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Pseudospin Symmetry and Structure of Nuclei with Z � 100

In the framework of the Relativistic Mean Field approach (RMF) a pseudospin
dependence of the residual forces in nuclei is considered. It is shown that this
dependence is relatively weak. As a consequence, a pseudospin dependence of
the particleÄcore coupling is weak as well. This leads to a small splitting of the
pseudospin doublets produced by a vector coupling of an odd particle pseudospin
and a pseudo-orbital momentum of the core. Some possibilities for experimental
investigations of the manifestations of the pseudospin symmetry in the spectra of
odd nuclei with Z � 100 are indicated.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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INTRODUCTION

The pseudospin symmetry [1Ä3] is known as approximate symmetry of the
nuclear mean ˇeld. This symmetry is manifested in the nuclear excitation spectra
by the presence of quasi-degenerate doublets. At the same time, the existence of
this symmetry is strongly related to the strength of the spinÄorbit interaction term
of the nuclear mean ˇeld, and therefore, to the next proton magic number. The
strong spinÄorbit interaction in nuclei and the presence of approximate pseudospin
symmetry in a nuclear mean ˇeld are two sides of the same medal.

It is well known that the mean ˇeld in nuclear theory plays a role of a
basic theory for several more speciˇc advanced theories. These theories can be
built upon introducing the single-particle mean ˇeld basis. Therefore, it is very
important for the whole ˇeld of nuclear structure physics to examine consequences
of the pseudospin symmetry, although this symmetry is approximate.

Any dynamical symmetry implies the existence of a characteristic multiplet
structure. These multiplets are characterized by a magnitude of the multiplet
splitting. The characteristic magnitude of a splitting of the pseudospin doublets
in spherical nuclei is of the order of 0.1�ω0, where �ω0 is a frequency of the
single particle oscillator.

However, this splitting demonstrates a dependence on a ratio between the
numbers of protons and neutrons and it is very small in some nuclei.

Single-particle pseudospin doublets in deformed nuclei are characterized by a
projection of the pseudo-orbital momentum on the symmetry axis. The splittings
of these doublets are several times smaller than in spherical nuclei. The doublet
structure is also observed in the rotational bands of odd deformed nuclei based
on the pseudospin singlets, i. e., on the states with the projection of the pseudo-
orbital momentum on the symmetry axis equal to zero. The doublet structure
in these bands arises as a result of coupling of an odd particle pseudospin and
a total pseudo-orbital momentum. This pseudo-orbital momentum is a sum of a
core rotational momentum and a pseudo-orbital momentum of an odd particle. A
splitting of these doublets is quite small and equals several tens of keV.

These facts mean that the term describing a particleÄcore coupling in a phe-
nomenological nuclear Hamiltonian is pseudospin independent with good accu-
racy. For this reason, the spectra of odd deformed nuclei and especially rotational
bands based on the pseudospin singlets are the most interesting objects to look
for pseudospin symmetry manifestations.
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The calculations performed in [10] have shown that the goodness of the
pseudospin symmetry improves when a nucleon binding energy decreases and a
pseudo-orbital momentum decreases. Therefore, weakly bound exotic nuclei are
the most exciting ones to search for the pseudospin symmetry manifestation.

It is the aim of the present paper to investigate a pseudospin dependence of
the particleÄcore coupling and indicate some experimental possibilities to study
the pseudospin symmetry manifestation in the spectra of odd superheavy nuclei.

1. PSEUDOSPIN SYMMETRY ORIGIN

A strong spinÄorbit interaction introduced into nuclear physics in 1949 [4]
was an unusual idea at that moment as the majority of nuclear physicists believed
in the LÄS coupling scheme. However, strong spinÄorbit interaction was neces-
sary to reproduce the known magic numbers. The simplest Hamiltonian which
can describe the nuclear mean ˇeld is the Hamiltonian with a harmonic oscillator
potential, spinÄorbit and orbitÄorbit terms

h = hosc + νlsl · s + νll

(
l2 − 〈l2〉shell

)
. (1)

The value of νls is such that a splitting generated by the l · s term in (1) is large.
Twenty years later [1, 2] quasidegeneracy in the single particle level scheme

was observed. Namely, single-particle states with j1 = l1 + 1/2 and
j2 = l2(= l1 + 2) − 1/2 = j1 + 1 lie very close in energy. They are labeled as
pseudospin doublets with the following quantum numbers:

Ñ = N − 1,

l̃ =
{

l1 + 1, j1 = l1 + 1/2
l2 − 1, j2 = l2 − 1/2,

s̃ = 1/2, (2)

where tilde marks the pseudo-oscillator quantum numbers. Examples of pseudo-
spin doublets are: 3s1/2 and 2d3/2 (l̃ = 1, Ñ = 3), 1g7/2 and 2d5/2(l̃ = 3, Ñ =
3), 1h9/2 and 2f7/2(l̃ = 4, Ñ = 4). An example of a pseudospin singlet is

3p1/2(l̃ = 0, Ñ = 4).
In terms of the pseudospinÄorbit operators the Hamiltonian (1) takes the

form [5]

h = h̃osc + (4νll − νls)̃l · s̃ + νll

(̃
l2 − 〈̃l2〉shell

)
+ const. (3)

It is known empirically that

4νll − νls ≈ 0. (4)
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As a result, pseudospinÄorbit interaction is several times weaker than usual spinÄ
orbit interaction.

The physical grounds for appearance of the pseudospin symmetry in nuclei
was clariˇed in the works of J. N. Ginocchio [3]. It was shown that this problem
should be considered in the framework of the Relativistic Mean Field Theory.
The Lorentz-covariant Dirac equation for a single particle with mass M is(

γμ(cpμ + gvAμ) + Mc2 + Vs

)
Ψ = 0, (5)

where Vs is a scalar potential, attractive in the case of nucleons, and Aμ(A0,A)
is a vector potential. Assuming that these potentials are time-independent we
obtain a Dirac Hamiltonian

H = α (cp + gvA) + Vv + β
(
Mc2 + Vs

)
, (6)

where Vv = gvA0 is repulsive [6]. Neglecting A which is not presented in a
mean ˇeld [6] of an evenÄeven nucleus we obtain the following equation for the
large (g) and small (f ) components of the Dirac spinor [6]:(

M + Vv + Vs σ · p
σ · p −M + Vv − Vs

) (
g
f

)
= E

(
g
f

)
. (7)

Representing E as E = M + ε and using the fact that |ε| � 2M̃ , where M̃ =
M − 1/2(Vv −Vs)/c2, we derive from (7) the Schréodinger equation for the large
component g [6](

p
1

2M̃
p +

�2

4M̃2c2

1
r

∂(Vv − Vs)
∂r

l · s + (Vv + Vs)
)

g = εg. (8)

It is seen from (8) that different combinations of Vv and Vs contribute to the
spinÄorbit term and the radial potential well. The depth of the radial potential
(Vv + Vs) is equal approximately to 50 MeV. The value of (Vv − Vs) is equal to
700Ä800 MeV inside the nucleus.

As was shown in [3], pseudospin symmetry takes place if Vs/Vv = −1. For
this reason, this symmetry is not exact because in this case (Vv + Vs) = 0, i. e.,
there is no binding potential for nucleons. However, as it follows from the QCD
sum rule, the ratio Vs/Vv ≈ −1 with an estimated accuracy of 20%. Indeed the
detailed QCD sum rule gives

Vs = −4π2σNρN/M2mq,

Vv = 32π2ρN/M2, (9)

where ρN is the nuclear matter density, σN is the so-called sigma term (σN ≈
45 ± 8 MeV) and mq is the mass of a light quark. Thus,

Vs

Vv
= − σN

8mq
≈ −1.1. (10)
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2. PSEUDOSPIN DEPENDENCE OF THE PARTICLEÄCORE COUPLING

To describe the properties of the low-lying collective states and of a coupling
of a single particle and a collective motion, it is useful to replace a realistic residual
interaction by a schematic interaction. A useful application of this concept is the
RPA [7]. The RPA is equivalent to the time-dependent HartreeÄFock. It means
that in the framework of the RPA all interactions generating the same time-
dependent mean ˇeld are equivalent. For the time-dependent mean ˇeld U(r, t)
we have a relation

U(r, t) =
∫

d3r′Vres(r, r′)ρ(r′, t), (11)

where ρ is a nuclear density and Vres is a residual interaction. Having in mind
a description of nuclear shape oscillations and their coupling to a single particle
motion let us parameterize a time dependence of the mean ˇeld and the nuclear
density by the following expressions:

U(r, t) = U0

(
r

1 +
∑

λ,μ αλ,μ(t)Yλ,μ(r)

)
, (12)

ρ(r, t) = ρ0

(
r

1 +
∑

λ,μ αλ,μ(t)Yλ,μ(r)

)
, (13)

where ρ0 and U0 are the static mean ˇeld and density. Expanding in powers of
αλ,μ in Eqs. (12) and (13), restricting ourselves to the ˇrst orders in αλ,μ

U(r, t) = U0(r) − r
dρ0(r)

dr

∑
λ,μ

αλ,μ(t)Yλ,μ, (14)

ρ(r, t) = ρ0 − r
dU0(r)

dr

∑
λ,μ

αλ,μ(t)Yλ,μ (15)

and substituting the result into (11) we obtain Vres in a separable form

Vres(r, r′) = χr
dU0(r)

dr
· r′ dU0(r′)

dr′

∑
λ,μ

Yλ,μ(r)Y ∗
λ,μ(r′) (16)

with the condition for χ

1 = χ

∫
r2drr

dU0

dr
· rdρ0

dr
. (17)
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For the nuclear mean ˇeld U0 the following expression results from Eq. (8):

U0(r) = (Vs(r) + Vv(r)) +
�2

4M̃2c2

1
r

d

dr
(Vs(r) − Vv(r)) (l · s). (18)

Let us approximate Vs(r) and Vv(r) by the terms linear in ρ(r) [8]

Vs(r) = −V0s
ρ0(r)
ρav

,

Vv(r) = V0v
ρ0(r)
ρav

,

V0s − V0v ≈ 50 MeV,

V0s + V0v = 700 ÷ 800 MeV,

M̃ = M − (Vv − Vs)/2c2, (19)

where ρav is the nuclear density inside the nucleus. Then, assuming a SaxonÄ
Woods form of ρ0 we obtain the following expression for the form factor

r
dU0(r)

dr
:

r
dU0(r)

dr
=

ρ0(r)
ρav

(
1 − ρ0(r)

ρav

) ⎧⎪⎨
⎪⎩(V0s − V0v)

r

a
+

�2

2Ma2

l · s(
1 − V0v+V0s

2Mc2
ρ0(r)
ρav

)3

×
[
(V0v + V0s)

2Mc2

(
1 − V0v + V0s

2Mc2

ρ0(r)
ρav

)
a

r
+

(V0v + V0s)
2Mc2

(1 − 2
ρ0(r)
ρav

)

+
(

V0v + V0s

2Mc2

)2
ρ0(r)
ρav

]}
, (20)

where a is a diffusion parameter of the nuclear density ρ0. The function
ρ0(r)
ρav

(
1 − ρ0(r)

ρav

)
is localized at the nuclear surface. So we can put in the

ˇgure brackets in (20) r = R, where R is a nuclear radius. Therefore, we can

approximate the form factor r
dU0

dr
by the expression

r
dU0

dr
=

ρ0(r)
ρav

(
1 − ρ0(r)

ρav

)
(c + b + b(l · s)) (21)

or in terms of the pseudospin and pseudo-orbital momentum operators as

r
dU0

dr
=

ρ0(r)
ρav

(
1 − ρ0(r)

ρav

) (
c − b(̃l · s̃)

)
. (22)
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Using the values of Vs and Vv given above and putting R = 7 fm, a = 0.6 fm
we obtain c ≈ 550 MeV and b ≈ 45 MeV. With the form factor (22) substituted
into (16) the residual forces obtained look like the surface delta interaction [9].

From a comparison of the values of the parameters c and b we can see that
the main part of the residual interaction is pseudospin-independent. Therefore, the
Hamiltonian with the pseudospin symmetric mean ˇeld term and the pseudospin
independent part of the residual forces derived above can be considered as an
approximate model for description of low-lying nuclear excitations. In the frame-
work of this model the excited states of both evenÄeven and odd nuclei will
be characterized by the total pseudo-orbital momentum. The pseudo-orbital mo-
mentum is ˇnally coupled to the pseudospin forming pseudospin multiplets. The
eigenstates of this Hamiltonian with one sort of particles belong to the basis of
irreducible representations of U(Ω)

⊗
U(2). Here Ω is the total number of the

pseudo-orbital m̃ states. The spatial parts of the nucleon wave functions form
the basis of irreducible representations of U(Ω) characterized by their symmetry
type. A more detailed characterization of these states could be provided by a sub-
group of U(Ω) containing O(3). In the case of well-deformed nuclei with their
rotational bands as basic elements of the excitation spectra the intermediate group
is SU(3). In the case of evenÄeven nuclei the lowest bands correspond to the
most symmetric representation characterized by the following sequence of values
of the pseudo-orbital momenta: L̃ = 0, 2, 4,... In the case of odd nuclei, the
value of the pseudo-orbital momentum of the lowest state can be different from
zero. This value depends on the pseudo-orbital momenta of the single particle
state near the Fermi surface.

A splitting of the pseudospin multiplets is determined by the matrix ele-
ment of the pseudospin-dependent part of the residual forces δVres. In the ˇrst
approximation

δVres(r1, r2) = −2cbχ
(̃
l1 · s̃1

) ρ0(r1)
ρav

(
1 − ρ0(r1)

ρav

)

×ρ0(r2)
ρav

(
1 − ρ0(r2)

ρav

) ∑
λ,μ

Yλ,μ(r1)Y ∗
λ,μ(r2). (23)

In the lowest states pseudospin takes the minimum possible value since in this
case the coordinate depending part of the wave function is the most symmetric
and the pseudospin of the nucleon pairs is zero. Thus, the total pseudospin is
equal to that of an odd particle, i. e., to 1/2. In this case index ®1¯ in (23)
belongs to an odd particle, but index ®2¯ describes all other particles forming the
core. Then the interaction term (23) takes the form of the particleÄcore coupling
term considered, for example, in the BohrÄMottelson model. The pseudospin
independent analog of the BohrÄMottelson particleÄcore coupling term with the
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radial form factor derived above is

δVres(r1, r2) = −c2χ
ρ0(r1)
ρav

(
1 − ρ0(r1)

ρav

)

×ρ0(r2)
ρav

(
1 − ρ0(r2)

ρav

) ∑
λ,μ

Yλ,μ(r1)Y ∗
λ,μ(r2). (24)

Comparing (23) and (24) we can see that the strength of the interaction term (23)

is 2
b

c
〈̃li · s̃i〉 times smaller than that of the pseudospin independent particleÄcore

coupling term. Let us estimate at ˇrst the average 〈̃li · s̃i〉 where index ®i¯ denotes
an odd particle. The pseudo-orbital momentum of an odd particle contributes to
the total pseudo-orbital momentum L̃ of the state. It can be taken to be equal to
1
N

L̃, where N is approximately the number of particles in the open shell if the

number of nucleons contributing to the total pseudo-orbital momentum does not
depend on L̃. If this number increases proportionally to L̃ the contribution of the

odd particle to L̃ can be estimated as
l̃0
N

, where l̃0 is a constant of the order of

unity. For well-deformed nuclei we can take N ≈ 30. Since s̃ =1/2, we obtain

2
b

a
〈̃li · s̃i〉 ≈

L̃

360
or

l̃0
360

. (25)

The matrix element of the particleÄcore interaction term in the BohrÄMottelson
model in the case of deformed nuclei can be estimated as ∼ 2.3 MeV. Thus,
a splitting of the pseudospin doublets in the rotational bands of odd nuclei is
∼ 7L̃ or ∼ 7l̃0 keV. This estimate is in a correspondence with an experimentally
observed splitting which is equal to 10÷ 30 keV; though, without proportionality
to L̃. Thus, we should use an estimate with l̃0.

3. WHAT IS INTERESTING TO OBSERVE

As was mentioned above, experimental data on the single particle spectra
of the stable well-investigated nuclei show that pseudospin symmetry is fulˇlled
only approximately. It is known from the consideration in the framework of
the Relativistic Mean Field approach that pseudospin symmetry improves as the
binding energy of nucleons decreases. The calculations [10] have also shown
that pseudospin symmetry improves as the pseudo-orbital momentum l̃ decreases.
Therefore, it is interesting to look for the manifestations of pseudospin symmetry
in nuclei far removed from the valley of stability. Thus, the low-lying states in
nuclei with Z � 100 are interesting objects for investigations. In these nuclei
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Fig. 1. Ground state rotational bands of 173Hf and 171Yb based on the pseudospin singlet
states. Experimental data are taken from [14]

Fig. 2. Ground state rotational bands of 179,181,183Pt based on the pseudospin singlet states.
Experimental data are taken from [14]

more interesting are single particle states with a small pseudo-orbital momentum,
or in the case of deformed nuclei with a small projection of the pseudo-orbital
momentum on the axial symmetry axis.
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Fig. 3. The lowest-lying rotational band of 187Os based on the single particle states
belonging to the pseudospin doublet with Λ̃ = 1. Experimental data are taken from [14]

At the same time, calculations of the single particle spectra of superheavy
nuclei performed up to now demonstrate different results: from small to large
splitting of the pseudospin doublets. This is an additional argument to carry out
experimental investigations in order to clarify the problem.

The experimental data on well-investigated nuclei [11] and the consideration
in the previous section have shown that the most clear manifestation of the
pseudospin symmetry is expected in the spectra of the low-lying rotational bands
of odd nuclei based on the pseudospin singlets or on the pseudospin doublets
with a projection of the pseudo-orbital momentum on the axial symmetry axix Λ
equal to 1. Below we consider this suggestion in detail.

The calculations of A. Parchomenko and A. Sobiczewski [12] show that with
a large probability in odd Md and Lr isotopes the ground state or one of the
low-lying states is [521]1/2−. This state is the pseudospin singlet state having

the following pseudo-oscillator quantum numbers [̃420]1/2−. The rotational band
based on this state consists of a singlet and a sequence of doublets: 1/2−; (3/2−,
5/2−); (7/2−, 9/2−)... For illustration of possible observatioins let us consider
nuclei with odd numbers of neutrons N equal to 101 and 103 and even numbers
of protons. Their excitation spectra are shown in Figs. 1 and 2 for 173Hf101,
171Yb101 and 179−185Pt101−107. A small splitting of doublets equal to several
tens of keV is the main signature of the pseudospin symmetry. As is seen from
Figs. 1 and 2, the doublet structure can be seen in several isotopes of the same
element and for several values of Z. Thus, it is not necessary to search for one
very special nucleus in which this effect is pronounced. If this effect exists, it
should be seen in several neighbouring nuclei.
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The other interesting possibility for observation of the pseudospin symmetry
effects is related to the spectra of odd isotopes of the element Z = 111. As is
shown by the calculations of A. Parchomenko and A. Sobiczewski, the pseudospin
doublet with Λ = 1: [512]3/2− and [510]1/2− can exists in these nuclei. The
expected spectra of the low-lying states in this case can be similar to that observed
in 187Os111 having the number of neutrons equal to 111. This spectrum is shown
in Fig. 3. It is seen that a splitting of the states in doublets is very small and does
not exceed 10 keV.

The last example considered is the low-lying spectra of the spherical nuclei
with Z = 115 and 117. Single particle states with pseudo-orbital momenta l̃ = 0
and 2 can be located in these nuclei near the ground state. The low-lying spectra
should be similar to the spectrum of 195Pt117 which was very well investigated
in [13].

CONCLUSION

The existence of the approximate pseudospin symmetry is supported by the
experimental data for nuclei belonging to the traditionally investigated region of
the nuclide chart.

The pseudospin symmetry is justiˇed theoretically and has its grounds in an
approximate equality of the scalar and vector potentials in the Dirac equation
describing a motion of nucleons in a relativistic mean ˇeld.

It is interesting, whether the pseudospin symmetry will be conˇrmed by
experimental data for exotic nuclei, for instance, for superheavy nuclei.
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