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The problem of physics geometrization is considered as a part of the problems
which is the sixth Hilbert's problem talks about. This Hilbert's problem concerns
mathematical formulation of physics axioms. It is shown that for the whole XX
century this problem formed scientiˇc research strategies in theoretical physics and
some mathematical topics, especially in geometry. Appearance of special and general
relativities as well as the geometrical gauge ˇeld theory can be regarded as consequent
stages in the sixth Hilbert's problem solution. The present-day problem consists in
application of the geometrical gauge ˇeld theory for relativistic nuclear physics.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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1. VI HILBERT'S PROBLEM

As is known, in 1900 D.Hilbert formulated 23 problems which in his opinion
the mathematicians of XX century would have to solve [1]. Among them the
sixth problem pointed to necessity to state mathematical formulation of physics
axioms. In this connection Hilbert proposed to construct the physics axioms on a
model of the axioms of geometry. So, VI Hilbert's problem contains the problem
of physics geometrization as its part.

For all XX century long this problem formed strategies of scientiˇc researches
in theoretical physics and in different mathematical topics, especially in geom-
etry. Appearance of special and general relativities as well as the geometrical
gauge ˇeld theory can be regarded as consequent stages in VI Hilbert's problem
solution [2,3].

According to the new physical theories the corresponding new geometries
were appeared. New mathematics stimulated physics development and on the
contrary. Minkowski 4D geometry was created for SR, Cartan's formulation of
Riemannian 4D geometry arose in GR. At last the ˇbre bundle space geometry
was formulated as extension of Cartan's geometry. It was used by me for
geometrical formulation of the gauge ˇeld theory [4]. At present, this theory is the
greatest extension of GR. The gauge ˇeld theory proved to be very successful in
explanation of phenomena of particle physics and gravity. It permits to construct
the uniˇed theory of all fundamental interactions. Moreover, such a theory can
be formulated in both usual and geometrical forms.

The problem which in the course of many years Einstein was working on
now is solved in terms of the geometrical gauge ˇeld theory.

2. THE WAY TO GEOMETRICAL RELATIVITY

In one of his paper Einstein explained why he decided to look for a way to
a geometrical form of gravitation theory. He called his predessors on this way
German philosopher of XVIII centure I. Kant and French mathematician of XIX
centure A. Poincar	e.
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Kant [5] established that any experiment description consists of two parts:
geometry (or coordinates) and forces. At the same time, it is known that force-
free or inertial motions exist, but geometry-free motions cannot exist. In the
experiment description any point, particle or event are supplied with coordinates.
But forces can be absent.

Poincar	e [2] proposed that always it can be found such a geometry, in which
any motion looks like force-free one. This idea stimulated Einstein to look for
geometrical description of particle motions in a gravity ˇeld.

This situation can be expressed by the symbolic formula:

G = G0 + F, (1)

where G0 is background geometry, i.e., rigidly given one; F is an image of
acting forces; G is dynamical geometry in Einsteinian meaning, i. e., it changes
in according to particle motions.

It is necessary to note that here the corresponding equations are the same in
the left and right sides of formula (1).

Because the equality sign has only a symbolic sense the variable sets in the
left and right sides can differ from each other. Poincar	e assumed that the choice
of variables depends on a convention among scientists. Consequently one can
ˇnd such a geometry which is more suitable for calculations, and so any geometry
can arise and be applied for solving equations.

Einstein decided to write the equations which describe a particle motion in
any gravitational ˇeld as a free motion. As is known, he chose Riemannian
geometry for solving of this task and obtained the equation of a geodesic line [6].

But in addition Einstein decided to clarify a physical sense of the variables
in his equations. He ascertained that his motion equations did not describe the
motion of any particles but only the particles having some special properties.
He named such particles test bodies. They had to be a subject to gravitational
in
uence of external ˇeld, but had not to change this ˇeld, i. e., not in
uence
it backwards. In this way Einstein demonstrated that geometry modiˇcation in
equations implied the change of physical properties of the described objects or
experimental conditions which these objects are being under.

3. INNATENESS OF GEOMETRY, CONVENTIONALISM AND
OVERCOMING THEM

The key problem in Poincar	eÄEinstein symbolic formula (1) interpretation is
that: where does geometry come from?

Kant assumed that geometry was innate and arose at the same time when a
child had been born. Such an answer was unacceptable for many scientists and
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philosophers. In spite of the fact that Kant's point of view seems strange, he
proved partially right. Scientiˇc investigations of French physiologists of XIX
century showed that human equilibrium organ consists of three almost mutually
perpendicular planes. As a result a man can distinguish three space dimensions
since his birth.

In contrast to Kant, we have to note that really a man has only innate organs
for getting of geometrical knowledge, but not this knowledge by itself. His body
is a natural coordinate system and instrument for geometric constructions. But it
does not contain Euclidean theorems in itself. Means of getting knowledge and
knowledge itself are not one and the same.

Poincar	e's point of view consisted in that: separation of right side into two
parts (G0 + F ) depends on us, and it is a subject to convention.

This statement is known as conventionalism and was often criticized severely
by philosophers-materialists. But here is real way out of a situation. When we
shall try to apply the equations to real objects behaviour in experiments, it will
be clear that G0 is a mathematical image of the device realizing the coordinate
system. Thus in practice freedom of G0 choice becomes freedom of the choice
of instruments for coordinate system construction. This choice really depends on
us, but it is formed by the experimental conditions, and not a convention among
scientists. So, just like Kant, Poincar	e was right only partially.

All the questions connected with Poincar	eÄEinstein formula received the most
serious study in the papers of N. P. Konopleva and H.A. Sokolik in 60th of XX
century [7], etc. These papers cover the problems of sovereign physical theory
structure.

4. GEOMETRY IN PHYSICAL THEORY STRUCTURE

Physical theory is named sovereign if it has own means of distinguishing
between true and false conclusions and, consequently, is not in need of experi-
ments for solution of such problems. Only sovereign theory conclusions can be
regarded as truth. The conditions which sovereign physical theory has to satisfy
was investigated in paper [8].

Structure of axioms of such a physical theory must re
ect the speciˇc way
by means of which information about external world comes into the theory. As is
known, data for a physical theory usually come out of experiments. Therefore the
structure of axioms of the sovereign physical theory must be closely connected
with principles of experimental investigations.

For instance, the demand of result reproducibility leads to the fact that the
language of theoretical physics must be the Lie group theory. Symmetry prop-
erties of the theory become deˇning one. If the symmetry is a global one, we
have to make use of ˇnite Lie groups. If the symmetry is a local one, we have to
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make use of inˇnite Lie groups. Representations of ˇnite Lie groups permit us
to construct the elementary particle classiˇcation. Because of representations of
inˇnite Lie groups classiˇcation of elementary particle interactions appeared. La-
grangian theory of gauge ˇelds on the base of inˇnite Lie groups representations
was constructed by N. P. Konopleva in 1967 [9].

Among gauge ˇelds gravity is associated with local translation group, which
are usually named general covariant coordinate translations in 4D Riemannian
spaceÄtime. Above the Lagrangian formalism and consideration of the coordinate
translation group as a local gauge group permits to obtain Einsteinian theory of
gravitation as the theory of one of the gauge ˇelds. This is the only way to get
usual GR as a gauge ˇeld theory. Torsions are absent in this approach.

In the gauge ˇeld theory all nongravitational ˇelds are described by nonlinear
extensions of Maxwell's equations. Electrodynamic equations coincide with the
Maxwell's one.

When fundamental interactions are considered in Riemannian spaceÄtime,
Einsteinian equations must be added to the other equations of the theory as local
relativistic vacuum equations [10]. Thus Einsteinian equations physical sense
becomes more wide.

It is remarkably that in this scheme particle motion equations can be obtained
by differentiation of the ˇeld equations. It is the same situation that we have in
GR. In principle, geodesic line equations could be eliminated from GR axioms
because of this fact. On the other hand, trajectories of the motion of all particles
carrying corresponding gauge charges in the external gauge ˇeld look like test
body pathes. Therefore the Lorentz equations describing the motion of electrons
in the external electromagnetic ˇeld turn into electromagnetic test body motion
equations.

When free electromagnetic and gravitational ˇelds are only present the equa-
tion system of the gauge ˇeld theory coincides with the WheelerÄMisner equations
of geometrodynamics [11].

So, let us return to geometric axioms in relativistic physics.
Einstein explained essence of his geometrical approach by an imaginary

experimenter being in falling lift. This experimenter has got rulers and watch,
which permit him to measure segments of space and time lines. Therefore he can
construct a local coordinate system in his neighbourhood. This coordinate system
will be a basis of a local Euclidean space in falling lift. Origin of coordinates
will coincide with a test body falling free in the external gravitational ˇeld. The
equivalence principle, which is one of GR axioms, states that in given situation
the experimenter does not feel gravitational ˇeld in
uence. Near him all events
happen in just the same way as in the absence of gravity.

At the same time, other experimenter being on Earth surface outside the lift
will interpret the ˇrst experimenter motion as a noninertial motion in the gravity
ˇeld of Earth. Both these descriptions are right, but the ˇrst of them corresponds
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to local description of a motion in the accompanying coordinate system, and the
second of them makes use of a global Cartesian coordinate system associated
with Earth. In the second case gravity describes forces acting in Euclidean global
space. This is one of realizations of Poincar	eÄEinstein formula. The equality
sign corresponds to the equivalence principle. Two descriptions can be brought
into accord with each other by identiˇcation of gravity forces with connection
coefˇcients of 4D Riemannian spaceÄtime.

Can this method be carried to other interactions?
Throughout 30 years after creation of GR Einstein tried to unite geometrically

gravity and electromagnetism. Many other authors made the same as Einstein.
But at that time geometry had not yet any means for this problem solution.
Cartan's formulation of Riemannian geometry of 1925 [12] described adequately
the falling lift situation, but was found insufˇcient for new tasks.

Only in 60th of XX century ˇbre bundle space geometry became enough
developed for its application to physics.

In 1964 it occurred to me how Einsteinian problem could be solved [13]. To
this end it should be answer the question: what is a mathematical image of other
measuring devices besides rulers and watch being used by the experimenter in
the falling lift? My answer was following. A mathematical image of any device
in any physical theory is the space of parameters measured by this device. In
this space some coordinate system can be chosen like the usual space. Its origin
of coordinates must coincide with the origin of usual space coordinates in which
the experimenter works in the falling lift. It means that this experimenter has not
only rulers and watch, but voltmeters, etc. Mathematically it leads to increase in
dimensions of the space in the point where the experimenter is. At the same time,
in the opinion of the external observer the experimenter moves as before in usual
4D spaceÄtime. Thus our problem reduces to carry of some many-dimensional
space along lines in 4D spaceÄtime.

Such a procedure was unknown in theoretical physics. But what mathemati-
cians could say about it? And I went to Faculty of Mechanics and Mathematics
of Moscow State University.

In its library I found G. F. Laptev thesis of 1952 on imbedded manyfolds [14].
Then I learned that he leads the seminar on this problem at the Prof. P. K. Rashew-
ski High Geometry Chair of that faculty. As it has turned out geometry which I
was looking for was not exist yet but it was arising before my very eyes. Now it
is named ˇbre bundle space geometry.

I began to attend Laptev's seminar and take part in all science conferences
on differential geometry being hold in the USSR at that time. My talks were in
sections of geometry applications. Unfortunately, these conferences had almost no
proceedings. But I also told about applications of ˇbre bundle geometry to physics
at conferences on theoretical physics, elementary particles and gravity as well as
on philosophy and science methodology. My philosophical and methodological
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papers were published together with H.A. Sokolik. Geometrical formulation of the
gauge ˇeld theory was given by me in 1967 and was reported on corresponding
conferences in Kazan [15] and Tbilisi. Then in 1969 I had defence of thesis
®Geometric Description of Interactions¯ at the Lebedev Institute of Academy
of Sciences and, by invitation of Prof. A.M. Baldin, reported its results at the
International Seminar on Vector Mesons and Electromagnetic Interactions at JINR
in Dubna [16]. My thesis was written without use of a post-graduate course. It
was recommended to be published by Academic counsil of LPI. In 1972 my
and V.N. Popov book ®Gauge Fields¯ (in Russian) was published by Atomizdat.
For this book V.N. Popov wrote chapter IV on gauge ˇeld quantization by path
integrals [17].

After that geometrical treatment of gauge ˇelds in terms of ˇbre bundle space
geometry [18] became generally recognized and induced development of super-
space geometry in mathematics and supersymmetry gauge theories in physics.
KaluzaÄKlein [19] and Weyl [20] theories attracted attention of physicists again.

CONCLUSIONS

So, where did we come by axiomatization and geometrization of physics
according to VI Hilbert's problem?

Uniˇcation of electrodynamics and mechanics led to creation of SR in physics
and 4D Minkowski geometry in mathematics. Finite Lie groups found their wide
application in physics, especially in quantum mechanics and elementary particle
physics. They became the basis of classiˇcations of elementary particles, atom
and nuclear states.

But for a long time inˇnite Lie groups could not ˇnd their place in physics.
Appearance of local coordinate translations in GR induced doubt about physical
sense of this theory. Later the same doubt appeared about the gauge ˇeld theory
based on local gauge symmetry groups. These groups belong to inˇnite Lie
groups similarly to local coordinate translations in GR.

The point is that ˇnite Lie groups have the invariants, whereas inˇnite Lie
groups have not them. Therefore usual conservation laws vanish when symmetry
of theory becomes a local one. Dynamical constants are just these numbers
which physical theory produces in order to compare them with experimental
data. Without conservation laws we cannot construct the dynamical constants for
experiment description.

But really local symmetries should not be used for dynamical constants ob-
taining. In Utiyama opinion [21] they must to classify interactions between
particles, but not these particles by themselves. My and Sokolik point of view
consisted in that local symmetries ensure existence of gauge ˇelds. They generate
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appearance of connection coefˇcients in a space which is only locally homoge-
neous. Connection coefˇcients are geometrical objects. What kind of physical
objects is corresponding with them?

Einstein tried to geometrize electrodynamics having used additional metrics
coefˇcients. Such coefˇcients arose when a spaceÄtime dimension increased (Ka-
luzaÄKlein approach) or 4D spaceÄtime metrics became asymmetric. In these
cases vector-potentials of electromagnetic ˇeld became components of a metric
tensor.

Weyl was ˇrst who identiˇed electromagnetic vector-potentials with connec-
tion coefˇcients, but it was the only possible in terms of new geometry which
Weyl constructed for this task (known as Weyl geometry [20]). Unfortunately,
in this geometry correct description of Einsteinian gravity became impossible.

The problem was solved when ˇbre bundle space geometry arose. I iden-
tiˇed gauge ˇeld vector-potentials with connection coefˇcients of ˇbre bun-
dle space. 4D Riemannian spaceÄtime I turned into the base of ˇbre bundle
space, and the space where local gauge groups were acting I identiˇed with
ˇbre of ˇbre bundle space. Gravity and nongravitational interactions became
untied. Now they became acting in different spaces: gravity existed in base,
and nongravitational ˇelds were acting between ˇbres of ˇbre bundle space.
GR, SR, Maxwell's electrodynamics, WheelerÄMisner geometrodynamics, YangÄ
Mills equations [22] were exactly reproduced in this geometry terms. More-
over, the way to unite all interactions both in usual and geometrical forms was
opened.

Therefore I continued with my work in spite of sharp criticism with respect to
local gauge theories from some known scientists (V.A. Fock [23], V. I. Ogiyevets-
ky [24], E. S. Fradkin [25], B. L. Ioffe, etc.). This skepticism was overcame by
creation and use of new mathematical methods both in mathematics and physics.
It was above-mentioned Lagrangian formalism for inˇnite Lie groups (1967,
N. P. Konopleva), ˇbre bundle space geometry (soviet and foreign mathemati-
cians), geometrical interpretation of gauge ˇelds in terms of new geometry (1967,
N. P. Konopleva), and quantization of gauge ˇelds by path integrals fulˇled in
1967 by B.De Witt [26], L. D. Faddeev and V.N. Popov [27]. Renormalization
of YangÄMills ˇelds was made in 1971 by J. C. Taylor [28] and in 1972 by
A.A. Slavnov [29] (massless case) and G.' t Hooft [30] (massive case) in 1971.
Discussions on fundamental questions of the quantum gauge ˇeld theory one can
ˇnd in [31].

Quark models of elementaty particles [32, 33] appeared in 1964 [34]. They
had played very important role in the process of gauge ˇeld theory application for
elementary particle physics. Just they proved rightness of the gauge ˇeld theory
in its usual form in the Minkowski spaceÄtime. Today the corresponding uniˇed
model of fundamental interactions is known as the Standard Model.
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Next in turn it should be verify the gauge ˇeld theory in its geometrical form.
Such experiments will be analogous to GR experiments and now they seem very
complex.

REFERENCES

1. Hilbert D. Die Grundlagen der Physik. Néach. von der Kéon. Ges. der Wiss. zu
Géottingen, Math.-Phys. Kl. Heft. 3. S. 395Ä407. 1915.

2. Poincar�e A. Paris: Derni	eres Pens	ees, 1913.

3. Einstein A. // Sitz. Preuss. Akad. Wiss. 1916. Bd. 2. S. 1111Ä1116.

4. Konopleva N. P., Popov V. N. Gauge Fields. Chur; London; N.Y.: Harwood Acad.
Publ., 1981.

5. Kant I. Kritik der Reinen Vernunft. 1781.

6. Einstein A. The Meaning of Relativity. 6th ed. London: Methuen, 1956.

7. Konopleva N. P., Sokolik H. A. // Vopr. Filos. 1972. V. 1. P. 118.

8. Konopleva N. P. Einstein Anthology 1975Ä1976. M.: Nauka, 1978.

9. Konopleva N. P. // Proc. of the Conf. ®Gravitation and the Theory of Relativity¯.
Kazan State University, 1967. Nos. 4Ä5; Kazan State University, 1968. P. 67.

10. Konopleva N. P. Gauge Field Vacuum Structure in Geometrical Aspect. // Proc. of
Intern. Sem. ISHEPP XVI, 10Ä12 June 2002, JINR, Dubna, Russia. Dubna, 2004.
V. I. P. 31.

11. Misner C. W., Wheeler J. A. // Ann. Phys. 1957. V. 2. P. 525.

12. Cartan E. // La th	eorie, des groups et la g	eom	etric // L'Enseignement mathematique.
1927. P. 200Ä225.

13. Konopleva N. P. // Vest. Mosk. Univ., Ser. Fiz. 1965. V. 3. P. 73.

14. Laptev G. F. Differential Geometry of Imbedded Manyfolds // Tr. Mosk. Math. Ob.
1953. V. 2. P. 275.

15. Konopleva N. P. // Abstracts of Contributions to the 3rd Inter-University Scientiˇc
Conf. on Problems of Geometry. Kazan State University, 1967.

16. Konopleva N. P. Geometrical Description of Gauge Fields // Proc. of the Intern. Sem.
on Vector Mesons and Electromagn. Interactions, JINR, Dubna, 1969.

17. Konopleva N. P., Popov V. N. Gauge Fields. M.: Atomizdat, 1972.

8



18. Lichnerowicz A. Th	eorie Globale des Connexions et des Groupes d'Holonomie. Roma:
Consiglio Nazionale delle Ricerche, 1955.

19. Kaluza Th. Zum Unitéatsproblem der Physik. Berichte. Berlin, 1921. P. 966.

20. Weyl H. Raum-Zeit-Materie. Berlin: Verlag von J. Springer, 1923.

21. Utiyama R. // Phys. Rev. 1956. V. 101. P. 1597.

22. Yang C. N., Mills R. L. // Phys. Rev. 1954. V. 96. P. 191.

23. Fock V. A. Theory of Space, Time and Gravitation. M.: GTTL, 1955; London: Perg-
amon Press, 1959.

24. Ogiyevetsky V. I., Polubarinov I. V. // Ann. Phys. (N.Y.). 1963. V. 25. P. 358.

25. Fradkin E. S., Tyutin I. V. // Phys. Rev. D. 1970. V. 2. P. 2841.

26. De Witt B. S. // Phys. Rev. 1967. V. 162. P. 1239.

27. Faddeev L.D., Popov V. N. // Phys. Lett. B. 1967. V. 25. P. 29.

28. Taylor J. C. // Nucl. Phys. B. 1971. V. 33. P. 436.

29. Slavnov A. A. // Teor. Mat. Fiz. 1972. V. 10. P. 153.

30. 't. Hooft G. // Nucl. Phys. B. 1971. V. 33. P. 173.

31. Quantum Theory of Gauge Fields. Collection of papers / Ed. Konopleva N. P.
M.: Mir, 1977 (in Russian).

32. Gell-Mann M. // Phys. Lett. 1964. V. 8. P. 214.

33. Glashow S. L., Gell-Mann M. // Ann. Phys. 1961. V. 15. P. 437.

34. Okun' L. B. Leptons and Quarks. M.: Nauka, 1981 (in Russian).

Received on April 28, 2007.



Šμ··¥±Éμ· ’. …. �μ¶¥±μ

�μ¤¶¨¸ ´μ ¢ ¶¥Î ÉÓ 26.07.2007.
”μ·³ É 60× 90/16. �Ê³ £  μË¸¥É´ Ö. �¥Î ÉÓ μË¸¥É´ Ö.

“¸². ¶¥Î. ². 0,93. “Î.-¨§¤. ². 1,32. ’¨· ¦ 415 Ô±§. ‡ ± § º 55851.

ˆ§¤ É¥²Ó¸±¨° μÉ¤¥² �¡Ñ¥¤¨´¥´´μ£μ ¨´¸É¨ÉÊÉ  Ö¤¥·´ÒÌ ¨¸¸²¥¤μ¢ ´¨°
141980, £. „Ê¡´ , Œμ¸±μ¢¸± Ö μ¡²., Ê².†μ²¨μ-ŠÕ·¨, 6.

E-mail: publish@jinr.ru
www.jinr.ru/publish/


