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Transverse Emittance Blow-Up from Beam Injection Errors in Synchrotrons with
Nonlinear Feedback Systems

The problem of transverse emittance blow-up from beam injection errors in
synchrotrons with nonlinear feedback systems is considered. The relative emittance
growth is calculated for linear and nonlinear feedback transfer functions. Effects of
an increase of the damping decrement of the beam coherent oscillations and of a
decrease of the coherent transverse amplitude spread of different bunches in case of
the damper with a positive cubic term in the feedback transfer function are discussed.

The investigation has been performed at the Laboratory of Particle Physics, JINR.
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INTRODUCTION

Emittance preservation is an important issue during injection of a beam into a
circular accelerator. An initial position or angular error can lead to an increase in
the transverse beam size due to decoherence or ˇlamentation. It is well known [1]
that the emittance blow-up due to the decoherence in presence of the injection
error is

ε =
(

1 +
ā2

ε

2σ2
x0

)
ε0, (1)

where ε0 = σ2
x0/β is an initial transverse emittance with an initial RMS beam

size σx0. The amplitude āε of the beam deviation due to the injection error is

āε = Δr̄0 =
√

(Δx̄0)2 + (βΔx̄′
0 + αΔx̄0)2,

where Δx̄0 is an initial displacement injection error, Δx̄′
0 is an initial angular

injection error, β and α are the optic Twiss parameters at the injection point.
It is assumed in (1) that all particles of the injected beam with the emittance
ε0 are being redistributed on the phase space and ˇll out after a long time the
larger phase space, which corresponds to emittance ε, due to the decoherence
only (Fig. 1). Other effects such as an active damping of coherent oscillations or
a transverse instability of a beam are not taken into account in Eq. (1).

Fig. 1. Injected emittance ε0 dilution to ε due to error Δr̄0
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The damper kicker (DK) of a transverse feedback system (TFS) corrects the
beam transverse momentum in accordance with the beam displacement from the
closed orbit at the location of the beam position monitor (BPM). Hence, the
feedback system leads to a steady decrease of the coherent amplitude, and the
emittance blow-up does not happen without the decoherence. However, with the
presence of the decoherence, the coherent amplitude decreases in time, and the
displacement of the centre of gravity which is measured by the BPM at every
turn has a smaller magnitude than without the decoherence. Therefore, the effect
of the decoherence can produce the emittance blow-up despite the active damping
of the coherent oscillations by the transverse damper.

The emittance blow-up in case of a classical linear transverse damping system
was discussed in [2]. A more general approach that includes effects of transverse
coherent instabilities and nonlinear damping of coherent transverse oscillations is
described below.

1. BASIC EQUATIONS AND DEFINITIONS

The amplitude ā(t) of transverse coherent oscillations of a beam decreases in
time due to decoherence with the time constant τdec and satisˇes the differential
equation

dā(t)
dt

= − ā(t)
τdec

(2)

with the starting condition ā(t = 0) = Δr0. The term ā(t) describes the depen-
dence of the amplitude of the oscillations of the beam centre of gravity on time
due to the ˇlamentation that leads to redistribution of particles on phase space.
At BPM it looks like a damped coherent oscillation. Hence, in presence of the
decoherence effect only, the impact of the injection error Δr̄0 to the emittance
growth in time can be described by the function āε(t) = Δr̄0 − ā(t). Therefore,
the part āε(t) of the amplitude of transverse coherent oscillations ā(t) that goes
to the emittance blow-up due to decoherence satisˇes the differential equation

dāε(t)
dt

=
ā(t)
τdec

(3)

with the starting condition āε(t = 0) = 0. The differential Eq. (3) can be used for
obtaining a new dependence of āε(t) on time after including the active damping
and instability effects in dependence of ā(t) on time in the differential Eq. (2).

An action of a transverse feedback system can be taken into account in (2) by
including an additional term dād(t)/dt, which corresponds to the decrease in the
amplitude of oscillation of the beam centre of gravity. A transverse instability with
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the time constant of growth τinst leads to an additional positive term ā(t)/τinst.
Therefore, the differential equation for the amplitude ā(t) is given by

dā(t)
dt

= − ā(t)
τdec

+
dād(t)

dt
+

ā(t)
τinst

. (4)

Let us assume that the dependences ā(t) and āε(t) have been obtained from
Eqs. (4) and (3). The total amplitude not corrected by the active feedback in
presence of the transverse instability is the following:

lim
t→∞

āε(t) = Fε · Δr̄0, (5)

where Fε is the form factor. Its value determines the part of the initial error Δr0

that leads to the emittance blow-up. So, Fε = 1 in presence of decoherence effect
only and Fε < 1 in case of an active damping. Therefore, the relative emittance
blow-up can be expressed by the formula:

Δε

ε0
=

ε − ε0

ε0
=

(Δr̄0)2

2σ2
x0

F 2
ε . (6)

2. TRANSVERSE EMITTANCE BLOW-UP IN PRESENCE OF
FEEDBACK SYSTEMS

The term dād(t)/dt in (4) depends on the type of a feedback transfer func-
tion f(x̄):

g · f(x̄[n, sP]) =
√

βPβKΔx̄′[n, sK],

where g is the gain of the feedback loop, βP and βK are the transverse betatron
amplitude functions at the BPM and DK locations, x̄[n, sP] is the displacement of
the beam centre of gravity at the BPM location sP, and Δx̄′[n, sK] is the correction
kick at the DK location sK at the n-th turn. So, the transfer function for the linear
feedback system is given by

g · f(x̄) = gx̄,

and the derivative dād(t)/dt is expressed by the formula

dād(t)
dt

= − ā(t)
τd

. (7)

Here the time constant of damping is given by

τd = 2Trev/g, (8)

where Trev is the revolution period of a particle in a synchrotron. The formula (8)
corresponds to the classical ideal transverse feedback system if the phase advance
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from BPM to DK is equal to an odd number of π/2 radians. In that case, the
best damping can be ensured by the TFS, and the coherent transverse oscillations
as well as the injection errors are damped if the decrement of the oscillations
exceeds the increment of the instability [3].

Several analytical expressions for dād(t)/dt in case of nonlinear feedback
systems were presented in [4]. So, for the feedback transfer function with a cubic
term

g · f(x̄) = gx̄ + gg3x̄
3

the derivative dād(t)/dt in accordance with [4] for |g3|ā2 < 1 and g � 1 is

dād(t)
dt

= − ā(t)
τd

− 3g3

4
ā3(t)
τd

, (9)

where τd coincides with its deˇnition in (8).
2.1. Linear Feedback Systems. By substituting (7) in (4), the differential

equation for the amplitude ā(t) can be written as follows:

dā(t)
dt

= − ā(t)
τdec

− ā(t)
τd

+
ā(t)
τinst

= − ā(t)
τ

, (10)

where the time constant of decay τ

1
τ

=
1

τdec
+

1
τd

− 1
τinst

(11)

corresponds to the damped oscillation if τd < τinst � τdec. The solution of (10)
is given by

ā(t) = Δr̄0 exp (−t/τ) , (12)

and the solution of Eq. (3) with ā(t) from (12) is:

āε(t) =
τ

τdec
(1 − exp (−t/τ)) Δr0. (13)

Therefore, in accordance with (5), the form factor Fε for the total amplitude not
corrected by the active linear feedback in presence of the transverse instability is:

Fε =
1

Δr0
lim

t→∞
āε(t) =

τ

τdec
=

(
1 +

τdec

τd
− τdec

τinst

)−1

. (14)

The emittance blow-up is given by

ε =

(
1 +

(Δr̄0)2

2σ2
x0

(
1 +

τdec

τd
− τdec

τinst

)−2
)

ε0. (15)
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If τinst = τd or τinst > τd → ∞ then (15) coincides with (1). If τinst → ∞ then
(15) coincides with the formula for the emittance blow-up presented in [2]:

ε =

(
1 +

(Δr̄0)2

2σ2
x0

(
1 +

τdec

τd

)−2
)

ε0. (16)

It is clear from (15) that a faster decoherence (a smaller magnitude of τdec) for
the ˇxed parameters τd and τinst leads to a larger emittance blow-up.

2.2. Nonlinear Feedback Systems. The differential equation for ā(t) in case
of nonlinear feedback systems with a cubic term, after substituting (9) in (4),
takes the form:

dā(t)
dt

= − ā(t)
τdec

− ā(t)
τd

− 3g3

4
ā3(t)
τd

+
ā(t)
τinst

= − ā(t)
τ

− 3g3

4
ā3(t)
τd

, (17)

where τ was already deˇned in (11). The solution of (17) is given by

ā(t) =
Δr0 · exp (−t/τ)√

1 + ξ · (1 − exp (−2t/τ))
, (18)

where

ξ =
3g3

4
τ

τd
(Δr0)2. (19)

After solving Eq. (3) for āε(t) with ā(t) from (18) and substituting āε(t) in (5),
the form factor Fε for the total amplitude not corrected by the active nonlinear
feedback with cubic term in presence of the transverse instability can be expressed
by the formula

Fε =
1

Δr0
lim

t→∞
āε(t) =

=
τ

τdec

√
|ξ|

·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

arcsin
(√

|ξ|
1+ξ

)
, if g3 > 0 ;

ln
∣∣∣∣
√

|ξ|
1+ξ +

√
1 + |ξ|

1+ξ

∣∣∣∣ , if g3 < 0.

(20)

Dependences of the form factor Fε on instability increments for linear and non-
linear feedback systems are shown in Fig. 2 in case of the LHC speciˇcations [5].
So, the emittance blow-up is smaller for the nonlinear feedback system with
a positive magnitude of g3 in the cubic term than for the linear feedback sys-
tem. It should be emphasised that the form factor Fε depends strongly on the time
damping constant τd. So, if excess of τd above τinst is a small value (τd → τinst),
then Fε → 1 and the initial injection error Δr0 leads to the emmitance magni-
tude as in presence of the decoherence process only with small in�uence of the
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transverse damper. Therefore, the magnitude of Fε can be used as criteria for
choosing the time damping constant τd > τinst and the correction force in the
damper kicker.

Fig. 2. Dependence of Fε on τinst/Trev for τd/Trev = 40, τdec/Trev = 750, |g3|(Δr0)
2 =

0.2; g3 = 0 (solid curve), g3 > 0 (dotted curve), g3 < 0 (dashed curve)

If |ξ| � 1 then Fε in (20) takes the simple form:

Fε =
τ

τdec

√
1 + ξ

.

Therefore, the form factor Fε depends on the magnitude of the injection error
in case of nonlinear feedback systems. Let us assume that coherent transverse
amplitude distribution of bunches after injection into a synchrotron is given by

āi(t = 0) =
(

1 + 0.05 · sin
(

2π(i − 1)
Kb

))
· ā1(t = 0), (21)

where Kb is the number of bunches (1 � i � Kb). Due to the decoherence
process, the transformation from the initial coherent amplitudes āi to the in-
coherent oscillations is observed. Data on relative emittance blow-up for the
distribution function (21) with linear and nonlinear transverse feedback systems
are shown in Fig. 3. Dependences of Δεi/Δε1 on the bunch's number i were
calculated in accordance with (6) for Fε from (20) and (14). It is clear from data
in Fig. 2 that the ˇnal distribution of diameter growth of the bunch's cross section
after damping coincides with the initial distribution of injection errors in case of
the linear feedback. It should be noted that this rule is the global property of a
linear system. However, nonlinear damping changes the transverse distribution
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Fig. 3. Relative emittance blow-up Δεi for different bunches i normalized to its magnitude
Δε1 for the ˇrst bunch. Drawing symbols and parameters of decay process are the same
as in Fig. 2

function of bunches. So, the ®smoothing¯ effect is observed in nonlinear regime
with the positive cubic term g3 > 0 in the feedback transfer function. In the other
case of g3 < 0 the ®blow-up¯ effect is observed for distribution of bunches.

CONCLUSION

The description presented above for the emittance blow-up from beam in-
jection errors in synchrotrons with transverse feedback systems demonstrates the
increase of the damping decrement of the beam coherent oscillations and the de-
crease of the coherent transverse amplitude spread of different bunches in case of
the damper with a positive cubic term in the feedback transfer function. It should
be emphasized that this nonlinear regime is ensured by the nonlinear transfer
function in the feedback loop only. The TFS corrects the transverse momentum
of the bunch in the kicker in accordance with the bunch's displacement in the
beam position monitor at the previous moment of time. This resonance condi-
tion is provided by electronics in the feedback loop. The beam position monitor
and the damper kicker operate as devices with linear characteristics. So, BPM
measures the position of the centre gravity of the bunch. Because of the linear
characteristic of the BPM sensitivity, the position measurement does not depend
on the transverse size of the bunch. The electromagnetic ˇeld in the damper
kicker is the uniform one, and DK changes the transverse momentum of all par-
ticles in the bunch's cross section independently of their magnitude. Therefore,
BPM and DK operate with a bunch like with a point particle. Digital electronics
in feedback loop of TFS allow modifying its linear characteristic by means of
changing algorithms in the digital signal processing unit. If the nonlinear transfer
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function in the feedback loop is employed, then the coherent transverse amplitude
distribution of bunches can be changed as time proceeds. Therefore, experiments
with nonlinear TFS give the unique opportunity for studying nonlinear phenomena
with macroobjects (bunches): the current value of the kicker's force corresponds
to the nonlinear phenomenon, but the in�uence on the particles of the bunch
in the kicker is the linear phenomenon because the electromagnetic ˇeld in the
kicker is the uniform ˇeld.

It should be noted that high order modes are exited in the nonlinear regime of
TFS. So, the cubic kick excites the third harmonic of oscillations whose magnitude
is proportional to ā3 [4]. It is clear from (18) that the nonlinear term g3 has no
affect on the exponent terms in ā at the ˇrst level of approximation. Hence, the
third mode decreases faster than the ˇrst one. However, the stability of a beam
with a nonlinear feedback transfer function should be further studied.

Concluding, it is necessary to emphasize that integration of traditional ap-
proaches for devices with linear characteristics and digital computer technologies
in feedback loops of transverse dampers for obtaining nonlinear regimes opens
new opportunities for research in accelerator physics.
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