
E3-2006-139

R.Magli∗, L. V.Mitsyna, V.G.Nikolenko, S. S. Parzhitski,
G. S. Samosvat

NEUTRON-ELECTRON SCATTERING LENGTH
EXTRACTED FROM NEUTRON DIFFRACTION
ON LIQUID KRYPTON

∗ Dipartimento di Energetica, Universita degli Studi di Firenze,
Via di S.Marta, 3I 50139 Firenze, Italy



Œ £²¨ �. ¨ ¤·. E3-2006-139
„²¨´  · ¸¸¥Ö´¨Ö ´¥°É·μ´  ´  Ô²¥±É·μ´¥, ¨§¢²¥Î¥´´ Ö ¨§ Ô±¸¶¥·¨³¥´Éμ¢
¶μ ¤¨Ë· ±Í¨¨ ´¥°É·μ´μ¢ ´  ¦¨¤±μ³ ±·¨¶Éμ´¥

ˆ§ ¤ ´´ÒÌ ¶μ ¸É·Ê±ÉÊ·´Ò³ Ë ±Éμ· ³ S(q) ¦¨¤±μ£μ ±·¨¶Éμ´ , ¶μ²ÊÎ¥´´ÒÌ ¢
´¥°É·μ´´μ-¤¨Ë· ±Í¨μ´´ÒÌ Ô±¸¶¥·¨³¥´É Ì ¡¥§ ÊÎ¥É  ´¥°É·μ´-Ô²¥±É·μ´´μ£μ ¢§ -
¨³μ¤¥°¸É¢¨Ö, ¡Ò²  μ¶·¥¤¥²¥´  ¸μμÉ¢¥É¸É¢ÊÕÐ Ö ¥³Ê ¤²¨´  · ¸¸¥Ö´¨Ö bne. ƒ² ¢-
´ Ö É·Ê¤´μ¸ÉÓ Å ¶·¨¸ÊÉ¸É¢¨¥ ¢ ¤ ´´ÒÌ ´¥¨§¢¥¸É´μ°, ¡²¨§±μ° ± ¥¤¨´¨Í¥ ±μ´-
¸É ´ÉÒ Å ¡Ò²  ¶·¥μ¤μ²¥´  · §´Ò³¨ ¸¶μ¸μ¡ ³¨, ±μÉμ·Ò¥ ¶·¨¢¥²¨ ± ¶· ±É¨Î¥¸±¨
μ¤¨´ ±μ¢Ò³ ·¥§Ê²ÓÉ É ³, ´ ¨¡μ²¥¥ ÉμÎ´Ò° ¨§ ±μÉμ·ÒÌ bne = (−1,38 ± 0,04) ×
10−3 Ë³.

� ¡μÉ  ¢Ò¶μ²´¥´  ¢ ‹ ¡μ· Éμ·¨¨ ´¥°É·μ´´μ° Ë¨§¨±¨ ¨³. ˆ.Œ. ”· ´± 
�ˆŸˆ.

‘μμ¡Ð¥´¨¥ �¡Ñ¥¤¨´¥´´μ£μ ¨´¸É¨ÉÊÉ  Ö¤¥·´ÒÌ ¨¸¸²¥¤μ¢ ´¨°. „Ê¡´ , 2006

Magli R. et al. E3-2006-139
Neutron-Electron Scattering Length Extracted from Neutron Diffraction
on Liquid Krypton

Using data on the structure factors S(q) for liquid krypton obtained in the neutron
diffraction experiments without taking into account the neutron-electron interaction,
the corresponding scattering length bne has been extracted. The main difˇculty,
the presence in the data of an unknown constant close to unity, was overcome by
different ways, which led to practically the same result, and the most accurate one
is bne = (−1.38 ± 0.04) · 10−3 fm.

The investigation has been performed at the Frank Laboratory of Neutron Physics,
JINR.
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INTRODUCTION

In the papers [1Ä4] the new method to extract the neutron-electron scattering
length bne was developed, which is characterized by the employment of dense
targets of noble gases and by deriving the bne value from the neutron diffraction
occurring there. The method was tested using the data on the structure factor
S(q) of gaseous Kr from [5] (see [1, 3]) and gaseous isotope 36Ar from [6] (see
[4]). It was shown that the method does work but the accuracy of the used data
is insufˇcient for the satisfactory accuracy of the obtained bne value. The present
investigation is the next attempt to apply the method. This time, we use the S(q)
data for liquid Kr [7], which together with S(q) for 36Ar were kindly given to us
by the authors of [6, 7].

We have used already these data in our previous paper [8] and the present
one is in fact its continuation. The point is that there are several different ways to
extract the bne value from 4000Ä5000 quantities of S(q) for seven Kr samples of
different densities n. Using the MINUIT ˇtting program two ways were applied
in [8]: 1) joint processing of all data, 2) separate processing of data for three
groups of samples with close densities, that gave the average result

bne = (−1.40 ± 0.10) · 10−3 fm. (1)

We report below the results on bne obtained by four more ways.

1. DATA PROCESSING

Since the diffraction and n, e interaction contributions to the neutron scat-
tering have in principle different dependences on the transferred wave vector q,
the n, e contribution can be extracted by our method even at high densities of
investigated samples. We had the structure factor S(q) for dense liquid Kr at
seven different thermodynamic states (densities from 11.28 nm−3 to 17.01 nm−3)
in the wide range of q up to ∼ 16 �A−1. The liquid phase of a scatterer excludes
the possibility to make use of known dependence of S(q) − 1 value on the gas
density n (as in [1Ä4]). Therefore, the data for each Kr sample were processed
independently and the ˇrst problem was to ˇnd adequate description of diffraction.

It turned out to be enough to use four free parameters A1−A4 in the formula

C(q) = A1 exp (−A2q) sin
(

2πq

A3
+ A4

)
(2)
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in order to describe the value

S(q) − 1 =
nC(q)

1 − nC(q)
(3)

for a sample having density n (in [8] there were six free parameters for C(q)).
Thus, taking the S(q) values from [7] as the experimental points, we de-

scribed them with taking the n, e scattering into account as

Sexp(q) = k {1 + Bf ′(q) + [γ + Bf ′(q)] · [S(q) − 1]} . (4)

Here k is the unknown constant close to unity, which has arisen due to au-
thor's data normalization to S(qmax), which has its own error. The value
B = 8πabneZ/σs is the relative contribution of n, e scattering to the total one,
where a is the length of nuclear coherent scattering of an atom, Z is the number
of atomic electrons, σs is the cross section of nuclear scattering. The elec-
tron form factor is f ′(q) = f(q) − f(qmax), f(q) = [1 + 3(q/q0)2]−1/2, for Kr
q0 = 6.74 �A−1 according to [9] and γ = 4πa2/σs. The searched bne contained
in B can be found together with other ˇve parameters (k, A1 − A4 from (2)) by
ˇtting them to a set of Sexp(q) using description (4) with (2) and (3). It is worth
noting that the difference f(q) − f(qmax) appears in (4) as a result of obvious
simpliˇcation of expression (3) in [8], which describes the ratio S(q)/S(qmax).
This simpliˇcation makes the work of the used ˇtting program FUMILI easier.

The pair of parameters k and bne deserve special attention because of a
noticeable correlation between them, especially in the case of small change of
the used f(q). This was explicitly observed in the paper [3] where the neutron
diffraction by gaseous Kr was analyzed. So we additionally apply the cancellation
of constant k by dividing two different domains of Sexp(q) one ofter another.

In order to make basis for the second processing way equation (4) has to be
rewritten differently:

Sexp(q) = k [1 + Bf ′(q)] ·
{
1 + γ

[
Sfit(q) − 1

]}
, (5)

where some small terms are omitted and Sfit(q) already ˇtted by the ˇrst process-
ing way stands instead of to be ˇtted S(q) in (4). The second step was to divide
the whole working interval of q into several domains containing one diffraction
period each and to sum up in each of them the experimental Sexp(q), the ˇt-
ted Sfit(q) and the values f ′(q) as well. Then, performing simple mathematical
operations with the obtained sums on the basis of (5) we came to

pi = k [1 + B < f ′(q) >i] =
∑

Sexp(q)/
{

Ni + γ
∑

[Sfit(q) − 1]
}

(6)

for the domain i containing Ni points of Sexp(q). Here 〈f ′(q)〉i is the form factor
averaged over domain i. At last the above-mentioned division of the value pi
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after (6) by the corresponding pj led to the ˇnal result for bne without k:

bne =
(

pi

pj
− 1

)
σs

8πaZ [〈f ′(q)〉i − 〈f ′(q)〉j ]
. (7)

2. RESULTS

Unlike [8] we attribute here own normalizing constant k to each sample
separately. The interval q = 4.74−15.21 �A−1 was chosen as the main working
interval, which was used in all processing ways. It consists of six domain periods
of diffraction numbered at ∼ 100 points of Sexp(q) each. We did not use the
Sexp(q) values at q > 15.21 �A−1 where their obvious fall with increasing q
takes place. Really, at the diffraction amplitude ∼ (2−5) · 10−4 the averages
〈Sexp(q) − 1〉 over q = (15.21−16.24) �A−1 for ˇve samples are by ∼ (8−19) ·
10−4 less than over q = (13.49−14.52) �A−1. As to the lower limit the use of
Sexp(q) at q < 4.74 �A−1 leads to an increase in χ2 value essentially.

The majority of obtained results are collected in the Table, where the samples
are placed and numbered as in the paper [7]. The average bne values in columns
III, IV and VI are the mean arithmetical over 7 samples with the errors, which
are the mean deviations from these averages.

Table

I II III IV V VI
Sample k bne · 103fm bne · 103fm k bne · 103fm
Kr-1 1.0014(1) Ä1.25(9) Ä1.30(9) 1.0016(2) Ä1.27(13)
Kr-2 1.0020(1) Ä1.87(9) Ä2.08(9) 1.0020(3) Ä1.85(18)
Kr-3 1.0005(1) Ä1.07(9) Ä1.08(9) 1.0005(2) Ä0.99(16)
Kr-4 1.0018(1) Ä1.77(9) Ä1.75(9) 1.0018(2) Ä1.73(17)
Kr-5 1.0014(1) Ä1.05(9) Ä0.96(9) 1.0013(1) Ä0.98(9)
Kr-6 1.0009(1) Ä1.42(9) Ä1.51(9) 1.0010(2) Ä1.37(12)
Kr-7 1.0010(1) Ä0.87(9) Ä0.95(9) 1.0010(2) Ä0.78(15)

Average Ä1.33(31) Ä1.38(35) Ä1.28(32)

2.1. The First Way. The results of the ˇtting of 6 parameters in formulas
(2)Ä(4) over the whole working interval of q at qmax = 16.24 �A−1 (to N = 604
points of Sexp(q)) are presented in columns II and III of the Table. A description
of the experimental points can be seen in Fig. 1, where the data for the least dense
sample (Kr-5, n = 11.28 nm−3) and the densest one (Kr-6, n = 17.01 nm−3) are
shown.

To our astonishment the χ2 values turned out to be approximately three
times less than standard 598. So, assuming the errors of Sexp(q) had been
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Fig. 1. Data on Sexp(q) and their description by function (4) for two samples: Kr-5 (open
circles) and Kr-6 (full circles)

overestimated, we divided them by
√

3 and naturally obtained χ2 three times
more and exactly the same all parameters with the errors

√
3 less. There was one

exception: instead of
√

3 we had to use
√

1.5 only for Kr-4. All errors in the
Table are given with taking these corrections into account. For justiˇcation of
our ®operation¯ on errors it is possible to say the following.

1) Neither initial nor decreased statistical errors of individual bne values have
no in�uence on the error of their average. This error is speciˇed by the scatter
of bne values for different samples. It is 5.5 times more than the statistical error
at the initial errors of Sexp(q) and 9.5 times more at the decreased ones.

2) It is said in the paper [7]: ®the measuring time was chosen at each
measured density in such a way that a statistical precision of ∼ 0.1% on the
counting could be achieved¯. This means that at Sexp(q) ∼= 1 its error is ∼ 0.001,
but we have it in the range of 0.002Ä0.004, i. e., essentially more.

3) We made a test for the statistical errors of Sexp(q) using the obtained
values of the describing function (4) Sfunc(q) and the difference x(q) = Sexp(q)−
Sfunc(q) (see Fig. 2) and calculating the average x̄ = (

∑
x) /N and the dispersion

σ2 =
[∑

(x − x̄)2
]
/N of x(q) over an interval containing N points of q. The

averaged over samples values σ ∼= (2.7, 1.1, 1.3) · 10−3 were obtained in the
intervals q = 5Ä7, 7.5Ä10, 10.5Ä12.5 �A−1, respectively. Really, these σ values
are 1.5Ä2 times less than the errors of Sexp(q) in [7].

In order to show the quality of describing Sexp(q), we calculated x(q) for
all samples averaging it over 50 points. The result is presented in Fig. 3. As
in Fig. 2, the curves of Sfunc(q)/10 for Kr-1 (n = 14.57 nm−3) and Bf ′(q) at
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Fig. 2. Inaccuracy of the experimental data description for Kr-1 sample
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Fig. 3. The summed over 50 points inaccuracies in description of Sexp(q) for all krypton
samples (Kr-1 Ä full circles, Kr-2 Å open circles, Kr-3 Å full triangles with the bottom
down, Kr-4 Å open triangles with the bottom down, Kr-5 Å full squares, Kr-6 Å open
squares, Kr-7 Å reverse open triangles)

bne = −1.36 ·10−3 fm are placed there for comparison. As compared with Fig. 2,
the scatter of points in q here is 3Ä4 times less, but some structure for all samples
is obvious. Its reason can be incomplete description of the diffraction, erroneous
measurements or (and) the data processing as well as some physics of liquid. The
average x̄ over all q is (0.9 ÷ 3.5) · 10−4 for different samples with the error
∼ 1.4 · 10−4.
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2.2. The Second Way. In this way using formula (6), six experimental values
of pi for each sample were calculated. Then 3 values of bne were obtained from
the ratios pi/pj according to (7) for i/j = 1/4, 2/5 and 3/6. Their weighted
mean values for each sample are placed in the column IV of the Table.

The comparison of the results in columns III and IV shows that they are
practically the same and undergo quite similar �uctuations from one sample to
another. Consequently the problem of the constant k in the ˇrst processing way
can be considered as solved.

An additional decisive conˇrmation of this was obtained as follows. Fitting
5 parameters at different ˇxed constants k in both processing ways, we found the
derivatives Δbne/Δk, where numerator and denominator were the deviations of
corresponding parameters from their values in columns III and II or IV and II of
Table. The derivatives for all samples practically did not depend on the Δk value
in both ways, but their values turned out to be essentially different: Ä0.59 fm in
the ˇrst way and Ä0.039 fm in the second way. It means that correlation between
k and bne is suppressed in the second way by ∼ 15 times and it acts only through
the function Sfit(q) in (6).

At last, we were able to decrease a little the error of bne using Sfit(q) obtained
at the ˇxed bne = −1.36·10−3 fm, which is more real than the scattered quantities
in column III of the Table. That decreased the scatter of the bne values and gave
the same average with the smaller error:

bne = (−1.38 ± 0.27) · 10−3 fm. (8)

2.3. The Third Way. We have found one else possibility to conˇrm the
results described above. In addition to six pi values obtained before for each
sample, we received seven more on the broadened by two half-periods interval
of q = 3.92−16.13 �A−1. All pi being as a matter of fact the ratios of averaged
over a domain period Sexp(q) and Sfit(q) are presented in Fig. 4 and demonstrate
their rather smooth course with qi, which is the middle point in the domain i.

The ˇtting of the parameters k and bne to them by the formula

pi = k {1 + B [f(qi) − f(qmax)]} (9)

resulted in the quantities of columns V and VI. It is worth emphasizing almost
ideal coincidence of the constants k in columns II and V and noting the increased
errors of bne in column VI for individual samples due to a signiˇcant scatter of
the pi points. It seems that all points pi lie approximately on two periods of a
certain sinusoid, which is something like the structure in Fig. 3.

In calculations of all results placed in the Table the values qmax = 16.24 �A−1,
a = 7.81 fm, σs = 7.68 b, γ = 0.998 were used. Three last items were
taken from the compilation [10] and are consistent with the values used in [5,
11]. We also tested the in�uence on the results of unexpectedly precise quantity
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Fig. 4. The pi values determined by expression (6) for the main domains (full circles) and
for the shifted ones by half-period (open squares)

γ = 0.936 ± 0.002 obtained in [7] by the original method. The substitution
of such γ in (4)Ä(6): 1) at a = 7.56 fm in B gives an increase of |bne| by
∼ 0.06 · 10−3 fm, 2) σs = 8.19 b in B increases |bne| by ∼ 0.10 · 10−3 fm. This
is a signiˇcant change although for the present in the error's limits.

2.4. The Fourth Way. Of course, observed in the Table large scatter of bne

over the different samples and originated from it large error of the mean bne

could not satisfy us. So, we tried to ˇnd the common bne value for all samples,
how it should be. For this aim we did the ˇt with one parameter bne and seven
parameters k1 ÷ k7 to all data Sexp

1 (q) ÷ Sexp
7 (q), simultaneously, at the ˇxed
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diffraction parameters R1 − R4 ˇtted before for each sample separately by the
ˇrst way (Subsec. 3.1). This led to a very good result

bne = (−1.35 ± 0.03) · 10−3 fm (10)

with χ2/4220 = 1.225 that increased the error from 0.028 to 0.031.
But unfortunately, this result cannot be accepted as the ˇnal one. The talking

point is that varying the limits of the working q interval changes the extracted
bne value essentially, what is demonstrated in Fig. 5. We can see a smooth
course of bne (crosses) as a function of lower limit ql at the constant upper limit
q = 15.21 �A−1 (left panel of Fig. 5) and as a function of the upper limit qu at
constant lower limit q = 4.74 �A−1 (right panel of Fig. 5). If we look attentively
at all crosses in Fig. 5, we will see that they lie just within the errors of (8). It
means that we have obtained a result approximately equivalent to (8).

Fig. 5. The extracted bne value as a function of lower ql and upper qu limits of the
working interval: crosses Å without removing the structure from Sexp(q) and points Å
with correction for the structure

Nevertheless, we tried to improve the situation with bne error. Seemingly,
such a behaviour of bne is due to some structure that was discussed in connection
with Figs. 3 and 4. Visible structure distorts the real functions y = k(1 + Bf ′)
leading to wrong bne values. Really, if y(ql) becomes less, the ˇtted −bne

increases and vice versa (this takes place at ql = 6 ÷ 9 �A−1, see the left panel
of Fig. 5). And if y(qu) becomes more, the ˇtted −bne increases and vice versa
(see the right panel of Fig. 5, at qu = 12÷ 15 �A−1). All this means that the most
correct bne value lies probably along a ®pedestal¯ of two maxima of crosses in
Fig. 5.

In order to ˇnd such a ®pedestal¯ we described the points x(q) = Sexp(q)−
Sfunc(q) by the function (2) with four varied parameters. The ˇtted functions
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xfit(q) came out with good χ2 values, but with rather irregular sinusoid parameters
for different samples: amplitudes A1 ∼ 0.0004 ÷ 0.0022, periods A3 ∼ 4.3 ÷
9.9�A−1, initial phases A4 ∼ (0.001 ÷ 0.85) · 2π, four of ˇtted functions are
diminishing sinusoids (A2 > 0) and three are increasing ones (A2 < 0, see
examples in Fig. 6). Thus, considering xfit(q) as a false structure and taking
Sexp(q) − xfit(q) instead of Sexp(q) we obtained the black points in Fig. 5. This
operation decreased the bne scatter signiˇcantly and allowed us to get rather
satisfactory results: for the left points in Fig. 5

bne = (−1.36 ± 0.04) · 10−3 fm (11)

and
bne = (−1.39 ± 0.04) · 10−3 fm (12)

for the right ones. They both are the mean arithmetical quantities over 19 values
of bne and of its deviation from the average. The errors in (11) and (12) are
statistical mainly, because they are only a little larger than a statistical error
in (10).

ex
p

fu
n

c

–1 –1

Fig. 6. Examples of differences of the experimental S(q) and Sfit(q). Lines are the
descriptions of these differences by function (2)

CONCLUSION

Thus completing the data processing, we dispose of three results for bne

obtained by different ways. They are (1), (8) and implied consequence from (11)
and (12)

bne = (−1.38 ± 0.04) · 10−3 fm. (13)
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At rather different errors, the values of bne are practically the same and this fact
allows us to consider (13) as the main result demonstrating a deˇnite progress in
perfecting the method as compared with two previous ones [3, 4]. The reached
accuracy of bne places this result among the best ones.

However certainly, this result is correct only in the case if the erroneous
monotonous deviation of the Sexp(q) points from their true values (for example,
due to wrong corrections) in the whole interval q > 4 �A−1 does not exceed
∼ 0.0003.

We must also emphasize that in future investigations it is necessary to have
(in addition to improvement of statistics) a very precise ratio a/σs (better than
1% of accuracy). According to [10] here it is ∼1.7%. It gives the systematical
error of bne ∼ 0.02 · 10−3 fm.

This work was supported by RFBR, grant 03Ä02Ä16883.
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