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An approximation of the real line shape of a scintillation detector with a gene-
ralized gamma distribution is proposed. The approximation describes the ideal scin-
tillation line shape better than the conventional normal distribution. Two parameters
of the proposed function are uniquely deˇned by the ˇrst two moments of the detector
response.
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INTRODUCTION

It is known that the response of a scintillation detector cannot be approximated
by a symmetric shape since the line skewness is not zero [1] (see also the
discussion below). An example of the situation where the deviations of the line
shape from a gaussian can lead to systematic errors is the search for the effects
on the tail of beta-spectra: smearing of the spectrum due to the detector's ˇnite
resolution provides a stronger underlying background in comparison to what one
would expect in the case of a gaussian line shape.

The purpose of this work is to provide a simple analytical expression for the
asymmetrical shape approximating the corresponding ideal scintillation detector
response for average scintillation intensity counting from tens to hundreds of
registered photoelectrons.

1. IDEAL SCINTILLATION DETECTOR

The statistical properties of a scintillation detector response were studied by
Breitenberg [1] and independently by Wright [2]. They showed that the relative

variance vQ ≡
σ2

Q

μ2
of the scintillation detector pulse height is

vQ = vT + (1 + vT )(vn − 1
n

) +
1 + v1

μ
, (1)

where vT is the relative variance of the photons transfer efˇciency, μ is the mean
signal registered at the photomultiplier (PMT) anode, measured in photoelectrons
(p.e.), n is the mean number of photons produced in a scintillation event and vn

is a relative variance of the number of photons (which reduces to 1
n in the case

of the normal or Poisson variance), and v1 =
(

σ1
q1

)2

is a relative variance of the

single photoelectron response (s.e.r.) of the photomultiplier (q1 and σ1 are mean
position and variance of the single p.e. peak).

We will consider an ideal detector with the following features:

1. anode signal for a single registered photoelectron is described by normal
distribution;
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2. mean detector response is linear in the region of interest with respect to
the energy released in the scintillator; the photoelectrons are registered
statistically independent;

3. the number of registered photoelectrons (p.e.) n for a monoenergetic source
with a mean number of registered p.e. μ follows a Poisson distribution

P (n) =
μn

n!
e−μ;

4. intrinsic line-width of the scintillator is negligible, the variance of the num-
ber of scintillation photons is normal;

5. the detector is spatially uniform, i.e., events with the same energy produce
identical responses on the average at any position inside the detector;

6. noises in the system are negligible.

As it will be shown below, condition 1 is essential only when registering on the
average small numbers of p.e. in an event, μ � 8. As a rule, condition 2 is
required for any newly developed scintillation detector, conditions 3 and 4 are
usually fulˇlled for the majority of the scintillation detectors. Condition 5 is difˇ-
cult to satisfy for large volume detectors, but in the case of a spatially nonuniform
detector it is enough to introduce an additional parameter vT , deˇned above, to
improve the ˇt quality. An example of ˇtting the 14C beta-decay spectrum in a
large volume nonuniform detector will be given below (see Subsec. 4.3).

In [3] the case of a real scintillation, detector with many PMTs is considered,
and it is shown that in the above assumptions (1) reduces to

vQ =
1 + v1

μ
, (2)

where v1 is a relative variance of the single photoelectron response averaged
over all PMTs of the detector. Thus, the scintillation detector consisting of many
identical PMTs, surrounding the scintillator, can be considered as one PMT with
an extended photocathode. For this reason, the terms ®PMT¯ and the ®detector¯
will not be distinguished in the following discussion.

If the PMT response (anode output pulse height q) to precisely n photo-
electrons is fn(q), and the number of the registered photoelectrons is distributed
according to distribution P (n), then the PMT response function can be written
as f(q) =

∑
P (n)fn. The PMT response function here is the probability density

function (p.d.f.), it is normalized to the unity. At the absence of photoelectrons at
the input of the electron multiplier (n = 0) the PMT is registering the noise of the
system in accordance with the p.d.f. f0(q). Using the assumption of statistical in-
dependence of the registered photoelectrons one can write the p.d.f. of registering
precisely n photoelectrons as a convolution of n independent single-photoelectron
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signals fn = f1 ⊗ ... ⊗ f1. If f1 is described with a normal distribution, then fn

follows a normal distribution as well, with mean n · q1 and variance σn =
√

nσ1.
With a proper choice of f1(q) function the p.d.f. of the PMT response can

be constructed at any mean scintillation intensity μ:

f(q) =
∑
n=0

P (n)fn(q) = P (0)f0(q) +
∑
n=1

P (n)fn(q) ⊗ f0(q). (3)

The Fourier transform of (3) gives the characteristic function:

χ(s) = P (0)χ0(s) +
∑
n=1

P (n)χn
1 (s)χ0(s), (4)

where χ1(s) and χ0(s) are characteristic functions of the single photoelectron
response and noise, respectively.

For the case of the Poisson distribution of the probability to register precisely
n p.e. in a scintillation event of mean intensity μ p.e., the contributions from
n = 1, 2... p.e. can be summed in and (4) can be rewritten in a more compact
way:

χ(s) = e−μχ0(s) +
∑
n=1

μn

n!
e−μχn

1 (s)χ0(s) = eμ(χ1(s)−1)χ0(s). (5)

The analogous formula can be obtained for the generating function by using
the elementary facts from the theory of branching processes [4]. In fact, omitting
the noise term, Eq. (5) corresponds to a 2-stage cascade device: the photocathode
and electrostatic focusing system providing on the average μ Poisson-distributed
photoelectrons at the entrance of the electron multiplier with generating function
G2(s) = eμ(s−1); and the electron multiplier itself with a single photoelectron
response at anode f1(q) with corresponding generating function G1(s). The
resulting generating function has the same form as (5): G(s) = G2(G1(s)) =
eμ(G1(s)−1), except for the noise term χ0(s).

The inverse transform of (5) in some special cases of χ1(s) can be performed
analytically, for example, the case of an exponential single photoelectron response
was considered by Prescott in [5].

An example of realistic function f1(q) is shown in Fig. 1. This is the average
response observed for the ETL9351 photomultiplier used in the Borexino detector,
the measured mean relative variance over a set of 2200 PMTs selected for the
detector is v1 = 0.34 [8]. If the single photoelectron response of PMT and
noise function are known, then formula (5) can be used to construct the PMT
response for any μ for which the basic assumptions are valid. The method based
on the use of transform (5) has been successfully applied to ˇt the experimental
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spectra obtained with electrostatically focused hybrid photomultiplier tubes for
few registered photoelectrons (μ = 2.66 and μ = 6.36 p.e.) in [9], where formula
(5) was called ®light spectra sum rule¯.

Fig. 1. An example of the single electron response

It should be noted that single photoelectron spectra of the photomultiplier
studied in [9] has a very narrow single p.e. peak, so that the detector response
to μ = 6.36 has ®ˇne structure¯ peaks around the values corresponding to in-
teger numbers of the registered charge. In this article we consider the case of
μ � μ0 with μ0 big enough to make the contribution of the ˇrst resolved
n-fold photoelectron peaks to be negligibly small. The parameter μ0 can be ob-
tained from the following considerations. The PMT response to precisely n p.e.
(n-fold peak) with increase of n converges very fast to a normal distribution
with q = nq1 and σ2 = nσ2

1 as it follows from the central limit theorem. In
practice the PMT response to as low as n � 3 p.e. can be approximated by
a gaussian, see i.e., [6]. The (n − 1)-fold and n-fold peaks are not resolved if
the half width on the half heights resolution of the nth peak is worse than 1

2q1:√
2ln2

√
nσ2

1 > 1
2q1, i.e., n > 0.18

v1
. The contribution of responses from few

photoelectrons decreases very fast with the increase of μ. It is easy to check that
the condition P (0) + P (1) + P (2) < 0.01 is satisˇed already at μ0 � 8 p.e. In
this case instead of the real shape f1(q) of the PMT single electron response one
can choose the gaussian approximation for the function f1(q), with mean q1 and
variance σ1 coinciding with the corresponding parameters of the real-shape func-
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tion. Indeed, the response functions for 3 and more p.e. are well approximated
by a normal distribution, and 0, 1 and 2 photoelectrons contribute less than 1%
to the total spectrum (see also Fig. 2).

Fig. 2. Photomultiplier response obtained for 3 different single electron response functions
for the case μ = 3 p.e.

In such a way an ideal detector response is described by the inverse transform
of (5) with χ1(s) corresponding to the characteristic function of a gaussian with
the mean value and variance of the corresponding single photoelectron response:

χ1(s) = e−
1
2σ2

1s2
eiq1s. (6)

In the following discussion we call the ®ideal¯ detector response obtained
from (5) by using χ1(s) from (6), and we let the ®real¯ detector response to
refer to (5) with χ1(s) obtained by transforming the real shape of the single
photoelectron response. The difference between the ®real¯ and ®ideal¯ scintil-
lation response vanishes very fast with the increase of μ (at μ � 8 p.e.). We
have chosen the gaussian shape for s.e.r. for convenience, but any appropriate
s.e.r. line shape can be used (with a relative variance that of real s.e.r.). This is
illustrated in Fig. 2, where the theoretical photomultiplier responses for μ = 3 p.e.
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obtained for 3 different s.e.r. functions (realistic from Fig. 1, gaussian and rectan-
gular) with the same mean value and variance, are plotted. One can see that the
difference is noticeable only at the registered charge Q < 3 p.e., the tail of the
PMT response is modeled equally good with the gaussian and rectangular s.e.r.
functions∗.

2. THE NORMAL DISTRIBUTION AS A LIMIT CASE FOR IDEAL
RESPONSE

The ideal detector response converges quickly to the normal distribution
as μ grows. In fact, the Poisson distribution of the primary photoelectrons
at the input of the electron multiplier converges to a normal distribution for
big μ. The variance in the multiplication of the photoelectrons arriving at the
electron multiplier, for high μ values can be considered roughly the same for
all possible values of the registered number of photoelectrons (σ(μ + Δμ) =√

μ(1 + v1) + 1
2

1+v1√
μ Δμ + ... � σ(μ)). So, in the big μ limit the ideal response

converges to the convolution of two gaussian processes which give a normal
distribution with the mean value and variance, respectively:

q = μ · q1,

σ2 = (1 + v1) ·
q2

μ
= (q2

1 + σ2
1)μ, (7)

coinciding with the values found above considering statistical properties of the
scintillation registration process. We assume that the scale is calibrated in pho-

toelectrons, i.e., q1 = 1 (otherwise it is necessary to pass to variable
q

q1
). The

characteristic function for a gaussian p.d.f. is

χ(s) = e−
1
2 σ2

qs2
eiqs (8)

and it is apparently different from an ideal shape characteristic function (5) with
χ1(s) from (6). Moreover, one can calculate the moments of the ideal scintillator
response from its generating function:

Mn = (−i)n dnχ(s)
dsn

|s=0, (9)

∗So, attempts to evaluate the single electron response spectrum at μ � 1 seems to be senseless
for the PMT spectra with unresolved s.e.r. (v1 > 0.18), in the best case one can succeed to extract
q1 and v1values, but not the details of the s.e.r. shape.
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and check that only the ˇrst two moments of the gaussian and ideal responses
are equal. The third central moment calculated for the ideal response is M c

3 =
(1+3v1)μ which neither coincides with that of a normal distribution (it is simply

zero), nor converges to it with increasing μ. Only the skew s ≡ M c
3

σ
3
2

, which is a

measure of the distribution asymmetry, indeed converges to zero slowly enough

as
1 + 3v1

(1 + v1)
3
2

1
√

μ
.

The characteristic function (5) can be reduced to (8) at high μ. In this case
the integrand in (5) is concentrated near small s values (this is true for any χ1(s)
function which decreases fast enough). Developing χ1(s) in a Tailor series by

using (9) and keeping terms up to s2, we obtain χ1(s) = χs(0)+iM1s−
1
2
M2s

2+

... � 1 + iq1s − σ2
1 + q2

1

2
s2. Equation (8) can be obtained by substituting χ1(s)

by its development and performing the integration.
Although the normal approximation of the scintillation line shape is quite

common [1], there are situations in which its use leads to systematic errors in
the parameter deˇnition. Two examples will be considered below (see Sec. 4).
In order to resolve this problem, a better approximation of an ideal scintillation
shape is needed.

3. THE GENERALIZED GAMMA DISTRIBUTION AS A LIMITING CASE
FOR THE IDEAL RESPONSE

We will search for a function with the following properties:

1. the function converges to a normal distribution for μ → ∞;

2. it has the mean value and variance coinciding with that of the ideal scintil-
lator response;

3. it approximates the ideal scintillator response better than a conventional
normal distribution;

4. it is asymmetric with a skew decreasing as
1
√

μ
, and gives a better approxi-

mation of the distribution tail.

In literature the successful usage of the 2-parameter gamma distribution to ap-
proximate the output pulse height spectra of scintillation detectors is reported with
better results in comparison with a normal approximation [10, 11]. We were not
able to get a good agreement with the response function of an ideal detector using
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the above-mentioned distribution, so we have chosen a 3-parameter generalized
gamma distribution as a candidate:

f(x; m, α, β) =
m

Γ(α)
βmαxmα−1e−(βx)m

. (10)

The distribution describes a variety of well-known 1- and 2-parameter proba-
bility laws as special cases; more details regarding the distribution properties can
be found in [12].

We start by ˇtting the ideal scintillator response for different μ values using
(10) with 3 free parameters. It has been discovered that over a wide region of μ
the value of parameter m is close to 2, thus we ˇx it at this value and use the
following distribution as an approximation of the ideal shape response:

g(q; α, β) = 2βαΓ−1(α)q2α−1e−βq2
(11)

with parameters α and β providing equality of the mean value and variance of
(11) to the corresponding values of the ideal scintillation response. It is easy to
check that the moment of order n of the distribution (11) is

Mn = β−n
2

Γ(α + n
2 )

Γ(α)
.

The parameters α and β can be deˇned from the system of equations:{
q ≡ μ = Γ(α+ 1

2 )

Γ(α) β− 1
2

q2≡ μ2 + σ2 = α
β

. (12)

A recipe for the approximate solution of the system is given in Appendix A.
An alternative way of calculating the parameters α and β, based on the equality
of the ˇrst two even moments of (11) to the corresponding values of the ideal
scintillation response, is presented in Appendix B. It is curious to stress that a
special case m = 2 is found in many physical applications, some examples can be
found in [14]; in radio-engineering variants of the generalized gamma-distribution
are widely used to describe radio waves propagation in fading environment (Na-
kagami distribution [28])∗.

In the limit α → ∞ the distribution g(q) converges to a normal distribution
[13], condition 2 is satisˇed automatically, conditions 3 and 4 have been checked
numerically in a wide range of μ values. As it can be seen in Fig. 3, the
generalized gamma distribution approximates the ideal response better than a
gaussian. Figure 4 presents results of numerical calculations of the deviation of
the gaussian (with the mean value and variance that of an ideal response) and the
shape obtained with (11) from the ideal response calculated as

∗In [12] the case m = 2 is called Stratonovich distribution. We were unable to ˇnd the
corresponding reference in literature.
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Fig. 3. Comparison of the ideal scintillation response with the gaussian and the model by
means of a generalized gamma distribution for μ = 10, 20, 50 and 200 p.e. Responses
obtained by using the realistic s.e.r. function (see Fig. 1) are not distinguishable from the
ideal scintillation response in all the above plots

μ+5σ∫
μ−5σ

|g(q) − f(q)|dq, (13)

and has a simple mathematical interpretation. In Fig. 4 one can see that the
deviation of the generalized gamma distribution from the ideal one calculated by
using (13) is an order of magnitude lower than that in the gaussian distribution
case.

The quality of the ˇt in the tail has been checked by calculating the integral
in the region [μ + 2σ;∞] for the ideal and generalized gamma distributions. The
integral of the gaussian in this region is constant deˇned by the complementary
errors function: 0.5erfc(

√
2). The cumulative distribution corresponding to the

density (11) is

G(x) ≡
x∫

0

g(x)dx = γ(α, βx2), (14)
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Fig. 4. The deviation of the response constructed by using the generalized gamma function
from the ideal one is an order of magnitude lower than that for the corresponding gaussian.
The deviation was calculated by means of (13)

where γ(α, x) is the normalized incomplete gamma function. The integral in the
tail is 1 − G(μ + 2σ).

Integral in the tail for the ideal response was calculated by using the original
deˇnition (3):

t =
n=Nmax∑
n=Nmin

P (n)
1
2
erfc

(
2σ√
2v1n

)

with Nmin = max([μ− 2σ], 0) and Nmax = μ + 5σ. The results are presented in
Fig. 5, one can see that the gamma distribution gives a better approximation of
the distribution tail than the gaussian one.

The most probable value of distribution (11) corresponds to q̂ =
√

1
β

(α − 1
2
)

[14], it can be seen that q̂ is shifted to the left from the mean value μ by � 1 + v1

2
.

10



Fig. 5. The ideal scintillation response tail is reproduced very well for μ � 8 p.e. The

corresponding gaussian response tail does not depend on μ and is deˇned by
1

2
erfc(

√
2)

4. TWO EXAMPLES

The precision of the description of the spectra of a real scintillation detector
with respect to different approximations of the response function has been veriˇed
by using both the real data of the CTF detector [20], and the data obtained with
the Monte Carlo model of the CTF detector. In the present article we consider
only the MC data, the results of comparison of the theoretical model with the real
CTF data will be presented soon by the Borexino collaboration.

The large volume liquid scintillator detector CTF is a prototype of the solar
neutrino detector Borexino [7]. The CTF was used to develop the methods of
deep puriˇcation of the liquid scintillator and water from the natural radioac-
tive impurities. The CTF consists of 3.7 t of liquid scintillator on the base of
pseudocumene (C9H12), contained in a transparent spherical inner vessel with a
radius of 1 m, and viewed by 100 photomultipliers (PMTs) mounted on an open
spherical steel support structure. The PMTs are equipped with light concentrator
cones to increase the light collection efˇciency; the total geometrical coverage of
the system is 21%. The radius of the sphere passing through the opening of the
light cones is 2.73 m. The entire detector is placed inside a cylindrical tank with
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water, which provides shielding against external gammas. On the bottom of the
tank another 16 PMTs are mounted to identify cosmic muons by their Cherenkov
light produced in the water. The detailed description of the CTF detector can be
found in [20]. The CTF has been in operation since 1993. At present it is in its
third data-taking campaign (CTF3) with the main goal of tuning the puriˇcation
strategy for the Borexino detector. The data collected with an upgraded version of
the CTF were used by Borexino collaboration in order to search for a number of
possible manifestations of nonstandard physics, a review of experimental results
can be found in [21].

The Monte Carlo model of the CTF detector was developed on the basis
of EGS-4 code [15] to check the validity of the background interpretation. It
accounts for the dependence of the light yield on the energy (ionization quenching)
and on the position where energy was deposited inside the detector. The model
has been calibrated with the CTF data and describes the CTF experimental spectra
with a satisfactory precision. For the purposes of the present work, the model
of the detector response was changed to take into account the deviations of the
response function from the normal one (the standard program uses the normal
approximation of the response function).

4.1. Monoenergetic Line. The detector response to the monoenergetic particle
has been modeled with the MC method. The particle energy was chosen in order
to provide the number of registered photoelectrons, μ = 150 p.e. The number
is big enough to ensure good approximation with a gaussian shape. Indeed, the
processing of the CTF data by using this approximation was successfully applied
even for higher values of the mean registered charge [16].

The response of the detector was generated in the following way. First, the
mean number μ0 of p.e. registered at one PMT was deˇned as μ0 = μ/NPMT,
where NPMT is the total number of the PMTs in the detector. Then, in each event
for each PMT the Poisson-distributed number K of registered p.e. was gener-
ated, and, ˇnally, the registered anode charge was simulated using the gaussian
approximation of the PMT signal with mean μ = K and variance σ2

μ = v1K .
The response of the detector is the sum of signals over all PMTs of the detector.
N = 106 events were simulated.

The MC data were ˇt with the gaussian response function and with the
response function based on the generalized gamma distribution. The results of the
ˇt are presented in Table 1 and Fig. 6. The mean values for the gaussian and non-
gaussian line shapes are practically the same, the difference in variances is within
the statistical precision of the method, the normalization is 0.2% underestimated
for the gaussian case. The χ2 value for the gaussian case excludes the hypothesis
of the normal line shape; in the case of the nongaussian shape we have a good
match of the data with the model (χ2/n.d.f. = 79.9/77). We have found no
difference when applying method A or B (see Appendix A and B) to the estimate
of parameters of the nongaussian line shape.
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Table 1. Characteristics of three different ˇts of the monoenergetic line

μ σQ Norm (×105) χ2/n.d.f.

MC input 150.00 14.18 10.000

Gauss 150.28±0.05 14.05±0.03 9.980±0.001 2056/77

Gen.gamma 150.28±0.05 14.12±0.03 9.999±0.001 79.9/77

Prescott 150.27±0.05 14.14±0.03 9.997±0.001 255.7/77

As it is noted above, Prescott in [5] obtained a precise line shape for the case
of an exponential single photoelectron response f1(x) = 1

ae−
x
a , x � 0, it reads:

f(x) =
1
a

√
μe−μ

(x

a

)− 1
2

e−
x
a I1(2

√
μ

x

a
), (15)

where I1 is a modiˇed Bessel function of the ˇrst kind for an imaginary argument.
The slope of an exponential distribution coincides with its mean value, i.e.,

q1 = a. The variance of the single electron exponential response does not depend
on parameter a and is vexp

1 = 2. It is clear that formula (15) can not be directly
applied to ˇt the real scintillation shape. The way to solve this problem was

pointed out in [5]: it is enough to treat a =
σ2

Q

2μ
as a scale parameter, the variance

in this case will scale as
√

a and the mean value as a. In order to preserve the
mean value and variance in the original scale, we multiply μ by a scale parameter

s =
2μ

σ2
Q

=
2

1 + v1
, and as before set q1 = 1:

f(x) = s
√

μse−μs(xs)−
1
2 e−xsI1(2s

√
μx). (16)

Now formula (16) can be used to ˇt the scintillation line, the results are
presented in Table 1. Comparing the χ2 values one can see that the quality of the
ˇt with Prescott formula is worse than in the case of the ˇt with the generalized
gamma function, but much better than in the case of the ˇt with the normal
distribution. The quantitative comparison of the models can be performed using

Fischer's F distribution as a signiˇcance test:
χ2

2

χ2
1

= F (α, ν, ν), where ν is

a number of the degrees of freedom and α is a conˇdence level [29]. Solving
equation F (α, 77, 77) = 2056/79.9 with respect to α one can exclude the gaussian
shape with a c.l. more than 99.999%. The scintillation line shape is described
better by Prescott's formula (as can be seen from the comparison of χ2 values in
Table 1) and the exclusion c.l. is smaller, but Prescott's model fails to describe
the data with high precision as the generalized gaussian distribution does.
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The obtained results have demonstrated very weak sensitivity of the real line
shape to the shape of the s.e.r., so one can choose any convenient s.e.r. shape in
order to invert formula (5).

Fig. 6. Comparison of the MC generated monoenergetic response ˇt using the normal (a)
and generalized gamma (b) distributions. To the noncritical eye the both ˇts are comparable
in the region μ ± 2σ, however, the deviations in the tail for the gaussian distribution are
evident. The χ2 = 79.9 value for the generalized gamma distribution is close to the
number of the degrees of freedom (n.d.f. = 77), while for the normal distribution the
χ2/n.d.f = 2056/77 excludes the normal-distribution hypothesis

4.2. 14C Beta Spectrum: MC Model of the Experimental Data. The major
part of the background in the ultrapure CTF in the energy region up to 200 keV
is induced by β activity of 14C [22], which is present in the organic liquid
scintillator at the level of 10−18 g/g. The β decay of 14C is an allowed ground-
state to ground-state (0+ → 1+) GamowÄTeller transition with an endpoint energy
of E0 = 156 keV and half life of 5730 years. The end-point of the decay is used
in CTF to establish the energy scale, thus the precision of the modeling of 14C
spectrum deˇnes the precision of the energy scale calibration.

The beta energy spectrum with a massless neutrino can be written in the
following form [17]:

dN(E) ∼ F (Z, E)C(E)pE(Q − E)2dE, (17)

where E and p are the total electron energy and momentum; F (E, Z) is the Fermi
function with correction of screening caused by atomic electrons; C(E) contains
departures from the allowed shape.

For F (E, Z) we have used the function from [18] which agrees with tabulated
values of the relativistic calculation [19]. A screening correction has been made
by Rose's method [23] with screening potential V0 = 495 eV. The 14C spectrum
shape factor can be parametrized as C(E) = 1 + αE (see [25] for more details),
the value of the parameter α was ˇxed at the value α = −0.7 MeV−1.
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The deviations of the light yield from the linear law have been taken into
account by using the ionization deˇcit function f(kB, E), where kB is Birks'
constant [24]. To calculate the ionization quenching effect for the scintillator on
the base of pseudocumene, we used the KB program from the CPC library [26].
The value of the ionization quenching parameter kB = 0.017 cm−1 ·MeV−1 was
ˇxed at the value found by independent experiments. The radial dependence of
the mean registered charge on the point of interaction inside the detector has
been accounted for with the fR(r) function, obtained from the experimental data
(see [3]). For convenience the value of the fR function at the detector's center
was assumed to be the unity, fR(0) = 1.

The response of the detector for an event of 14C decay was generated in
the following way. First, the event energy E was generated according to the
spectrum (17), and the position of the event was generated in assumption of
uniform distribution of 14C decay events in the detector volume. Then the mean
number of p.e. has been deˇned, registered for an event of energy E occurring at
distance r from the detector center, taking into account detector's nonuniformity
and nonproportionality of the light yield on the energy:

Q(E, r) = A · E · fR(r) · f(kB, E),

where A is the scintillator speciˇc light yield measured in photoelectrons
per MeV.

Then, in each event for each PMT the mean value of registered number of
p.e. has been deˇned, and the registered p.e. number K was generated according
to the corresponding Poisson distribution. Finally, the registered anode charge
was simulated by using a gaussian approximation of the PMT signal with mean
μ = K and variance σ2

μ = v1K . The response of the detector is the sum of the
signals over all PMTs of the detector. N = 5 × 107 events were simulated, that
corresponds approximately to 3 years of continuous data taking with the CTF
detector.

The exponential underlying background has been added to the 14C β spectrum
to simulate the realistic situation. We have taken the parameters of the exponential
observed in the CTF detector. This background is mainly due to the external γ's
from decays of elements from 238U and 232Th chains in the water shield.

4.3. 14C Beta Spectrum: Fitting MC Data with Model Function. The real
detector response to uniformly distributed events is not spatially uniform. To take
into account the additional pulse height variance we exploit formula [3]:

σ2
Q = (1 + v1)Q + vT Q2, (18)

where Q = A · E · f(kB, E) · fR is the mean total registered charge for the
events of the energy E uniformly distributed over the detector volume; fR is the
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mean value of the fR(r) function over the detector volume; v1 =
1

NPM

NPM∑
i=1

siv1i

is the relative variance of the PMT single photoelectron charge spectrum (v1i )
averaged over all PMTs of the detector (NPM in total) taking into account the ith
PMT relative sensitivity si. For the CTF detector this parameter has been deˇned
with a high precision during acceptance tests [8] and turns out to be v1 = 0.34;
A is the scintillator speciˇc light yield measured in photoelectrons per MeV;
vT is the relative variance of the photon transfer efˇciency, mainly due to the
spatial nonuniformity of the detector. Among other additional contributions there
are the intrinsic scintillator line width, the precision of the detector calibration,
the precision of zero signal deˇnition, etc. There is now need to keep these
additive parameters apart, so in the model we have left the only parameter. In the
MC modeling these additional contributions were set to zero, but, nevertheless,
parameter vT remained free (see the discussion below).

The MC spectrum was modeled with a sum of two components: 1) con-
volution of the 14C beta spectrum with the detector resolution function with 3
free parameters: total normalization N , light yield A, and additional variance vT ;

Fig. 7. Residual of the ˇt of the data using the normal and generalized gamma distributions.
The residual of the ˇt with the normal distribution has two fake peaks in the region of the
14C tail. This is a typical situation for the resolution function mismatch. The ˇt of the
same data with the generalized gamma function has no pronounced artifacts in the region
of the 14C beta-spectrum tail
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2) an additional exponential background with 2 free parameters.
The ˇnal model function S(Q) has 5 free parameters and is presented as:

S(Q) = N0

∫
N(E(Q′))

dE

dQ
Res(Q, Q′)dQ′ + ExpBkg(Q), (19)

where Res(Q, Q′) is the detector response function, and N (E) is the 14C beta-
spectrum (17).

Fig. 8. Fit of MC 14C spectrum with a model function. The ˇt region 25Ä220 p.e.
corresponds to 78Ä615 keV

Table 2. Parameters of the model ˇtting the CTF MC 14C spectrum. Errors cited for
each parameter are 68% c.l. errors obtained while studying the χ2 proˇle. The value
in parenthesis near every ˇtting parameter gives a deviation from the nominal value in
units of the standard deviation for the corresponding parameter

A Norm (×106) Slope χ2/n.d.f.

MC input 391.8 5.000 100.0

Gauss 387.8±0.3 (Ä13σ) 5.174±0.010 (+17σ) 99.2±0.5 (−2σ) 279.7/214

Gen.Gamma 394.0±0.3 (+7 σ) 5.033±0.008 (+4σ) 100.0±0.3 (0σ) 211.3/214
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The results of the ˇt of the experimental data with the gaussian and non-
gaussian line shapes in 30Ä250 p.e. region, are presented in Table 2 and Figs. 7,
8. Again, χ2 is much better for the nongaussian line shape. The comparison of the
models excludes the gaussian shape on the c.l. of 98% (solution of F (α, ν, ν) =
279.7/211.3 with ν = 214 gives α = 2 × 10−2).

This time relatively big deviations in parameters have been found when
applying different resolution functions. The deviations for parameters are bigger
than statistically allowed, so it should be treated as systematic errors. As it
follows from Table 2, the error in the light yield deˇnition for the case of the
gaussian line shape is −1%, the error of the total normalization is +3.5%. With
the generalized gamma function the error in light yield is smaller: +0.6%, the
same error has the total normalization.

It is not implicitly assumed that additional broadening of the scintillation line
shape (vT Q2) is distributed in the same way as the main contribution (1 + v1)Q.
The statement is not true in general, especially for big Q values where vT Q2

term can dominate in the response. In our case the main term dominates, that is
conˇrmed by the quality of the ˇt, so the precise distribution for the additional
line broadening can be neglected. The price paid for this simpliˇcation is the
observed systematical deviations.

When ˇtting the monoenergetic line from α decays of 214Po without selecting
the detector central region the quality of the ˇt is much worse at the left side
of the peak. In the case of 14C spectrum these imperfections on the left side
are covered due to the fast decrease in the spectrum, and the gaussian shape is
justiˇed. On the right side the proper description of the scintillation line tail is
important because of the same fact of the fast decrease of the spectrum. In the
case of the monoenergetic line the true shape of the distribution of the mean
values over the detector volume has to be taken into account.

CONCLUSIONS

An approximation of the real line shape of the scintillation detector with the
generalized gamma distribution has been proposed. The approximation describes
the ideal scintillation line shape better than the widely used normal distribution.
Two parameters of the proposed function are uniquely deˇned by the ˇrst two
moments of the detector response or by the ˇrst two even moments. The com-
putational complexity of the resolution function calculation is comparable to that
of the normal resolution.

It has been demonstrated that the ideal detector response to many photoelec-
trons (μ � 8) looses the sensitivity to the shape of the single electron response of
a photomultiplier and the only important parameter is the s.e.r. relative variance.
In analytical calculations any convenient function can be used instead of a real
s.e.r.
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While for the relatively ®�at¯ experimental spectra one can hardly expect
the enhancement of the overall quality of the ˇt, in the case of the fast-varying
distributions, such as tails of the β spectrum, the use of the proposed resolution
function allows one to exclude the artifacts associated with resolution mismatch,
and avoid systematic errors as demonstrated by the example with the 14C spectrum
ˇt.
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APPENDIX A

An approximate solution of system (12) can be obtained using the following
expansion [27]:

Γ(α + 1
2 )

Γ(α)
=

√
α

(
1 − 1

8α
+

1
128α2

+
5

1024α3
− 21

32768α4
+ ...

)
. (20)

For big μ the expansion converges fast because of α ∼ μ. Taking three
ˇrst terms and substituting β in the ˇrst equation, we obtain a simple quadratic
equation

f(α) ≡ 1 − 1
8α

+
1

128α2
=

μ√
μ2 + σ2

with the only positive root:

α0 =

1 +
√

2μ√
μ2+σ2

− 1

16(1 − μ√
μ2+σ2

)
, (21)

which gives the solution with a relative precision of ∼ 10−3 for μ > 10. A more
accurate solution can be obtained by using more terms from the expansion (20).
Assuming that more accurate solution has a form α = α0 + Δα and developing
f(α) and two remaining terms from (20) into a Tailor series keeping only a linear
term with respect to Δα, we obtain a linear equation for Δα with the following
solution:

Δα =
21
32 − 5α0

128α2
0 − 16α0 − 15 + 21

8α0

. (22)

Equation (22) has the relative precision of the parameter estimation of � 10−4

at μ = 20, at μ = 100 it is � 10−7.
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APPENDIX B

In radio-engineering the generalized gamma distribution variants are widely
used to describe radio waves propagation in fading environment. One of the most
popular is the m distribution proposed by Nakagami [28] in the functional form

p(R) =
2mmR2m−1

Γ(m)Ωm
e−

m
Ω R2

,

where Ω = R2, and m is the inverse of the relative variance of R2. The
advantages of this equation are simple rules to calculate the parameters.

In fact, for the even moments of (11) the system of two equations for α and
β will not contain gamma functions. Using the parameters α and β we can write
the second and the fourth moments:{

q2 = α
β

q4 = β−2 Γ(2+α)
Γ(α) = q2 · (q2 + q2

α )
. (23)

The solution of this system is⎧⎪⎨
⎪⎩

α = (q2)2

q4−(q2)2

β = q2

q4−(q2)2

. (24)

In order to solve (24), we should require the equivalence of the ˇrst two even
moments of (11) to those of the ideal scintillator response, which can be easily
calculated with (9):

q2 = μ2 + μ(1 + v1);

q4 = μ(1 + 6μ + 4μ2 + v2
1(3 + 2μ) + 2v1(3 + 8μ + 2μ2)) +

(
q2

)2

.
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