¥° ¨ ¢Éμ·¨Î´μ£μ ¶·μ£´μ§  ¸É·Ê±ÉÊ·Ò. �·¥¤¸É ¢²¥´μ £μ³μ²μ£¨Î´μ¥ ³μ-
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Í¨° Í¨±²¨´§ ¢¨¸¨³ÒÌ ±¨´ § ¤·μ¦¦¥° ¨ Î¥²μ¢¥±  CDC28 ¨ CDK2. �  μ¸´μ¢¥ £μ³μ²μ-
£¨Î´μ£μ ³μ¤¥²¨·μ¢ ´¨Ö ¸ ¨¸¶μ²Ó§μ¢ ´¨¥³ ±·¨¸É ²²¨Î¥¸±μ° ¸É·Ê±ÉÊ·Ò CDK2 Î¥²μ¢¥± 
¶·¥¤¸± § ´  ¸É·Ê±ÉÊ·  ±¨´ §Ò Î¥²μ¢¥±  ¶·¨ ¶μ³μÐ¨ ¶ ±¥É  MODELLER. „ ²¥¥ ¶·μ¢μ-
¤¨²μ¸Ó Œ„-³μ¤¥²¨·μ¢ ´¨¥ ¸ ¨¸¶μ²Ó§μ¢ ´¨¥³ ¶ ±¥É  AMBER8.0 ¢ É¥Î¥´¨¥ 2 ´¸ ¨ ¨¸¸²¥-
¤μ¢ ²μ¸Ó ±μ´Ëμ·³ Í¨μ´´μ¥ ¶μ¢¥¤¥´¨¥ ±·¨¸É ²²¨Î¥¸±μ° ·¥Ï¥É±¨ ± ± ¤·μ¦¦¥° CDC28,
É ± ¨ CDK2/Í¨±²¨´  A/�’”-Mg2+/¸Ê¡¸É· É  Î¥²μ¢¥±  ¶·¨ Ë¨§¨μ²μ£¨Î¥¸±μ° É¥³¶¥· ÉÊ·¥
T = 300 K. �¸´μ¢Ò¢ Ö¸Ó ´  Œ„-³μ¤¥²¨·μ¢ ´¨¨, ³Ò ¨¸¸²¥¤μ¢ ²¨ ³μ²¥±Ê²Ö·´Ò° ³¥Ì ´¨§³
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An overview of bioinformatics techniques of importance in protein analysis is given. These
include database searches, sequence comparisons and structural predictions. Links useful to
World Wide Web (WWW) pages are given in relation to each topic. Databases with biological
information are reviewed with emphasis on databases for nucleotide sequences, genomes,
amino acid sequences, and three-dimensional structures. Furthermore the widespread methods
for sequence comparisons, multiple sequence alignments and secondary structure predictions
were described. The homology modeling and molecular dynamics (MD) simulation analysis of
structural conformation properties for yeast and human cyclin-dependent kinases CDC28 and
CDK2 have been performed. Based on the homology modeling a structure of yeast CDC28
is predicted using a lattice crystal structure of human CDK2 using the MODELLER software.
Further MD simulations run using AMBER8.0 package for 2 ns and the conformation behavior
of crystal lattice for both yeast CDC28 and human CDK2/cyclin A/ATP-Mg2+/substrate at
physiological temperature T = 300 K have been investigated. Based on the MD simulation
results we discuss the molecular mechanism regulation of phosphorylation and the structural
changes of kinases.
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1. INTRODUCTION

The word ®bioinformatics¯ refers to the application of information technology
(IT) in molecular biology, and exists in the similar areas of study: computational
(molecular) biology, biocomputing or biocomputation, computational genomics,
in silico biology, and computational proteomics. In the present day scenario any
endeavor in modern life has been enhanced by the application of information
technology, made biologists easy. We may consider bioinformatics to comprise
the study of information pathways in biology. And information pathways cru-
cially required for the existence of any organism. DNA and protein sequences
form the major proportion of the information pathways in molecular biology.
These sequences are nothing but a set of four alphabets for DNA, and twenty
ones for proteins. Thus all the tools and techniques that have been developed
to analyze these sequences which carry information regarding the physiologi-
cal mechanisms through the process digital information. Thus, bioinformatics
is intimately connected with theoretical computer science, especially such top-
ics as natural language processing, machine learning, computational linguistics
and digital pattern recognition. Ideas and methods have been incorporated from
these sciences and effectively applied in bioinformatics to obtain useful biological
information.

1.1. Introduction to Molecular Biology. Before the invention of modern
molecular biology, biological systems were thought to be based upon an unknown
principle that set them apart from non-living matter. The understanding of the
function of each separate portion so gained is put together, bit by bit, to build an
understanding of the entire biological system. The development of the discipline
of bioinformatics is just one manifestation of this success.

1.1.1. Genetic Information. The chief molecules involved in the informa-
tion transfer pathway are deoxyribonucleic acids or DNA, ribonucleic acids or
RNA, and proteins. Another common feature shared by all three is that they are
polymeric molecules. The difference between RNA and DNA is the presence, in
RNA, of an extra oxygen atom on the sugar ring. In the case of the nucleic acids,
DNA and RNA, this is the sugar-phosphate backbone. In the case of proteins this
is the polypeptide backbone.

DNA is a double-stranded molecule, consisting of two nucleic acid strands
that run in opposite directions, and are wound around each other to form a double
helix. One end is referred to as the 5' end and the other as the 3' end. The
negatively charged phosphate-sugar backbones of the two strands are outside of
the double helix, while the planar, nitrogenous and hydrophobic bases are inside
of the double helix, away from the aqueous solvent molecules. The two strands
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stick to each other through hydrogen bonds that form between the bases in a
highly speciˇc manner [1]. Since there are four types of bases, one may think of
the information as being represented by four symbols, namely A, T, G and C.

RNA is similar to DNA but the alphabet consists of the four bases A, T, G
and C, in RNA the base T is not found and instead we have the base U. RNA
has three different functions in the process of information storage and transfer.

A protein chain is represented again by a string of symbols, this time chosen
from an alphabet of 20 letters, representing the 20 different amino acids (see
Fig. 1).

Fig. 1. Central dogma of molecular biology

1.2. What Does Bioinformatics Mean? Bioinformatics includes computer
simulation of individual metabolic processes, as well as the more ambitious simu-
lation of a whole cell or even a whole organism. Many of the processes involved
in the development of new drugs, such as lead discovery, lead optimization
through molecular modeling, design and analysis of the laboratory and clinical
trials, are all considered as a part of bioinformatics.

1.2.1. Functions involved in bioinformatics. The analyses of DNA, RNA and
protein sequences and structures may generally be broken down into the following
elemental tasks.
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• Searching for patterns within a sequence;
• Obtaining statistical information on a sequence;
• Searching for similarities between two sequences, or performing sequence

alignment for a pair of sequences;
• Searching for similarities among many sequences, or performing multiple

sequence alignment;
• Constructing phylogenetic trees based on sequences;
• Predicting and analyzing the secondary structures on basis of the sequence;
• Predicting and analyzing tertiary structure and folding for protein and RNA

sequences.
The ˇrst task, i. e. searching for patterns, is the one that is the most difˇcult,

as well as the one most often required. The second task in the list above relates
to the statistical information on a single sequence, such as the base or amino
acid composition. The third elemental task is searching for sequence similarities
[2]. The fourth task in the list, multiple sequence comparison and alignment, is
also very important for functional annotation. The last two tasks mentioned in
the list relate to the structures of the molecules. To understand completely the
function of any physical system, in the case of the biologically active molecule,
it is necessary to know its structure.

2. MOLECULAR BIOLOGY DATABASES

An extensive data description method has been devised and implemented,
such that the database can accept, store, search and analyze all the relevant
types of data, including textual descriptions, images, three-dimensional structures,
molecular interactions, molecular complexes, networks of interactions, physical
locations within the cell, etc.

2.1. Data Types in Molecular Biology. Sequences and structures are dealt
with in the later sections of their own. In this section we describe the other types
of databases in molecular biology (see Fig. 2.).

Fig. 2. A portion of the network of molecular biology databases available
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2.1.1. Expression data. The Gene Expression Omnibus (GEO) at the NCBI
site is a database for expression data obtained using a variety of methods including
gene chips and Serial Analysis of Gene Expression (SAGE). The Saccharomyces
Genome Database (SGD) (http://genome-www.stanford.edu/Saccharomyces) is an
address where data regarding yeast genome expression may be accessed in this
format [3].

2.1.2. Metabolic pathways and molecular interactions. The Kyoto Encyclo-
pedia of Genes and Genomes (KEGG: http://www.genome.ad.jp/kegg) is one of
the well-known databases for metabolic and regulatory pathways [4]. RegulonDB
is a database of transcriptional regulation and operon organization for E.coli at
http://www.cifn.unam.mx/Computational Biology/regulondb [5].

2.1.3. Mutations and polymorphisms. The Online Mendelian Inheritance in
Man (OMIM: http://www.ncbi.nlm.nih.gov/Omim) is a computerized catalogue
of human genes and the genetic mutations and changes that lead to clinical
disorders [6].

dbSNP (http://www.ncbi.nlm.nih.gov/SNP) is a database of SNPs, deˇned, in
spite of the name, both the changes of a single base nucleotide, as well as short
deletion and insertion polymorphisms [7].

The Protein Mutant Database (PMD: http://pmd.ddbj.nig.ac.jp) is a collec-
tion of information on mutant proteins that includes natural as well as artiˇcial
mutants [8].

2.2. Sequence Databases. Sequence and structure databases may be classiˇed
into two types, viz. primary or raw databases and secondary or derived databases.

2.2.1. Primary nucleotide sequence repositories Å GenBank, EMBL, DDBJ.
These are the three chief databases that store and make available raw nucleic acid
sequences. GenBank is physically located in the USA and is accessible through
the NCBI portal over the Internet. EMBL (stands for European Molecular Biology
Laboratory) is in the UK, at the European Bioinformatics Institute, and DDBJ
(DNA DataBank of Japan) is in Japan [9, 10, 11].

2.2.2. Primary protein sequence repositories. The PIR-PSD is now a com-
prehensive, non-redundant, expertly annotated, fully classiˇed and extensively
cross-referenced protein sequence database in the public domain [12]. It is avail-
able at http://pir.georgetown.edu/pirwww.

The other well-known and extensively used protein sequence database is
SWISS-PROT (http://www.expasy.ch/sprot) [13]. The core data consists of the
sequence entered in the common single letter amino acid code, and the related
references and bibliography. The annotations contain information on the function
or functions of the protein, post-translational modiˇcations such as phosphoryla-
tion, acetylation, etc., functional or structural domains and sites, such as calcium
binding regions, ATP-binding sites, zinc ˇngers, etc., known secondary structural
features as, for example, alpha helix, beta sheet, etc., the quaternary structure of
the protein.
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2.2.3. Derived or secondary databases of nucleotide sequences. FlyBase
or The Berkeley Drosophila Genome Project (http://www.fruit	y.org) gives the
information on the entire genome of the fruit 	y D. melanogaster to a high degree
of completeness and quality [14].

The Eukaryotic Promoter Database (EPD: http://www.epd.isb-sib.ch) is one
such a collection [15]. It contains the sequences and annotations of eukaryotic
promoters recognized by RNA polymerase II, i. e. POL II.

2.2.4. Derived or secondary databases of amino acid sequences: patterns
and signatures. PROSITE is one such a pattern database, which is accessible at
http://www.expasy.ch/prosite [16]. The protein motifs or patterns are encoded as
®regular expressions¯.

BLOCKS database (http://blocks.fhcrc.org/blocks) is automatic process of
identifying patterns [17].

A database containing proˇles built using the hidden Markov models is called
Pfam (http://www.sanger.ac.uk/Software/Pfam) [18].

2.3. Primary Structure Databases
2.3.1. The primary structure databases Å PDB. PDB (http://www.rcsb.org)

stands for Protein Data Bank. In spite of the name, PDB archives the three-
dimensional structures of not only proteins but also all biologically important
molecules, such as nucleic acid fragments, RNA molecules and large peptides
[20]. Structures determined by X-ray crystallography and NMR experimemts
form the large majority of the entries.

2.3.2. Derived or secondary databases of biomolecular structures. The SCOP
database (Structural Classiˇcation Of Proteins: http://scop.mrc-lmb.cam.ac.uk/
scop/) is a manual classiˇcation of protein structures in a hierarchical scheme
with many levels [20]. CATH (http://www.biochem.ucl.ac.uk/bsm/cath) stands
for Class, Architecture, Topology and Homologous superfamily [21].

3. SEQUENCE ALIGNMENT

Bioinformatics provided the ˇrst successful transplants of algorithms from
the realm of computer science into biology. It continues to attract the attention
of mathematicians, who try to devise ever-newer algorithms to match strings of
symbols, in general.

3.1. Sequence Search
3.1.1. Why align sequences? The reason we align sequences is to look

for a common or related pattern amongst them. If we discover such sequence
similarities, we may infer biological similarity between the two sequences. This
could be a structural, functional or evolutionary relationship.

3.1.2. Scoring schemes Ä brie�y. Here we will introduce in Table 1 the
PAM100 scoring scheme [22]. The PAM series of matrices are 20 × 20 matrices
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also known as ®substitution¯ matrices. Each element of the matrix tells the score
we have to use if, in an alignment, we ˇnd the residue pair labeling that element
as matching residues. This matrix is called the substitution matrix s(x, y), where
x and y represent amino acids. We could use sophisticated functions to re	ect
various biological realities, but in the example below we will use a very simple
linear function, which is given as

G = k × n,

where k is a constant set to Ä8 in the examples below, and n is the number of
gaps.

Table 1. The PAM100 substitution matrix

A R N D C Q E G H I L K M F P S T W Y V
A 4 Ä3 Ä1 Ä1 Ä3 Ä2 0 1 Ä3 Ä2 Ä3 Ä3 Ä2 Ä5 1 1 1 Ä7 Ä4 0
R Ä3 7 Ä2 Ä4 Ä5 1 Ä3 Ä5 1 Ä3 Ä5 2 Ä1 Ä6 Ä1 Ä1 Ä3 1 Ä6 Ä4
N Ä1 Ä2 5 3 Ä5 Ä1 1 Ä1 2 Ä3 Ä4 1 Ä4 Ä5 Ä2 1 0 Ä5 Ä2 Ä3
D Ä1 Ä4 3 5 Ä7 0 4 Ä1 Ä1 Ä4 Ä6 Ä1 Ä5 Ä8 Ä3 Ä1 Ä2 Ä9 Ä6 Ä4
C Ä3 Ä5 Ä5 Ä7 9 Ä8 Ä8 Ä5 Ä4 Ä3 Ä8 Ä8 Ä7 Ä7 Ä4 Ä1 Ä4 Ä9 Ä1 Ä3
Q Ä2 1 Ä1 0 Ä8 6 2 Ä3 3 Ä4 Ä2 0 Ä2 Ä7 Ä1 Ä2 Ä2 Ä7 Ä6 Ä3
E 0 Ä3 1 4 Ä8 2 5 Ä1 Ä1 Ä3 Ä5 Ä1 Ä4 Ä8 Ä2 Ä1 Ä2 Ä9 Ä5 Ä3
G 1 Ä5 Ä1 Ä1 Ä5 Ä3 Ä1 5 Ä4 Ä5 Ä6 Ä3 Ä4 Ä6 Ä2 0 Ä2 Ä9 Ä7 Ä3
H Ä3 1 2 Ä1 Ä4 3 Ä1 Ä4 7 Ä4 Ä3 Ä2 Ä4 Ä3 Ä1 Ä2 Ä3 Ä4 Ä1 Ä3
I Ä2 Ä3 Ä3 Ä4 Ä3 Ä4 Ä3 Ä5 Ä4 6 1 Ä3 1 0 Ä4 Ä3 0 Ä7 Ä3 3
L Ä3 Ä5 Ä4 Ä6 Ä8 Ä2 Ä5 Ä6 Ä3 1 6 Ä4 3 0 Ä4 Ä4 Ä3 Ä3 Ä3 0
K Ä3 2 1 Ä1 Ä8 0 Ä1 Ä3 Ä2 Ä3 Ä4 5 0 Ä7 Ä3 Ä1 Ä1 Ä6 Ä6 Ä4
M Ä2 Ä1 Ä4 Ä5 Ä7 Ä2 Ä4 Ä4 Ä4 1 3 0 9 Ä1 Ä4 Ä3 Ä1 Ä6 Ä5 1
F Ä5 Ä6 Ä5 Ä8 Ä7 Ä7 Ä8 Ä6 Ä3 0 0 Ä7 Ä1 8 Ä6 Ä4 Ä5 Ä1 4 Ä3
P 1 Ä1 Ä2 Ä3 Ä4 Ä1 Ä2 Ä2 Ä1 Ä4 Ä4 Ä3 Ä4 Ä6 7 0 Ä1 Ä7 Ä7 Ä3
S 1 Ä1 1 Ä1 Ä1 Ä2 Ä1 0 Ä2 Ä3 Ä4 Ä1 Ä3 Ä4 0 4 2 Ä3 Ä4 Ä2
T 1 Ä3 0 Ä2 Ä4 Ä2 Ä2 Ä2 Ä3 0 Ä3 Ä1 Ä1 Ä5 Ä1 2 5 Ä7 Ä4 0
W Ä7 1 Ä5 Ä9 Ä9 Ä7 Ä9 Ä9 Ä4 Ä7 Ä3 Ä6 Ä6 Ä1 Ä7 Ä3 Ä7 12 Ä2 Ä9
Y Ä4 Ä6 Ä2 Ä6 Ä1 Ä6 Ä5 Ä7 Ä1 Ä3 Ä3 Ä6 Ä5 4 Ä7 Ä4 Ä4 Ä2 9 Ä4
V 0 Ä4 Ä3 Ä4 Ä3 Ä3 Ä3 Ä3 Ä3 3 0 Ä4 1 Ä3 Ä3 Ä2 0 Ä9 Ä4 5

3.2. BLAST. BLAST has assumed almost iconic status, and has become
representative not only of sequence matching and comparisons, but very nearly
of all of bioinformatics [2]. BLAST performs sequence search and comparison
algorithms. BLAST do fast searches through large databases for matches to the
query sequence, and then do more detailed alignments of the query sequences
with the matches. BLAST compares a DNA sequence against DNA database,
translated (in all six frames) version of a DNA sequence against translated (six-
frame) version of the DNA database, translated (six-frame) version of a DNA
sequence against protein database, a protein sequence against translated (six-
frame) version of a DNA database, or a protein sequence against a protein database
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[2]. The BLAST algorithm uses a word-based heuristic to execute an approximate
version of the SmithÄWaterman algorithm known as the ®maximal segment pairs¯
algorithm. BLAST is the most frequently used over the Internet on the BLAST
server (http://www.ncbi.nlm.nih.gov/BLAST/).

PSI-BLAST, stands for Position Speciˇc Iterated BLAST [24]. This algo-
rithm returns more distantly related sequences from the database than BLAST.
PHI-BLAST stands for Pattern-Hit Initiated BLAST [24]. This is a search pro-
gram for which the input is not only a query DNA or protein sequence, but also
a pattern.

4. MULTIPLE SEQUENCE ALIGNMENT

One of the common goals of building multiple sequence alignments is to char-
acterize protein and/or gene families, and identify shared regions of homology.
In general, MSA therefore helps to establish phylogenetic relationships between
sequences, and by extension, between the parent organisms. MSA helps to predict
the secondary and tertiary structures for new sequences, and identify templates for
threading and homology modeling, which are methods for 3D structure prediction.

4.1. Scoring MSA. CLUSTAL is a popular program for MSA that uses
an extensively modiˇed version of the Feng-Doolittle algorithm [25, 26]. The
CLUSTAL algorithm builds up the MSA by using such proˇles wherever ap-
propriate. Every time an alignment is made, a proˇle is generated, and in the
subsequent steps of the MSA construction, the proˇle is used, instead of the
individual sequences. Thus, we have sequenceÄsequence comparisons, sequenceÄ
proˇle comparisons and proˇleÄproˇle comparisons.

4.2. Substitution Matrices
4.2.1. What are substitution matrices? A matrix of values that is used to

score residue replacements or substitutions is called a substitution matrix. Every
element of this matrix then represents the score when the residue corresponding
to the column index replaces the residue corresponding to the row index of the
element.

4.2.2. BLOSUM substitution matrices. BLOSUM stands for BLOcks SUb-
stitution Matrices. In 1992, Henikoff and Henikoff devised the BLOSUM family
of substitution matrices.

4.2.3. Gap penalties. A gap is a consecutive run of spaces in a single
sequence of an alignment. It corresponds to an insertion or deletion of a subse-
quence. Gap penalties are also part of the scoring scheme, and must be chosen
along with the substitution scores.

4.2.4. Phylogenetic trees. Phylogeny refers to the evolutionary relationships
among species. Speciation is the process through which one species becomes
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divided into two or more new species. The pattern of evolutionary relationships
among species is called their phylogeny [27].

5. PROTEIN STRUCTURE PREDICTIONS AND PROTEIN FOLDING

The three-dimensional structure of a molecule is considered as known when
the precise location of each and every atom in it is known. The structure of
a protein may be described at four major levels. The amino acid sequence
of the polypeptide chain is called its primary structure. The next level of the
arrangement of atoms in the protein is called its secondary structure (see Fig. 3).

Fig. 3. a) The α-helix. b) β-strands. Two or more such strands may come together to
form β-sheets in parallel (b) or antiparallel (c) orientation. d) The tertiary structure is
shown as a line diagram
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A helix is a structure with a typical repetition after 3.6 amino acids (with exception
of the 3Ä10 helix, which is tighter and has a repetition after 3 amino acids; it is
found in 3.4% of all helices). The beta sheet can be parallel (the same direction
of the chain) or antiparallel, it may contain two or more chains and it has a typical
length of 5Ä10 amino acids.

Tertiary Structure is the native state, or folded form, of a single protein
chain. Tertiary structure of a protein includes the coordinates of its residues in
three-dimensional space.

Quaternary Structure is the structure of a protein. Some proteins form a large
assembly to function. This form includes the position of the protein subunits with
respect to each other.

5.1. Protein Secondary Structure Prediction. For the purposes of predic-
tion, every residue in a protein chain is always considered to exist in one of three
(or four) secondary structural states. These are: helix, usually represented as H;
beta strand, represented as B or E (for ®extended¯); and random coil, signiˇed
as C. Lower case letters are used when the prediction is not very certain. Often
an additional state is also predicted, namely turn, signiˇed as T. The output of
most secondary structure prediction algorithms and programs is the sequence of
the protein along with one of the above symbols for each residue.

5.1.1. Neural networks in secondary structure prediction Ä PHD. Computer-
based artiˇcial neural networks (ANNs) thus consist of units analogous to neurons
that receive input information from other units and send output signals to others.
The connections are many-to-one and one-to-many [29] (see Fig. 4).

Fig. 4. A schematic diagram of a feed-forward multilayered artiˇcial neural network
(ANN). For clarity, only some of the interconnections between the layers are shown.
But, in fact, every element of a layer is connected to every element of the next layer
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Here we describe one of the most successful and commonly used implemen-
tations, namely PHD. PHD consists of several steps other than the ANN. First,
the input sequence is compared with available sequences in the database and a
multiple sequence alignment with all similar sequences is constructed [30]. In
order to obtain the structure prediction at each residue position, i. e., each column
in this multiple alignment is considered and the following information is extracted
and fed into the ANN: the proˇle of amino acid substitutions; the weights for
each amino acid type compiled for all the columns in the alignment; the numbers
of insertions/deletions (indels) in each column; the position of the window with
respect to the entire sequence; and the amino acid composition and length of the
protein. All this information has been incorporated into the gating function and
the ANN has been constructed and trained with four units in the hidden layer and
three units in the output layer.

5.2. Protein Tertiary Structure Prediction. In general, the techniques can
be divided into three broad categories: homology modeling, threading techniques,
and ab initio structure prediction.

5.2.1. Homology modeling. This is also known as comparative protein
modeling or knowledge based modeling. Broadly the technique consists of four
steps: selecting the template, alignment of target with template, building the
model, and evaluating the model.

The ˇrst step, selecting the template, is the most important one. One may
then be conˇdent that they share a common function and therefore a common
structure. Regions of the protein that normally have divergent structures, such as
loops and turns have similar structures only when the sequence identity is greater
than 50%. Also the number of insertions and/or deletions increases as sequence
identity decreases.

Template selection is facilitated by the availability of a several sequence
and structure databases and efˇcient software for matching the target sequence
with these. Programs like BLAST, FASTA, etc., when used on databases such
as the PDB, CATH, etc., swiftly identify possible templates. A reˇnement of
this technique is the use of multiple sequence alignments. The target sequence
is aligned with families of sequences that are already categorized as possessing
similar structures and functions.

After selecting the template, the second step in the modeling procedure is
to align the target sequence with the template sequence. It is better to perform
multiple sequence alignment using programs such as CLUSTAL, or a variation of
it. All possible templates are ˇrst multiply aligned and proˇle constructed. Other
sequences belonging to the same family can also be added to the proˇle, which is
then aligned to the target. The best possible template is then chosen as the initial
model for the target.

The third step is to build the model, based on the target-template alignment.
Building the model is to use the template to calculate restraints to be applied on

10



the target, such as inter-residue distances and angles, speciˇc disulphide bonds,
stacking interactions between aromatic residues, etc. Thus model building would
consist of ˇrst building the backbone, then placing the side chains, and ˇnally
optimizing the entire structure.

The ˇnal step in the modeling process is evaluation of the model. The
Ramachandran plot is a very good way of checking the geometry of the model
and programs such as PROCHECK are available to carry out these tasks [31] (see
Fig. 5).

Fig. 5. Ramachandran plot showing the two torsion angles Φ and Ψ

Models have been used to identify active sites. A particular use of homology
models is in drug design, where frequently small sequence changes in the certain
crucial regions of the protein lead to loss of effect for the drug. Such models can
be used for detailed studies, for example, of the docking of small ligands or to
deˇne and study antibody epitopes.

5.2.2. Threading. Threading generalizes the technique of homology model-
ing, and aligns the unknown sequence, not to another sequence of known structure,
but to a likely structure built from families of structures with sequences similar to
the target. Threading is therefore also known as ®fold recognition¯ algorithm, or
®inverse folding¯, since we have a library of folds, and are looking to see which
one best ˇts or ®threads¯ the target sequence [32].

5.2.3. Ab initio structure prediction. Ab initio algorithm uses only the
sequence of the protein, and the well-established laws and principles of physics
and chemistry, to determine its three-dimensional structure. From the principles
of physics is it clear that the ˇnal folded form of the protein is its minimum
energy state. In order to be useful in structure prediction, the chief property
that this function should possess is that its global minimum should represent the
native structure of the protein. By global minimum, we mean that for all possible
allowed structures of the protein [33].
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6. MOLECULAR SIMULATIONS ON PROTEIN STRUCTURES

The principles of force ˇelds (also known as molecular mechanics) are based
upon Newtonian mechanics. The basic idea is that bond lengths, valence and
torsional angles have ®natural¯ values depending on the involved atoms and
that molecules try to adjust their geometries to adopt these values as closely as
possible. Additionally, steric and electrostatic interactions, mainly represented by
Van der Waals and Coulomb forces, are included in the so-called potential. These
parameters are optimized to obtain the best of experimental values, as geometries,
conformational energies and spectroscopic properties.

6.1. Force Fields
6.1.1. Energy calculation:

Etotal = Ebond + Eangle + Etorsion + Enon-bonding

Many of the molecular modeling force ˇelds in use today can be interpreted
in terms of a relatively simple four-component picture of intra- and intermolecular
forces within the system [34].

Bond-energy. The energy between two bonded atoms increases, when the
bond is compressed or stretched. The potential is described by an equation based
on Hooke's law for springs [35]

Ebond =
∑

bonds

kb(r − r0)2,

where kb is the force constant, r is the actual bond length and r0 is the equilibrium
length. This quadratic approximation fails as the bond is stretched towards the
point of dissociation.

Angle-energy. Energy increases if the equilibrium bond angles are bent.
Again the approximation is harmonic and uses Hooke's law [35]
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Eangle =
∑

angles

kθ(θ − θ0)2,

where kθ controls the stiffness of the angle; θ is the current bond angle and θo Å
the equilibrium angle. Both, the force and the equilibrium constant have to be
estimated for each triple of atoms.

Torsion energy. Intra-molecular rotations (around torsions or dihedrals) re-
quire energy as well:

Etorsion =
∑

torsions

Vn

2
(1 + cos (nω − γ)).

Vn controls the amplitude of this periodic function, n is the multiplicity, and
the so-called phase factor, shifts the entire curve along the rotation angle axis z.
Again the parameters Vn, n and γ for all combinations of four atoms have to be
determined [35].

Non-bonding energy. The simplest potential for non-bonding interactions
includes two terms, Van der Waals and Coulomb terms [35]

Enon-bonding =
∑

i

∑
j>i

(
Aij

r6
ij

−−Bij

r12
ij

)
︸ ︷︷ ︸

Van derWaals

+
∑

i

∑
j>i

qiqj

rij︸ ︷︷ ︸
Coulomb

.

The Van der Waals term accounts for the attraction and the Coulomb term for
electrostatic interaction. The shown approximation for the Van der Waals energy
is of the LennardÄJones 6Ä12 potential type.

6.1.2. Molecular dynamics. Molecular dynamics employs the so-called united
atom method, where atom groups with nonpolar hydrogen atoms are treated as an
ensemble. The inclusion of the solvent can be done explicitly where the solute
is immersed in a cubic box of solvent molecules. The use of non-rectangular
periodic boundary conditions, stochastic boundaries and ®solvent shell¯ can help
to reduce the number of solvent molecules required and therefore accelerate the
molecular dynamics simulation [36]. When using implicit solvent models in
molecular dynamics simulations, there are two additional effects to bear in mind.
The solvent also in	uences the dynamical behavior of the solute: 1) via random
collisions, and 2) by imposing a frictional drag on the motion of the solute
through the solvent. While explicit solvent calculations include these effects
automatically, it is also possible to incorporate these effects of solvent without
requiring any explicit speciˇc solvent molecules to be present. The Langevin
equation of motion is the starting point for these stochastic dynamics models [37]

Fi(t) = miai(t) = mi
∂2ri(t)

∂t2
, whereas Fi(t) = −∂Etot

∂ri
,
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mi
∂2ri(t)

∂t2
= Fi (ri(t)) − γimi

∂ri(t)
∂t

+ Ri(t).

The ˇrst component is due to interactions between the particle and other particles.
The second force arises from the motion of the particle through the solvent and
is equivalent to the frictional drag on the particle due to the solvent. γi is often
referred to as a friction coefˇcient. The third contribution, the force Ri(t), is due
to random 	uctuations caused by interactions with solvent molecules.

First, the number of non-bonded interactions in a molecule grows as n(n −
1)/2, where n is the number of atoms in the molecule. Second, this non-bonded
interaction term must include the solvation effects, because biomolecules are
usually solvated in water. This solvation has a major in	uence on the electrostatic
forces [38]. The most accurate way for describing this solvation is including the
solvent and counter-ions explicitly. Such an ®explicit solvent¯ approach increases
the number of particles considerably, because a lot of solvent molecules are need
for an accurate description of salvation [39]. General to all these force ˇelds are
simple approaches for bond, angle and torsion potentials, to reduce the calculation
time for the energy function and the gradient. The most prominent of these force
ˇelds is the Cornell force ˇeld of AMBER. One of the most widely used force
ˇelds is AMBER (Assisted Model Building with Energy Reˇnement). It is
suitable for the calculation of two the most important types of macromolecules
in biochemistry, namely peptides and nucleic acids. The current version of the
package, AMBER8.0 is comprised of several modules that fulˇll speciˇc tasks.

There are four major input data to AMBER modules:

1) Cartesian coordinates for each atom in the system;

2) ®Topology¯: connectivity, atom names, atom types, residue names and
charges;

3) Force ˇeld: Parameters for all of the bonds, angles, dihedrals and state
parameters desired;

4) Commands: The user speciˇes the procedural option and state parameters
desired. The modules can be divided into three categories.

Preparatory programs. LEaP is the primary program to create the AMBER
speciˇc topology ˇle prmtopand and the coordinate ˇle prmcrd.

Energy programs. SANDER is the energy minimizer and molecular dy-
namics module, GIBBS is the free energy perturbation program, NMODE is the
normal mode analysis program and ROAR Å a module, where parts of the mole-
cule can be treated quantum mechanically and others with molecular mechanics.

Analysis programs. ANAL is created for analyzing single conformations,
CARNAL Å to examine molecular dynamics simulations. The AMBER force
ˇeld, or better the Cornell force ˇeld, consists of ˇve potential terms
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Etotal =
∑

bonds Kb(r − r0)2+

+
∑

angles Kθ(θ − θ0)2+

+
∑

torsions

Vn

2
(1 + cos (nω − γ)) +

+
∑

i

∑
i<j

[
Aij

r12
ij

− Bij

r6
ij

+
qiqj

εrij

]
+

+
∑

H−bonds

[
Aij

r12
ij

− Cij

r10
ij

]
.

The most critical term, even for biomolecules, are the non-bonded interactions.

7. HOMOLOGY MODELING AND MOLECULAR DYNAMICS
OF CYCLIN-DEPENDENT KINASES

Although protein function is the best determined experimentally [40, 41],
it sometimes can be predicted by matching the unknown sequence of a protein
with proteins of known function [41Ä43]. Sequence-based predictions of function
can be improved by considering three-dimensional (3D) structure of proteins.
This is possible because similar protein sequences tend to have similar functions,
although exceptions also occur [44]. In addition, because evolution tends to
conserve function, which depends more directly on structure than on sequence,
structure is more conserved in evolution than sequence and the net result is that
patterns in space are frequently more recognizable than patterns in sequence [45].
Among all current theoretical approaches, modeling is the only method that can
reliably generate a 3D model of a protein (target) from its amino acid sequence
[46, 47]. The fraction of the known protein sequences that have at least one
segment related to one or more known structures varies with a genome, currently
ranging from 20 to 50% [48Ä55]. To gain a three-dimensional fabrication for the
unknown sequence one must have at least one experimentally solved 3D structure
(template) that has a signiˇcant amino acid sequence similarity to the target
sequence. The idea of an easy-to-use, automated modeling facility with integrated
expert knowledge was ˇrst implemented 50 years ago by Peitsch et al. [56Ä58].
The prediction process consists of search for structural homologs, targetÄtemplate
alignment, model building, and model assessment and structure validation.

The cyclin-dependent kinases (CDKs) belong to the serine/threonine-speciˇc
protein kinases subfamily. The enzymes catalyze the transfer of γ-phosphate in
adenosine triphosphate (ATP) to a protein substrate. CDKs are crucial regulators
in timing and coordination of eukaryotic cell cycle events. Transient activation of
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these kinases at speciˇc cell stages is believed to trigger the principal cell cycle
transitions, including the DNA replication and the entry into mitosis. In yeast,
transition events are controlled by a single CDK (CDK1/CDC28 in Saccharomyces
cerevisiae [88]) and several cyclins, while in human, cell cycle progression is
governed by several CDKs and cyclins. In particular, CDK4-cyclin D is required
to pass through G1, CDK2-cyclin E for the G1 to S phase transition, CDK2-cyclin
A to progress through the S phase and CDC2-cyclin B to reach the M phase. Cell
cycle-dependent oscillations in CDK activity are induced by complex mechanisms
that include binding to positive regulatory subunits (cyclins) and phosphorylation
at positive and negative regulatory sites. After cyclin binding occurs, a separate
protein kinase, known as the CDK-activating kinase, phosphorylates the CDK
catalytic subunit on a threonine residue (T160 in human CDK2 and T169 in yeast
CDC28) in T-loop. Under some circumstances, CDK2 can also be negatively
regulated by phosphorylation on Y15 and T14 in G-loop or binding to inhibitor.

The CDK2 and CDC28 proteins have been extensively studied. The central
role that CDKs play in cell division timing, in cell cycle regulation and repair
together with the high incidence of genetic alteration of CDKs or deregulation
of CDK inhibitors observed in several cancers, made CDC28 a very attractive
model for structural and functional CDK studies. Crystallographic studies of
several eukaryotic protein kinases have shown that they all share the same fold
and tertiary structure. The crystal structure of the human CDK2 [89, 90] has been
served as a model for the catalytic core of other CDKs, including CDC28 [91,
92]. But correctness of such approximation is under the question.

7.1. Materials and Methods
Search for structural homolog. In this study the three-dimensional struc-

ture for the yeast cyclin-dependent kinase CDC28 (Uniprot accession number:
P00546) is modeled using the MODELLER program (see Fig. 7). The primary
structure for the yeast CDC28 has 298 amino acids and can be obtained from
SWISS PROT database (http://cn.expasy.org/sprot/) server. The modeling step
can be carried out by searching the yeast CDC28 sequence against the data-
bases of well-deˇned template sequences derived from Protein Data Bank entry
(http://www.rcsb.org/pdb/)

The MODELLER program calculates the three-dimensional structure for the
query sequence by searching for the related matching structures using satisfaction
of spatial restraints [59] (see Fig. 6). The spatial restraints include: (i) homology-
derived restraints on the three-dimensional geometrical information including the
distances and dihedral angles in the unknown query sequence, obtained from its
alignment with the template structures [59]; (ii) stereochemical restraints such
as bond length and bond angle preferences, obtained from the CHARMM-22
molecular mechanics force ˇeld [60]; (iii) statistical preferences for dihedral an-
gles and non-bonded interatomic distances, obtained from a representative set of
known protein structures [61]; and (iv) optional manually curate restraints, such as
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Fig. 6. Flowchart for homology modeling of yeast CDC28

those from NMR spectroscopy, rules of secondary structure packing, cross-linking
experiments, 	uorescence spectroscopy, image reconstruction from electron mi-
croscopy, site-directed mutagenesis and intuition. The spatial restraints, expressed
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as probability density functions, are combined into an objective function that is
optimized by a combination of conjugate gradients and molecular dynamics with
simulated annealing.

The MODELLER searches the templates used for model building, which is
a representative of multiple structure alignments can be obtained from DBALI
[62]. Sequence proˇles are deˇned as the sequence position Å speciˇc scoring
matrix. This scoring matirx is designed for both the yeast CDC28 protein (target)
sequences and the 1QMZ A sequence (template) by searching in contrast with the
Swiss-Prot/TrEMBL database of sequences. The BUILD PROFILE module of the
MODELLER executes this sequence proˇle construction. The BUILD PROFILE
command has many options. Unrecognized residues are ignored. In this study
the structural homolog search is set to use the BLOSUM62 similarity matrix
inbuilt in the MODELLER program itself. Consequently, the parameters for the
gap penalties are set to the appropriate values for the BLOSUM62 matrix. A
match is reported if its exponential value falls below the threshold set. Lower
exponential value thresholds are more stringent, and report fewer matches. Many
hits were displayed on the basis of the sequence identity and exponential value
between the protein sequences. The query sequence found 64.11% identity and
value E = 0 with PDB entry: 1QMZ (phosphorylated CDK2-cyclin A-substrate
peptide complex) of the human species by running the MODELLER program
(Fig. 7). The matching part of the PDB entry: 1QMZ chain-A derived from the
signiˇcant hit was used as the template structure for the model building.

Fig. 7. Sequence identity and exponential value between the protein sequences. The query
sequence found 64.11% identity and value E = 0 with PDB entry: 1QMZ (phosphorylated
CDK2-cyclin A-substrate peptide complex) of the human
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TargetÄtemplate alignment. The alignments between the yeast CDC28 and
1QMZ A is executed by the SALIGN module of the MODELLER, which relies on
a multiple structure alignment method similar to that in the COMPARER program
[63]. Target sequence and template structure matches are determined by aligning
the target sequence proˇle against the template proˇles, using local dynamic
programming in the SALIGN module which is similar to that of PSI-BLAST
[64] and COMPASS [65]. This alignment tends to be more accurate than the
PSI-BLAST alignment because (i) it engages all the sequences and structures that
are qualiˇed known to be matching with the target sequence, (ii) it incorporates
a structure-dependent gap penalty function to position gaps in a group of related
structures, and (iii) it ˇnds the matching part of the complete structural domains
as obtained from the known template structures.

In order to analyze the close relation between the target and template protein
sequences, we carry out the comparative modeling procedure. Comparative mod-
eling requires the information on targetÄtemplate alignment. Now the matching
parts of the template structure and the unknown sequence were realigned by the
use of the ALIGN-2D command of the MODELLER program [45]. This com-
mand executes a global dynamic programming method for comparison between
the targetÄtemplate sequences and also relies on the observation that evolution
tends to place residue insertions and deletions in the regions that are solvent
exposed, curved, outside secondary structure segments, and between two Cα po-
sitions close in space [66]. Gaps are included between the targetÄtemplate align-
ment, in order to get maximum correspondence between the protein sequences.
Gaps in these regions of high correspondence are favored by variable gap penalty
function that is executed from the template structure alone. In principle, the errors
between the targetÄtemplate alignment is greatly minimized almost by one-third
relative to the present day sequence alignment methods (Fig. 8).

Models are calculated for each of the sequence-structure matches using the
MODELLER program [59]. Nevertheless, there is clearly a need for even more
accurate sequence-structure alignments and for using multiple template structures,
so that more accurate models are obtained [26]. The resulting models are then
evaluated by a composite model quality criterion that depends on the compactness
of a model, the sequence identity of the sequence-structure match and statistical
energy Z-scores [67].

Model building. Here we are discussing about the generation of the three-
dimensional structure for the unknown yeast CDC28 protein sequence (target) with
PDB: 1QMZ A (template) as its suitable structural homolog. There are a few steps
in construction of the three-dimensional model. MODELLER builds the model
for the unknown sequence using spatial restraints. Initially, spatial restraints pa-
rameters including the distance and dihedral angles on the yeast CDC28 sequence
is obtained by the alignment with the 1QMZ A (template) structure. Next, the
alignments between the yeast CDC28 sequence vs. 1QMZ A is searched in the
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Fig. 8. TargetÄtemplate alignment. ®∗¯ shows the matching between the residues and ®Ä¯
shows the gaps

database of alignments using the AUTO MODEL module of the MODELLER
program. The output of this module displays many restraints parameters between
the targetÄtemplate alignments including the distances, main chain dihedral an-
gles, side chain dihedral angles, disulphide dihedral angle, NMR distant restraints
and non-bonded restraints between these two proteins [59]. These relationships
are expressed as conditional probability density functions (pdf's) and can be used
directly as spatial restraints. The spatial restraints and the CHARMM22 force
ˇeld terms enforcing proper stereochemistry [68] are combined into an objective
function. These template derived restraints parameters are combined with the
most of the CHARMM energy terms [68, 69] to obtain a full objective function.
Then the model with the lowest value of the objective function is selected and
assessed using the MODEL EVALUATE module of the MODELLER program.

Loop modeling. It is expected that target sequences often have inserted/dele-
ted (indels) residues with respect to the chosen template structures or some dis-
tinguishable regions where there is a high degree of variation in the structural
information between these two proteins. These regions are generally addressed
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as loops. Loops often have to play a leading role in describing the functional
speciˇcity, forming the active and binding sites. The MODELLER algorithm for
the construction of the loops provided the use of the information based on spatial
restraints. To simulate comparative modeling problems, the loop modeling proce-
dure was evaluated by predicting loops of known structure in only approximately
correct environments, which were obtained by distorting the anchor regions, cor-
responding to the three residues at either end of the loop, and all the atoms within
50 
A of the native loop conformation for up to 2Ä3 
A by molecular dynamics
simulations [59].

Side chain modeling. Geometry of representing a side chain conformation
is determined based on the steric or energy considerations and from similar
structures, i. e., from the suitable templates [70, 71]. The construction of the
disulphide bridges for the query sequence is built from disulphide bridges in
existing protein structures [72, 73] and from relevant disulˇde bridges in closely
related structures with respect to the unknown sequence [74]. The disulphide
bridges for yeast CDC28 are built with reference to the experimental structure.

Selecting the appropriate model for the yeast CDC28. A three-dimensional
model was generated by a GA341 score (DOPE energy, see Fig. 9) that is the para-
meters including Z-score (Zs) calculated with a statistical potential function [75],

Fig. 9. Graph plot between the DOPE energy and residues for both 1QMZ and yeast
CDC28. The overlapping structure shows the A chain, i. e., the kinase part of 1QMZ is
correlated with modeled CDC28 showing high homology
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targetÄtemplate sequence identity (Si) and a measure of structural compactness
(Sc) [75, 66]. The GA341 score is deˇned as

GA341 = 1 −−[cos (Si)](Si+Sc)/exp (Zs).

Sequence identity is deˇned as the fragments of positions with identical residues
in the yeast CDC28 (target) Ä 1QMZ A (template) alignment. Structural com-
pactness is the ratio between the sum of the standard volumes of the amino acid
residues in the protein and the volume of the sphere with the diameter equal to
the largest dimension of the model.

The Z-score is calculated for the combined statistical potential energy of
the generated model, using the mean and standard deviations of the statistical
potential energy of random sequences with the same composition and structure
as the model [75]. Finally, from the set of ˇve generated models for the yeast
CDC28 sequence the model with lowest energy is selected (Figs. 9 and 10).

Fig. 10. Superposition of the target structure (PDB: 1QMZ A Chain) and the modeled
template structure (yeast kinase CDC28). ATP complex is represented by ball models.
Magnesium ion is shown as large sphere

Assessment of the model. This is necessary to allow the MODELLER to
calculate correctly the energy, and additionally allows for the possibility that the
PDB ˇle has atoms in a non-standard order, or has different subsets of atoms
(e. g., all atoms including hydrogen, while the MODELLER uses only heavy
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atoms, or vice versa). The ˇnal correctness of the artiˇcially generated three-
dimensional model for the yeast CDC28 was determined by comparison with
the corresponding to the high similarity structure 1QMZ A extracted from the
Protein Data Bank (PDB) [76]. The root mean square deviation (RMSD) between
the corresponding Cα atoms of the artiˇcially generated three-dimensional model
and the native structure, i. e., 1QMZ A were calculated upon rigid body least
squares superposition of all the Cα toms. Next, the percentage of high matching
regions between the yeast CDC28 and the 1QMZ A was deˇned in terms of the
percentage of the Cα atoms in the model that are located within the proximity of
5 
A of the corresponding atoms in the superposed structure (Figs. 11 and 12). In
order to enhance the best model the MODELLER program ˇnally incorporates
corresponding alignment through a comparison with the structure-based alignment
produced by the CE program [77]. The percentage of high matching positions was
deˇned as the percentage of positions in the structure-based alignment between

Fig. 11. Ramachandran plot for yeast CDC28. Most favoured regions = 236 (number
of residues), 91.5% (percentage). Additional allowed regions = 19 (number of residues),
7.4% (percentage). Generously allowed regions = 1 (number of residues), 0.4% (percent-
age). Disallowed regions = 2 (number of residues), 0.8% (percentage). Non-glycine and
non-proline residues = 258, 100.0% (percentage). End-residues (excl. Gly and Pro) = 2.
Glycine residues = 21. Proline residues = 17. Total number of residues = 298
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Fig. 12. Ramachandran plot for pdb 1QMZ. Most favoured regions = 906 (number of
residues), 91.1% (percentage). Additional allowed regions = 81 (number of residues),
8.1% (percentage). Generously allowed regions = 3 (number of residues), 0.3% (percent-
age). Disallowed regions = 4 (number of residues), 0.4% (percentage). Non-glycine and
non-proline residues = 994, 100.0% (percentage). End-residues (excl. Gly and Pro) =
12. Glycine residues = 50. Proline residues = 68. Total number of residues = 1124

the yeast CDC28 and 1QMZ A structure. The residues that are matching with
the gap positions are neglected in this operation.

Structure validation. Validation refers to the procedure for assessing the
quality of deposited atomic models (structure validation) and for assessing how
well these models ˇt the experimental data. Validation parameters include the
covalent bond distances and angles, stereochemical validation, atom nomencla-
ture are taken care. Moreover, all the distances between the atoms including the
water oxygen atoms and all polar atoms (oxygen and nitrogen) of the macromole-
cules, ligands and solvent are calculated. The results are displayed along with the
PROCHECK server (http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/) and Ra-
machandran plot.

Ramachandran plot displays the phi (Φ) and psi (Ψ) backbone conformational
angles for each residue in a protein. The phi (Φ) angle is the angle of right-hand
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rotation around N-Cα bond and the psi (Ψ) angle is the angle of right-hand
rotation around CαÄC bond. Φ and Ψ angles are also used in the classiˇcation
of some secondary structure elements such as alpha helix and beta turns.

In a Ramachandran plot, the core or allowed regions indicates the preferred
areas for Ψ/Φ angle pairs for all residues in a protein. If the determination
of protein structure is reliable, most pairs will be in the favored regions of the
plot and only a few will appear in the ®disallowed¯ regions. The score for the
crystal structure 1QMZ is 91.1% (Fig. 12). The score of 91.5% for yeast CDC28
(Fig. 11) lays in the allowed region and conˇrms good homology prediction.

7.2. Molecular Dynamics Simulations. For the MD simulations, the SANDER
modules of the program package AMBER8.0 [78] and of the modiˇed version of
AMBER7.0 for a special-purpose computer MDGRAPE-2 [79] were used. The
starting geometries for the simulations were prepared using X-ray structures from
the Brookhaven Protein Data Bank (http://www.pdb.org). The all-atom force
ˇeld [80] was used in the MD simulations. A system was solvated with TIP3P
molecules [81], generated in a spherical (non-periodic) water bath. The system
temperature was kept constant by the Berendsen algorithm with 0.2 ps coupling
time [82]. Only bond lengths involving hydrogen atoms were constrained using
the SHAKE method [83]. The integration time step in the MD simulations was
1 fs. The simulation procedures were the same in all calculations [84]. Firstly, a
potential energy minimization was performed for each system on an initial state.
Then, the MD simulation was performed on the energy-minimized states. The
temperatures of the considered systems were gradually heated to 300 K and then
kept at 300 K for the next 2 million time steps [85]. The trajectories at 300 K
for 2 ns were compared and studied in detail. The simulation data and images
of simulated proteins results were analyzed by RasMol [86] and MOLMOL [87]
packages. Complete data 	ow in AMBER is shown in Fig. 13.

Root mean square deviation. A very popular quantity used to express the
structural similarity is the root mean square distance (RMSD) calculated between
equivalent atoms in two structures, deˇned as

rmsd =

√∑
i d2

i

n
,

where d is the distance between each of the n pairs of equivalent atoms in two
optimally superposed structures. The RMSD is 0 for identical structures, and
its value increases as the two structures become more different. RMSD values
are considered as reliable indicators of variability when applied to very similar
proteins, like alternative conformations of the same proteins. In other words,
RMSD is a good indicator for structural identity, but not so good for structural
divergence. The RMS deviation of the MD structures from the crystal 1QMZ
and the modeled structure of the yeast cyclin-dependent kinase CDC28 vs. time
is calculated.
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Fig. 13. Flowchart of data 	ow in the AMBER program
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This relatively small deviation indicates that the dynamic structure of the
1QMZ and CDC28 remained in the realm of the crystal geometry during the
course of the simulation and is further inherent stability of the model. The
main discrepancy is found in the β regions. During the MD simulation the whole
structure relaxed from its initial model structure with increasing RMSD and ˇnally
RMSD remained stable around an average of 2.0 
A over a considerable period
of the latter part of the trajectory. This indicates that the structure has reached
a stable average one. Many of the features are common for both plots and for
much structures the values are well matched (Fig. 14).

Fig. 14. Averaged RMSD (root mean square deviations) for crystal structure 1QMZ and
the modeled structure of the yeast cyclin-dependent kinase CDC2 8 vs. time is calculated

Root mean square �uctuation. Root Mean Square Fluctuation (RMSF) at
time t of atoms in a molecule with respect to the average structure is deˇned as

ρ2
i =

〈
Δr2

i

〉
=

1
N

N∑
k=1

Δr2
i ,

where Δri Å atomic displacement from average position, N Å total number of
structures.

By observing the graph of RMSF for the 1QMZ crystal structure, it is
shown that the sharp peaks arise due to the presence of beta sheets. Dur-
ing the course of MD trajectory these beta strands are prone to have more
	uctuations than the alpha helices. These beta strands are more 	exible due
to the presence of hydrogen bonds. The regions corresponding to the residues
Phe5 to Glu13 (FQKVEKIGE), Val18 to Asn24 (VVYKARN), Val30 to Lys34
(VVALK), Leu67 to Ile71 (LLDVI), Tyr78 to Glu82 (YLVFE), Val124 to Leu125,
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Fig. 15. Various behavior of Root Mean Square Fluctuation (RMSF) for: a) 15 ps,
b) 1 ns and c) 2 ns for CDK2 and CDC28, respectively

Fig. 16. Summary of various behavior of Root Mean Square Fluctuation (RMSF) for
CDK2 (a) and CDC28 (b), respectively
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Leu134 to Asn137 (LLIN), Ala141 to Leu144 (AIKL), Arg151 to Ala152 (RA)
are the regions of beta strands which showed 	uctuation during the trajectory.
Similarly in the structure of modeled CDC28 yeast the residues are between
the Tyr8 to Glu16 (YKRLEKVGE), Val21 to Asp27 (VVYKALD), Val36 to
Ile42 (VVALKKI), Leu73 to Val77 (LYDIV), Leu84 to Glu89 (LYLVFE),
Leu93 to Asp94 (LD), Ile132 to Leu133, Leu143 to Asn145 (LIN), Asn149 to
Lys151 (NLK), Arg159 to Ala160 (RA) (Figs. 15 and 16).

Dynamic cross correlation map. The dynamic characteristics of the protein
in MD simulation can be analyzed to yield information about correlated motion.
Correlated motions can occur among proximal residues composing well-deˇned
domain regions of secondary structure and also regions between the domains Å
domain communication. The extent of the correlated motion is indicated by
magnitude of the corresponding correlation coefˇcient. The cross correlation
coefˇcient for the displacement of any two atoms i and j is given by

ΔCij = 〈ΔriΔrj〉/
√〈Δr2

i 〉〈Δr2
j 〉,

where Δri is the displacement of the mean position of the ith atom. The elements
of Cij can be collected as in matrix form and displayed as three-dimensional cross
correlation matrix (DCCM) map. The Cij are computed as averages over the
successive backbone of N, Cα and C atoms to give one entry per pair of amino
acid residues. There is time scale implicit in Cij as well. The intensity of
the shading is proportional to the magnitude of the coefˇcient. The positive
correlations are given in the upper triangle and the negative correlations are given
in the lower triangle. Regions of regular secondary structures are expected to
move in concert.

The DCCM map for each structure of 1QMZ and CDC28 was plotted over the
time (15 ps, 1 ns, 2 ns), respectively (Figs. 17 and 18). The major cross peaks are
found in the DCCM map in the areas of residues belonging to 1QMZ between
5Ä13, 18Ä24, 94Ä102, 153Ä164, 198Ä208, 233Ä255 and 281Ä295 from the in-

Fig. 17. Dynamic cross correlation map (DCCM) for 1QMZ structure for t = 0 ns, t =
1 ns and t = 2 ns. The black circles are the regions of β-sheets showing cross peaks
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Fig. 18. Dynamic cross correlation map (DCCM) for yeast CDC28 structure for t = 0 ns,
t = 1 ns and t = 2 ns. The black circles are the regions of β-sheets showing cross peaks

teraction of non-contiguous residues which fold to form the parallel β-sheets.
Similarly the major cross peaks were also observed in CDC28 model of the
residues between 21Ä27, 36Ä42, 103Ä110, 130Ä143, 208Ä217 and 242Ä256.

The CDK2/ATP and CDC28/ATP structural conformations. First, the in-
active complex CDK2/ATP was analyzed. Analysis of the CDK2/ATP binary
complex [89] indicates that ATP localizes in the cleft between the two lobes.
Two loops, G-loop in small lobe and T-loop in large lobe, can be used to es-
timate a cleft width, which is very important for localization of ATP. G16 and
T160 can serve as markers of G-loop and T-loop, respectively.

Simulated CDK2 structure (Figs. 19 and 20) was compared to the CDC28
after conformational change evaluations. The resulting wild-type CDK2 and
CDC28 structural conformations are shown. The picture displays the initial (left)

Fig. 19. The initial (a) and ˇnal (b) (2-ns state) structures of the CDK2/ATP complex.
The ATP molecule and residue 16 of the G-loop are represented by ball models
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Fig. 20. The initial (a) and ˇnal (b) (2-ns state) structures of the CDC28/ATP. The ATP
molecule and residue 16 of the G-loop are represented by ball models

and the ˇnal (right) 2-ns states. Positional changes between the ATP, residue
G16 in G-loop and T160 in T-loop (the latter covers a left bottom α-helix) are
shown in Fig. 21, a, b. Comparing initial and ˇnal states of CDK2 and CDC28
structures, small difference was visually observed. So, for the protein structures
the original state is kept in a relatively stable conformation.

Fig. 21. a) The relative positions of the T160, ATP and res16 (an ®activation triangle¯)
are shown for CDK2. b) The relative positions of the T169, ATP and res16 (an ®activation
triangle¯) are shown for CDC28. The ATP molecule, residues T160 and 16 are represented
by ball models
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An activation triangle around the ATP. The T160, ATP and G16 positions
(an ®activation triangle¯) of CDK2 structure in the ˇnal (2-ns) state are repre-
sented in Figs. 22 and 23 aiming to estimate (although indirectly) the possibility
of the hydrogen bond formation in the ATP and G-loop region. Similarly the

Fig. 22. The time dependences of the res16-ATP distance are shown for the CDK2 and
CDC28, respectively, in accordance to the ®activation triangle¯

Fig. 23. The time dependences of the T160-ATP, T169-ATP distances are shown for the
CDK2 and CDC28, respectively, in accordance to the ®activation triangle¯
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T169, ATP and G20 positions (an ®activation triangle¯) of CDC28 structure in
the ˇnal (2-ns) state are represented in Figs. 19, b and 20, b, respectively. The
ATP-res16 and ATP-res20 distances for the CDK2 and CDC28 structures, re-
spectively, show a completely different behaviors (Fig. 24). The ATP-res16 and
ATP-res20 distances in the CDK2 and CDC28 structures, respectively, evidently
lay within ∼ 5.0 
A and ∼ 5.5 
A during the all 2-ns dynamical changes. Thus,
all hydrogen bond networks in the ATP-res20 for the binding site vary between
the CDK2 and CDC28 structures.

Fig. 24. The time dependences of the T160-res16, T169-res16 distances are shown for the
CDK2 and CDC28, respectively, in accordance to the ®activation triangle¯

The amino acid residues around phosphorylated regulatory site. The
CDK2, CDC28/ATP' dynamical peculiarities in the neighbor of phosphoryla-
tion site (T160 in CDK2, T169 in CDC28) were analyzed in detail. They are
showed by snapshots and animation movies at all the amino acid positions in the
T-loop. From the ®activation triangle¯ described above, the T160 (T169)-res16
distances for the CDK2-G16/ATP and CDC28-G20/ATP were estimated. The
T160-res20 distance in the CDK2-G20/ATP structure is signiˇcantly larger than
T169-res16 in the wild-type CDC28-G16/ATP one (Fig. 24).

8. DISCUSSION

Only sequences and structures are among the several different types of data
required in the practice of modern molecular biology. The primary nucleotide
sequence database is the trio GenBank/EMBL/DDBJ. The primary proteins se-
quence database is the duo SWISS-PROT/PIR. Derived or secondary databases
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may be divided into specialized subcollections of data and collections of informa-
tion gathered by analysis of the primary databases. Patterns, signatures or motifs
of protein sequences are to be found in databases such as PROSITE, PRINTS,
BLOCKS, Pfam, etc., where they are stored as alignments, regular expressions, the
hidden Markov models, consensus sequences or proˇles. The primary structure
database is the PDB. This contains all the experimentally determined structures
of biological macromolecules, i. e., proteins, nucleic acids, and their complexes.
Derived databases of protein motifs and patterns include SCOP and CATH. These
databases cluster protein structures together with an increasingly distant hierarchy
of structural similarity. Such databases are immensely useful in identifying the
function of a newly sequenced protein.

The NeeedlemanÄWunsch algorithm is a global alignment method, while
the SmithÄWaterman method is a local alignment one. BLAST is most fre-
quently used over the Internet on the BLAST server (http://www.ncbi.nlm.nih.gov/
BLAST/). CLUSTAL is a popular program for multiple sequence alignment that
uses an extensively modiˇed version of the FengÄDoolittle algorithm. A matrix
of values that is used to score residue replacements or substitutions is called a
substitution matrix. The two most popular statistically derived matrices are the
PAM and BLOSUM matrices. PAM (Percentage Accepted Mutation) matrices
are based on a Markovian model of evolutionary change in the sequences.

PHD is currently one of the most successful secondary structure prediction
programs. It uses artiˇcial neural networks to carry out the predictions. Meth-
ods to predict the tertiary structure of proteins may be divided into three broad
categories Å homology modeling, threading and ab initio methods. Homology
modeling (MODELLER) is used when the unknown sequence, called the target,
bears a sufˇciently strong sequence similarity with another sequence, called the
template, for which the structure is already known. Threading generalizes the
technique of homology modeling, and aligns the unknown sequence to a likely
structure, which can be built from families of structures with sequences similar
to the target. An ab initio algorithm uses only the sequence of the protein, and
the well-established laws and principles of physics and chemistry, to determine
its three-dimensional structure.

To reach a deeper understanding of their function it is necessary to perform
various geometrical calculations, such as bond lengths and angles, torsion angles,
plane calculations, etc. The Ramachandran plot is a very good way of checking
the geometry of the model and programs such as PROCHECK are available to
carry out these tasks. Dynamic Cross Correlation Map (DCCM) computed as
averages over the successive backbone of N, Cα and C atoms to give one entry
per pair of amino acid residues. There is time scale implicit in Cij as well. The
intensity of the shading is proportional to the magnitude of the coefˇcient. The
positive correlations are given in the upper triangle and the negative correlations
are given in the lower triangle.
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RMSD and RMSF values are considered as reliable indicators of variability
when applied to very similar proteins, like alternative conformations of the same
protein. Regions known to be of greater physiological importance including the
structural conformations of protein kinases; the activation loops around ATPs; the
amino acid residues inside the phosphorylated regulatory sites were described.

9. CONCLUSION

Information retrieval is important in various biomedical research ˇelds. This
work covers the theoretical background and the state of the art and future trends
in biomedical information retrieval. Techniques for literature searches, genomic
information retrieval and database searches are discussed. Literature search tech-
niques cover name entity extraction, document indexing, document clustering
and event extraction. Genomic information retrieval techniques are based on
sequence alignment algorithms. This paper also brie	y describes widely used
biological databases and discusses the issues related to the information retrieval
from these databases. Information retrieval technology has been used to gather
information from biological sequence data, as well as from functional and struc-
tural descriptions of biomaterials. To handle the complex nature of the biological
data, intelligent data analysis approaches such as sequence alignment, document
clustering, and terminology systems, are used to facilitate the retrieval of seman-
tically related information that would not be retrieved through keyword-based
searches. Current information retrieval techniques are enabling the retrieval of
information from digital libraries. Advances in computational biology and in-
formation retrieval are enabling the prediction of homologous gene or proteins
whose function can be similar to the input query sequence, and then attempt to
determine the function of this sequence based on the annotation of the homol-
ogous sequences and molecular dynamics calculations. Detailed analysis of the
data obtained from structure prediction methods and molecular dynamics calcula-
tions conˇrms high degree of similarity between yeast protein kinase CDC28 and
human kinase CDK2. Through this InSilico approach one can understand the con-
formation behavior [91, 92] between the important conserved regions including
the G- and T-loops of kinases, ATPÄMg2+ ion complex and substrate component
in correlation with the physiological properties between these structures.
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