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Event Generator for pp Interactions

Phenomenological event generator for pp interactions at energy Elab = 70 GeV
was created. It is based on the Gaussian form of the matrix element of the interaction.
The ˇnal states involve two protons and pions. Parameters of the generator are ˇtted
for experimental cross-section data. The energy and momentum conservation laws
are strongly satisˇed. The event generator provides the smallness of the transverse
momentum of the ˇnal particles.

The investigation has been performed at the Laboratory of Particle Physics, JINR.
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INTRODUCTION

The event generator for the process of pp interactions at Elab = 70 GeV
energy was created in the framework of the project ®Thermalization¯ [1]. The
goal of this experiment is the investigation of the collective behavior of particles
in the process of multiple hadron production. Recent results of investigation in
this direction are reviewed in [2]. The necessity of such a generator arose after
testing temporary generators. Some of them (Venus, Nexus, RQMD) were meant
for simulation of a process at a higher energy.

PYTHIA [3] is one of a series of more intensively used generators. It covered
a wide spectrum of leptonÄlepton, leptonÄhadron and hadronÄhadron processes.
It is based on the Lund model of string fragmentation and on the model of parton
showers.

HERWIG [4] is a general-purpose Monte-Carlo event generator, which in-
cludes the simulation of hard leptonÄlepton, leptonÄhadron and hadronÄhadron
scattering and soft hadronÄhadron collisions in one package. It uses the parton-
shower approach for initial- and ˇnal-state QCD radiation, including colour co-
herence effects, azimuthal correlations both within and between jets, and also the
Minimal Supersymmetric Standard Model.

Unfortunately, these generators failed to describe experimental data at ener-
gies nearby Elab = 69 GeV [5]. The proposed generator is based on a simple
model of Gaussian form of matrix element of interaction and has a small number
of parameters which are ˇtted on the experimental data. The work of the gen-
erator divides into two phases. The ˇrst phase is the sampling of the scattering
channel and the second phase is the assignment of the values momenta to particles
in a ˇnal state.

1. SAMPLING OF A SCATTERING CHANNEL

We restrict our consideration to the reactions of the following kind:

p + p → p + p + π+ + . . . π−︸ ︷︷ ︸
μ

+ π0 + . . . + π0︸ ︷︷ ︸
ν

(1)

because every possible combinations of μ and ν are the numbers of charged and
neutral pions in the ˇnal state

0 � μ, ν � nmax (2)
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designate a dominant part of scattering channels. For calculation of their proba-
bility we use a phase-space integral of the following type:

Zμ,ν =
∫ {
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where E is total energy; r0 is phenomenological constant which is included into a
matrix element of scattering for cutting big transverse momenta of particles; kt,i

is transverse momentum of ith particle; N ≡ 2 + μ + ν is a complete number of
particles in the ˇnal state. Values of Zμ,ν are proportionate to appropriate cross
sections and they are used to build an algorithm of the channel selection.

Integral (3) was calculated by the Monte Carlo method. We use the Dirac
delta-function to eliminate the integration on the momentum of the last particle

kN,x = −
N−1∑
i=1

ki,x,

kN,y = −
N−1∑
i=1

ki,y , (4)

kN,z = −
N−1∑
i=1

ki,z .

For the residuary N − 1 momenta we go to the spherical coordinates:

ki,x = ki sin (πτi) cos (2πνi),
ki,y = ki sin (πτi) sin (2πνi), (5)

ki,z = ki cos (πτi).

In new variables integral (3) has got a form:

Zμ,ν = (2π2)N−1
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where kN is deˇned by (4). The next step is to eliminate the Dirac delta-function
from (6). We change the total momenta k1, . . . , kN−1 by the new variables
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ρ, η1, . . . , ηN−2 just like conversion to the hyperspherical coordinates. It is clear
if we identify ηi with cos2(αi). The following example for N = 18 makes a
clear the preceding:

k1 = ρ η1 η2 η4 η8 η16

k2 = ρ η1 η2 η4 η8 (1 − η16)
k3 = ρ η1 η2 η4 (1 − η8)
k4 = ρ η1 η2 (1 − η4) η9

k5 = ρ η1 η2 (1 − η4) (1 − η9)
k6 = ρ η1 (1 − η2) η5 η10

k7 = ρ η1 (1 − η2) η5 (1 − η10)
k8 = ρ η1 (1 − η2) (1 − η5) η11

k9 = ρ η1 (1 − η2) (1 − η5) (1 − η11) (7)

k10 = ρ (1 − η1) η3 η6 η12

k11 = ρ (1 − η1) η3 η6 (1 − η12)
k12 = ρ (1 − η1) η3 (1 − η6) η13

k13 = ρ (1 − η1) η3 (1 − η6) (1 − η13)
k14 = ρ (1 − η1) (1 − η3) η7 η14

k15 = ρ (1 − η1) (1 − η3) η7 (1 − η14)
k16 = ρ (1 − η1) (1 − η3) (1 − η7) η15

k17 = ρ (1 − η1) (1 − η3) (1 − η7) (1 − η15).

Now we have a possibility to change the Dirac delta-function by the following
expression:

δ

(
E −

N∑
i=1

√
k2

i + m2
i

)
→ |f ′(ρ0)|−1, (8)

where ρ0 is the root of equation:

f(ρ) ≡ E −
N∑

i=1

√
k2

i + m2
i = 0. (9)

Nota bene, the subprogram to calculate Jacobians of transformations (7) consists
of 3032 rows in the FORTRAN source code. It has been formed by the package
®Mathematica¯.

Thus, all δ-functions are eliminated from the subintegral expression (3) and
3N − 4 integration variables η1, . . . , ηN−2, τ1, . . . , τN−1, ν1, . . . , νn−1 are in the
limits (0,1) so integral (3) is completely prepared for integration by the Monte
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Carlo method. We have used our realization on the FORTRAN 64-bit pseudo-
random number generator LFSR258 with period 2258 [6].

We have used the described-above scheme for ˇtting experimental data and
have found an optimal value of the cutting parameter r0 = 2.614 GeV−1 · c.
Figure 1 presents the results of calculation.

Fig. 1. Experimental (�) and calculated (�) data are compared. The horizontal axis
marked the number of charged pions and the vertical axis is the cross sections in mb. The
points are the sums of cross sections for all possible numbers of neutral pions when the
number of charged pions is ˇxed

Fig. 2. Cross-section behavior for the various numbers of neutral and charged pions in the
ˇnal state
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After determination of the cutting parameter we calculate Zμ,ν for concerned
channels. With constant factor of accuracy they are the cross sections of interac-
tion. Figure 2 shows their qualitative behavior.

To determine ν-number of charged pions we need to divide the line segment
(0,1) into fragments which are proportional to the inclusive (for neutral pions)
cross sections (see Fig. 3), where

Z̃i = σ̃i/

μmax∑
μ=0,2

σ̃μ, (10)

and σ̃μ is a sum of cross sections with μth number of charged pions in the ˇnal
state

σ̃μ =
νmax∑
ν=0

σμ,ν , (11)

where νmax is a maximally possible number of π0 in the ˇnal state on the ˇxed
number of π± .
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�

Z10
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0 1

Fig. 3. Scale for determination of the num-
ber of charged pions

We deˇne the number of charged
pions by sampling a random number in
the interval (0,1) and compare it with
the line segment in Fig. 3. Having ˇxed
the number of charged pions we anal-
ogously deˇne the number of neutral
pions in the ˇnal state.

2. DISTRIBUTION OF MOMENTA

When the channel of interaction is ˇxed, the next important step of the
generator is to confer concrete values for momenta. This means, that we confer
to each ith particle values of pi Å total moment, ϑi Å radial angle and φi Å
azimuthal angle. Of course, the laws of conservation energy and momentum must
be strongly satisˇed.

Obviously, that the distribution on azimuthal angles φ must be uniform. To
take into account the form of the matrix element of interaction we may claim that
the distribution on radial angles must have two maxima in neighbourhoods 0 and
π and must be symmetrical under the transformation ϑ → π − ϑ.

For numerical determination of statistical characteristics of particle distribu-
tions on total momenta and radial angles the appropriate histograms have been
built for each channels. As the weight function the subintegral function (3) has
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been used. Received histograms were ˇtted by the following kind of function:

P (p, ϑ) =
p sin (ϑ) exp [−κ2p2 sin (ϑ)2]

2pmaxF (κp)
, (12)

where κ = 3.79 GeV−1 · c is a ˇtted value of the parameter, F (x) is the Dawson
integral [7]

F (x) = e−x2

x∫
0

e−t2dt. (13)

The graph of functions (12) is shown in Fig. 4.

Fig. 4. The behavior of function of statistical distribution of particles on the total momen-
tum p and radial angle ϑ

The direct sampling of momenta and radial angles of appropriate distribution
(12) and azimuthal angles in the interval (0, 2π) cannot guarantee the accomplish-
ment of laws of conservation energy and momentum.

One can sample momenta of ˇrst N−1 particles appropriate distribution (12)
and for the last particle calculate them from the equations of conservation laws.
In this case the statistical distribution on the total momentum and a radial angle
of the last particle is totally different from the distribution of other particles. We
have also tested the scheme of sampling of momenta of N particles with their
further correction by the averaged sum of their values. This method has led to
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a strong distortion of statistical distribution, especially for cases of small number
of particles in the ˇnal state.

To eliminate such defects we have selected the following algorithm. The
total momenta p and radial angles ϑ on appropriate distribution (12) for N − 1
particles are being sampled by the method of inverse functions [8]. The scheme
of the method is the following. Let P (x, y) be the probability density function
of two random variables x and y, which are deˇned in a rectangle

ymax∫
ymin

xmax∫
xmin

P (x, y)dxdy = 1. (14)

We are sampling two random numbers u and v uniformly distributed in the
interval (0,1) and then one after another the system of two equations for x and y
is solved

u =

y∫
ymin

dy′
xmax∫

xmin

P (x′, y′)dx′ ⇒ y = y0, (15)

v =

x∫
xmin

P (x′, y0)dx′

xmax∫
xmin

P (x′, y0)dx′

⇒ x = x0. (16)

The sampling for the ˇrst N − 4 particles is going in the alternating order of
longitudial components of momenta pz and random in the interval (0, pmax) for
the others. This kind of physical limitations is included in the generator because
mathematically, states when particles move along Z axis and all the others in the
opposite direction are not forbidden. In reality, this kind of states is suppressed.
Following a parton model when the partons of interacting hadrons move one off
the other, strings stretch between them. The break-off of the last forms a pair of
mesons which move in opposite directions.

It is clear, that at the sampling process the state with breaking moment of
conservation law may occur. In this case the state is rejected and the process of
sampling restarts.

As a result, we have the possibility to receive pz,N :

pz,N = −
N−1∑
i=1

pi cos (ϑi). (17)
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The sampling of pN and ϑN doing along the level lines pz,N = const (see Fig. 5).
In accordance with the distribution (12) the probabilities along the level lines
have been calculated (see Fig. 6).

Fig. 5. Level lines for different
values of pz

Fig. 6. Probability density along the level lines
for different values of pz

Cumulative probabilities for every channel were ˇtted by the functions

P (y) =

⎧⎨⎩0, if y � b,

ln
{

cosh
[

a1(y − b)
1 + b1(y − b)

]}
, if y > b,

(18)

where
y = pN/pmax, (19)

b = abs(pz,N )/pmax. (20)

Figure 7 shows parameters a1 and b1 as functions of the parameter b.

Fig. 7. Behaviors of coefˇcients a1 and b1 as functions of the parameter b
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We receive the following equations for pN :

y = b +
Ã

a1 − b1Ã
, (21)

where

Ã = arccosh

{[
cosh

(
a1(y − b)

1 + b1(y − b)

)]λ
}

(22)

and λ is a random number in the interval (0,1).
The sampling of azimuthal angles φi is a nontrivial problem. The task

is: with the given modules of N vectors on the plane (transverse momenta of
particles) it is necessary to ˇnd N azimuthal angles φi on condition that the total
sum of the vectors is equal to zero (law of conservation of total momentum in
c.m. system). At that the algorithm of random ˇnding must include all possible
solutions.

In our program we have used the fact that the chain being built by the vectors
must be locked, if their sum equal to zero. Therefore, we have the possibility to
regulate process of ˇnding the solution. From the preliminary ordered modules
of vectors ξ1, . . . , ξN we build the array of partial sums:

Ri =
N∑

k=i+1

ξk (i = 1, . . . , N − 1). (23)

Fig. 8. The calculation of the interval for the sampling of the azimuthal angle for the ith
vector is illustrated. The chain of vectors starts from the point (0.0)
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At every step the permissible limits for the angle φi are calculated as is shown
in Fig. 8 and then it is sampled. At the ˇrst step the allowable interval is equal
(0, 2π) and at the last step it consists of two points.

The ˇnal step for the sampling of particle momenta is the correction of total
momenta to satisfy the energy conservation law. An appropriate factor comes out
from the following equation:

E −
N∑

i=1

√
k2p2

i + m2
i = 0. (24)

Then, the replacement of the total particle momenta is the following:

pi −→ kpi (i = 1, . . .N). (25)

3. RESULTS OF CALCULATIONS

In conclusion the results of calculation of various characteristics received
from the generator are presented. The sufˇciently high speed of work (million
events per 260 seconds) allows one to compose statistics quickly. We have the
possibility to change the code of generator and investigate in detail the channels
of reaction with less probability.

Figure 9 shows the behavior of cross sections of reaction

p + p → p + p + π+ + π− + π+ + π− + + π0 + . . . + π0︸ ︷︷ ︸
ν

(26)

as a function of neutral pion number ν in the ˇnal state.

Fig. 9. The typical behavior of cross sections as a function of neutral pion number
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Figure 10 shows the distribution of particles in the laboratory system as a
function of the radial angle.

Fig. 10. Distribution of particles in the laboratory system. The values ϑlab in rad are put
in the horizontal axis

Figure 11 shows histograms of particle distributions on the total momenta
and radial angles for the case of 6 charged and 6 neutral pions. Figure 12 shows
histograms of particle distributions on the total momenta and radial angles for the
case of 12 charged and 12 neutral pions.

Fig. 11. pÄϑ distribution of particles for the case pp 3(π+π−) 6π0

Figure 13 shows the behavior of transverse and longitudinal momenta as a
function of pion number in the ˇnal state.
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Fig. 12. p-ϑ distribution of particles for the case pp 6(π+π−) 12π0

Fig. 13. Behavior of transverse and longitudinal momenta as a function of pion number

Fig. 14. Behavior of ratios of transverse and total momenta as a function of pions number
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Figure 14 shows the behavior of ratios of transverse and total momenta as a
function of pions number in the ˇnal state.
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