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� ¸¸³μÉ·¥´  § ¤ Î  ¨¤¥´É¨Ë¨± Í¨¨ Ô²¥±É·μ´μ¢/¶¨μ´μ¢ ¢ Ô±¸¶¥·¨³¥´É¥ ‘‚Œ
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Electron/Pion Identiˇcation in the CBM TRD Using a Multilayer Perceptron

The problem of electron/pion identiˇcation in the CBM experiment based on
the measurements of energy losses and transition radiation in the TRD detector
is discussed. We consider a possibility to solve such a problem by applying an
artiˇcial neural network (ANN). As input information for the network we used both
the samples of energy losses of pions or electrons in the TRD absorbers and the
®clever¯ variable obtained on the basis of the original data. We show that usage
of this new variable permits one to reach a reliable level of particle recognition no
longer than after 10Ä20 training epochs; there are practically no �uctuations against
the trend, and the needed level of pions suppression is obtained under the condition
of a minimal loss of electrons.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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INTRODUCTION

The CBM Collaboration [2, 3] builds a dedicated heavy-ion experiment to
investigate the properties of highly compressed baryonic matter as it is produced
in nucleusÄnucleus collisions at the Facility for Antiproton and Ion Research
(FAIR) in Darmstadt, Germany. The scientiˇc goal of the research program of
the CBM experiment is to explore the phase diagram of strongly interacting matter
in the region of highest baryon densities. This approach is complementary to the
activities at RHIC (Brookhaven) and ALICE (CERN-LHC) which concentrate on
the region of high temperatures and very low net baryon densities.

The experimental set-up has to satisfy the following requirements: identiˇ-
cation of electrons which requires a pion suppression factor of the order of 105,
identiˇcation of hadrons with large acceptance, determination of the primary and
secondary vertices (accuracy ∼ 30 μm), high granularity of the detectors, fast
detector response and read-out, very small detector dead time, high-speed trigger
and data acquisition, radiation hard detectors and electronics, tolerance towards
delta-electrons.

Fig. 1. CBM general layout

Figure 1 depicts the present layout of the CBM experimental set-up. Inside
the dipole magnet gap there are a target and a 7-planes Silicon Tracking System
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(STS) consisting of pixel and strip detectors. The Ring Imaging Cherenkov
detector (RICH) has to detect electrons. The Transition Radiation Detector (TRD)
arrays measure electrons with momentum above 1 GeV. The Time of Flight
(TOF) detector consists of Resistive Plate Chambers (RPC). The Electromagnetic
Calorimeter (ECAL) measures electrons, photons and muons. The CBM set-up
is optimized for heavy-ion collisions in the beam energy range from about 8
to 45 AGeV. The typical central Au+Au collision in the CBM experiment will
produce up to 700 tracks in the inner tracker (see Fig. 2).

Fig. 2. Visualization of a typical CBM event

Large track multiplicities together with the presence of a non-homogeneous
magnetic ˇeld make the reconstruction of events extremely complicated. It com-
prises local track ˇnding and ˇtting in the STS and TRD, ring ˇnding in RICH,
cluster reconstruction in ECAL, global matching between STS, RICH, TRD, TOF
and ECAL, and the reconstruction of primary and secondary vertices. Therefore,
the collaboration performs the extensive analysis of different event recognition
and reconstruction methods, in order to understand better the geometry of detec-
tors and to investigate speciˇc features of useful events [3].
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The measurement of charmonium is one of the key goals of the CBM ex-
periment. The main difˇculty lies in the extremely low multiplicity expected in
Au+Au 25 AGeV collisions near J/ψ production threshold. For detecting J/ψ
meson in its dielectron decay channel the main task is the separation of electrons
and pions. One of the most effective detectors for electron/pion separation is a
multiwire proportional chamber TRD.

The TRD must provide electron identiˇcation and tracking of all charged
particles. It has to provide, in conjuction with the RICH and the electromagnetic
calorimeter, sufˇcient electron identiˇcation capability for the measurements of
charmonium and low-mass vector mesons. The required pion suppression is
a factor of about 100 and the required position resolution is of the order of
200Ä300 μm. In order to fulˇll these tasks, in the context of the high rates
and high particles multiplicities in CBM, a careful optimization of the detector is
required.

In the technical proposal of the CBM experiment there were presented pre-
liminary results on the estimation of the electron identiˇcation and pions suppres-
sion applying a maximum likelihood ratio test (see details in [3]). A standalone
Monte Carlo C++ based simulation code was developed to perfom the simula-
tions. The following processes were realized in the simulations: i) energy loss
of electrons and pions in the gas detector due to the procedure described in [1];
ii) for electrons, production and absorption of the transition radiation (TR) in the
radiator, absorption of TR in the mylar foil and absorption of TR in the active
gas volume. The results of these simulations have demonstrated that the TRD
will have 9 to 12 layers that can fulˇll the required electron/pion indentiˇcation
in the CBM experiment.

It must be noted that the application of a maximum likelihood ratio test
requires a very accurate determination of distribution functions of energy losses
by pions and electrons (see details on page 87 in [3]), which is not so simple to
fulˇll in practice.

Recently, the use of artiˇcial neural networks in multi-dimensional data analy-
sis has become widespread [4Ä7]. One of such problems consists in classifying
individual events represented by empirical samples of ˇnite volumes pertaining
to one of the different distributions composing the distribution to be analyzed. A
layered feed-forward network Å a multilayer perceptron (MLP) Å is a conve-
nient tool for constructing multivariate classiˇers, although its learning speed and
power of recognition critically depend on the choice of input data.

In this work, we investigate a possibility to apply the MLP for identiˇcation
of electrons and pions using the measurements of ionization energy losses and
TR in the TRD detector.
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1. MAIN PRINCIPLES OF PATTERN RECOGNITION BASED ON A
FEED-FORWARD ANN

The MLP consists of a few layers of neurons: a layer of input neurons, one
or several hidden layers and a layer of output neurons. The connections in such
a network are set up between layers of neighbouring layers and the information
movement is going on only in one direction: from input layer to output layer.
The choice of the MLP architecture includes the determination: 1) number of
layers, 2) number of neurons in each layer, 3) format of input data.

The analyzed data are received by the layer of input neurons; their number
corresponds to the dimension of the input data (input pattern). A number of
hidden layers and neurons are determined by a problem under the solution. The
results of input patterns analysis are obtained from output neurons.

The recognition problem consists in determination of belongness of the
input pattern (represented by a vector of features) to one or several a'priori
determined classes [8]. The analyzed patterns are put to the MLP input layer,
and the information obtained from the output layer permits one to get the answer
to which class belongs a particular pattern.

Main principals of work of the MLP network and its application to the
recognition problem are convenient to consider in an example taken from the
paper by B.Denby [5]. Let one need to construct a classiˇer of events that
belong to the class ®a¯ or to the class ®b¯ (see Fig. 3). The discriminator function

Fig. 3. Areas of events corresponding to two different classes: ®a¯ and®b¯

corresponding to the solution of this problem has the following form:

D = θ[θ(a1x + b1y + c1) + θ(a2x + b2y + c2) +
+ θ(a3x + b3y + c3) − 2], (1)

where the threshold function θ(x − x
′
) equals 0 when x < x

′
and 1 for x � x

′
.

The parameters ai, bi and ci, i = 1, ..., 3, are chosen in such a way that the fuction
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(1) must take the value 1 in the area which includes the boundaries of the class
®b¯ and the value 0 Å in all other areas.
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Fig. 4. Scheme of the discriminating function

Figure 4 shows the scheme of a discriminator that realizes function (1). On
input x and y are given random variables that correspond to the current pattern.
These values are multiplied by the coefˇcients ai and bi, i = 1, ..., 3, which
determine the weigths of lines connecting the inputs of the scheme with the ˇrst
layer of the threshold discriminators (TD). To the input of TDs the tresholds
are also inputted which are responsible for parallel shift corresponding to the
separating line on a plain. The signals from outputs of the hidden TDs are
multiplied by new coefˇcients (which, in our case, equal to 1) and together with
a threshold equal to Ä2 are put to the output TD.

The considered scheme of the discriminator function is a simpliˇed model of
a three-layered neural network of the feed-forward type in which the threshold
discriminators play the role of neurons. If one replaces the threshold discrimina-
tors to a smooth function, for example, of the sigmoid type, then a neural network
acquires very important property Å the ability to learn. It is possible to classify
complex patterns of a high dimension using such a network, which is practically
impossible by traditional methods.

The network tuning (determination of coupling weights between neurons and
thresholds) on a concrete problem is realized through its training using as usual
the algorithm of backward error propagation [9].

During the training process the network is tuned onto the analyzed distribu-
tions that are realized through the weights wij correction. This problem is solved
by the minimization of an error functional (the functional of the network energy).
The error functional E presents a sum of differences between the output signals
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and the target values:

E =
1
2

∑

p

∑

i

(y(p)
i − t(p)

i )2,

where p is the index of the input pattern, i. e., the event from a data set to be

used for the network training, i is the index of the output neuron, y(p)
i the output

result obtained from the ith neuron in the pth pattern and t(p)
i is the target value.

In the MLP each jth neuron is realizing the transformation
yj = g(

∑
i w(j, i)yi + θj), where yj is the output signal of the neuron under

consideration, wij is the weight of connection between ith and jth neurons, g is
the transition function (the transition function of a sigmoid type in the MLP is
usually used, for example, g(x) = 1

2 [1 + tanh(x)]). The architecture of the MLP
network is presented in Fig. 5.

Fig. 5. Scheme of the multilayer
perceptron with one hidden layer

Here, xk, hj and yi denote correspondingly
the input, hidden and output neurons; wjk are
the weights of input neurons with hidden ones,
wij are the weights of hidden neurons with out-
put neurons. The signals aj =

∑
k wjkxk and

ai =
∑

j wijhj are put to the inputs of hid-
den and output neurons, correspondingly. The
values of output signals from these neurons are
determined from relations

hj = g(aj/T ) + θj , yi = g(ai/T ) + θi,

where g(a, T ) is the transition function (T is
the ®temperature¯ that gives the value of its
slope, and θ is the threshold of the corres-

ponding node Å neuron).
The output signals from the hidden and output layers are the functions of

corresponding weights. To calculate the changes of weights wij and wjk
∗ on

each iteration step, we have:

Δωij = −η
∂E

∂ωij
, (2)

and

Δωjk = −η
∂E

∂ωjk
. (3)

∗Usually the gradient descent method is used for these calculations.
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If we rewrite the expressions (2) and (3) in details, then we get:

∂E

∂ωij
=

∂E

∂yi

∂yi

∂ai

∂ai

∂ωij
= δig

′(ai)hj , (4)

and
∂E

∂ωjk
=

∑

i

∂E

∂yi

∂yi

∂ai

∂ai

∂hj

∂hj

∂aj

∂aj

∂ωjk
=

∑

i

δig
′(ai)ωijg

′(aj)xk, (5)

where the variable δi is determined from the following expression:

δi = yi − f(xi).

Thus, for connections between hidden and output layers we have:

Δωij = −ηδig
′(ai)hj + αΔωold

ij . (6)

Similarly, for connections between the input and hidden layers of neurons we get
the expression:

Δωjk = −η
∑

i

ωijδig
′(ai)g′(aj)xk + αΔωold

jk . (7)

In expressions (6) and (7) η is the parameter that controls the speed of the network
training [9], αΔωold

ij and αΔωold
jk are the moments which suppress the oscillations

at the network output. The procedure of the network training is repeated untill
the value of the output signal is close to the target value.

It must be noted that in practice the weights are usually corrected not for
each training pattern, but on the basis of a small set of patterns. This permits one
to accelerate the training process. Usually it is necessary to do a few passages on
a whole training set to minimize the error functional and to get a reliable set of
weights. At the end of the training process the weigths are ˇxed and the quality
of the network training is estimated on the basis of testing data set.

2. ELECTRON/PION IDENTIFICATION APPLYING MLP

The J /ψ phase space distribution and decay kinematics were calculated with
the PLUTO event generator [10] for beam energy 25 AGeV. The background was
calculated with the UrQMD event generator [11] for the same beam energy. For
calculations only events with one J /ψ electron daughter mixed with one minimum
bias UrQMD event were used.

Simulations of signal and background events were performed with the CBM
software framework CBMROOT (based on ROOT package [12]), using GEANT3
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[13] transport through standard set-up with a gold target 250 mkm thickness,
the beam pipe, STS and TRD. Set-up with 4 TRD arranged in 3 stations was
used for simulation (Fig. 6). Only electrons (signal and background) and pions
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Fig. 8. The efˇciency of pion/electron identiˇcation by the MLP for original (bottom curve)
and transformed (top curve) samples
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Fig. 9. Approximation of energy losses by pions in the ˇrst absorber of the TRD by the
density function of the log-normal distribution (9)

(background) which made hits in 6 STS stations and 12 TRD layers participated
in J/ψ reconstruction. Electron transition radiation energy loss in TRD gas was
added to GEANT dE/dx.
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(b) stages; the right plots show the distributions of errors between the target value and the
MLP output signal at the training (c) and testing (d) stages

The ˇles of two types were formed on the basis of data generated with the
help of the GEANT3 code. The former included the information on ionization
energy losses by pions in n = 12 modules of the TRD, and the latter involved
information on energy losses by electrons, including the transition radiation. Each
ˇle included 1800 events∗.

The three-layered perceptron from the package JETNET3 [14] has been used
for particle identiˇcation. The network included n = 12 input neurons (according
to the number of absorbers in the TRD), 35 neurons in the hidden layer and one
output neuron. It was assumed that for pion events the output signal must equal
Ä1, and for electron events Å +1. To estimate the quality of the MLP training,
we assumed that the network correctly identiˇed the event given to the input, if

∗By event we mean a sample of the volume n composed from energy losses of pion or electron
detected by the TRD.
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Fig. 11. The cumulative probability (for the MLP training stage) F (yt) = Pr(y < yt)
for pion and the dependence 1 − F (yt) for electron events; the bottom plot shows the
summary dependence for pions and electrons

the absolute error between the output signal and the target value did not exceed
0.05. An algorithm of the backward error propagation has been used for the error
functional minimization at the stage of ANN training [9].

Initially, the events were formed using the set of energy losses ΔEi,
i = 1, ..., n corresponding to the passage through the TRD pions or electrons.
Figure 7 shows distributions of energy losses (including transition radiation) by
electrons (a) and energy losses by pions (b) in the ˇrst absorber of the TRD
detector. The distributions of energy losses in other TRD absorbers are of similar
character.

In spite of the fact that the distribution of energy losses by electrons, signiˇ-
cantly differs from the character of the distribution of energy losses by pions,
for such a choice of input data the training process was going on very slow
(see bottom curve in Fig. 8), there were large �uctuations (against the trend) of
the efˇciency of events identication by the network. Moreover, in spite of a
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Fig. 12. The cumulative probability (for the MLP testing stage) F (yt) = Pr(y < yt)
for pion and the dependence 1 − F (yt) for electron events; the bottom plot shows the
summary dependence for pions and electrons

large number of training epochs, one can not reach the needed level of pions
suppression.

In this connection, the sets of a new variable λ were formed on the basis of
the original samples (see details in [15]):

λi =
ΔEi − ΔEi

mp

ξi
− 0.225, i = 1, 2,..., n, (8)

where ΔEi is the value of energy loss in the ith TRD absorber, ΔEi
mp is the

most probable value of energy loss, ξi = 1
4.02 FWHM of distribution of energy

loss for pion in the ith absorber [16].
In order to determine the value of most probable energy loss ΔEi

mp and the
value FWHM of distribution of energy losses by pions in the ith absorber, the
indicated distributions were approximated by the density function of a log-normal
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distribution (see Fig. 9)

f(x) =
A√

2πσx
exp− 1

2σ2 (ln x−μ)2 , (9)

where σ is the dispersion, μ is the mean value, and A is a normalizing factor [16].
As one can see from Fig. 9, the distribution of energy losses of pions quite

well follows the distribution (9).
The sample of obtained values λi, i = 1, ..., n was ordered due to values

(λj , j = 1, ..., n) and for each of them the values of Landau distribution function
φ(λ) with the help of the DSTLAN function (from the CERNLIB library [17]),
which was used to form the input pattern for the network, were calculated.

The described procedure of the initial data transformation permits one to
pass from the problem of classiˇcation of samples which belong to one of two
different overlapping distributions to the problem of classiˇcation of empirical
distributions corresponding to pion and electron events. In this case, the reliable
level of pion/electron identiˇcation by the network is reached after 10Ä20 training
epoches in conditions of practical absence of �uctuations against the trend, and
very quickly the needed level of pions suppression under the condition of a
minimal loss of electrons is reached (see the behaviour of the top curve in Fig. 8).

Figure 10 presents the distributions of values of the MLP output signals
obtained at the training (a) and testing (b) stages; the right plots show the dis-
tributions of errors between the target value and the MLP output signal at the
training (c) and testing (d) stages.

Figure 11 shows the dependence (for the training stage) of the cummulative
probability F (yt) = Pr(y < yt) for pion and the dependence 1 − F (yt) for
electron events; the bottom plot shows the summary dependence for pions and
electrons.

At the stage of the MLP testing the event type was determined by the value
of the output signal y: when it does not exceed the preassigned threshold yt, then
the event was assumed to belong to pion, in the opposite case Å to electron.
Figure 12 shows the acummulative probability F (yt) = Pr(y < yt) for pion and
the dependence 1−F (yt) for electron events; the bottom plot shows the summary
dependence for pions and electrons.

For threshold yt = 0.84 the error of the ˇrst order α Å part of electron events
interpreted as pion events Å was 9.4%, and the error of the second order β Å part
of pion events interpreted as electrons Å was 0.6%. Thus, the suppresion of pion
events is equal to 167. In the case, when we do not apply the above-described
transformation of the original data, α = 11%, β = 2.5%, and the suppression of
pion events will consist of approximately 40.
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CONCLUSION

We reported the electron/pion identiˇcation using energy losses in 12 layers
of the CBM TRD applying a feed-forward ANN. The J /ψ phase space distribution
and decay kinematics were calculated with the PLUTO event generator for beam
energy 25 AGeV. The background was calculated with UrQMD event generator
for the same beam energy. For analysis only events with one J /ψ electron
daughter mixed with one minimum bias UrQMD event were used. As the input
data for the MLP we used both the samples of energy losses of electrons/pions in
the TRD absorbers and the new variables obtained on the basis of initial samples.
We show that when one uses the transformed samples, then there are practically
no �uctuations in the efˇciency of particle recognition and after 10Ä20 training
epoches the MLP reaches a reliable level of analyzed patterns recognition. If for
the former case with approximately 11% of electrons loss one may reach the pion
suppression around 40, then in the latter case for lower level of electrons loss we
get the pions suppression at the level 170.

The application of the ANN method for simulated full physics events in the
CBM TRD is under investigation.
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