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Recursive Operations for Generating Vertices of Integer
Partition Polytopes

Following the polyhedral approach to integer partitions, we look at the set
of partitions of any integer as a polytope (convex bounded polyhedron). So, all
partitions of a given number are completely deˇned by the vertices of this polytope as
their convex combinations. In this work, we introduce two combinatorial operations
on partitions and show that with their help all vertices of any integer partition
polytope can be recursively generated from a considerably smaller subset of its
support vertices.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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INTRODUCTION

Integer partitions were a subject of many prominent mathematicians' constant
interest over the centuries. The ˇrst results on the topic date back to the Middle
Ages, though the ˇrst signiˇcant theorems on the topic belong to Euler [1].
The blow-up of research was caused by the works by Hardy, Littlewood, and
Ramanujan at the beginning of the XX century [1, 3]. Partitions turned out to
be the source of many new problems and techniques. In the last decades we
have witnessed an outburst of new results in the ˇeld that is related to the Young
diagram technique [2, 7]. Today integer partitions are of great importance in
number theory, combinatorics, representation theory, mathematical physics, and
statistical mechanics [7].

This work develops the polyhedral approach to integer partitions originated
in [5] and signiˇcantly enhanced in [6].

A partition of a positive integer n is any representation of n as a sum of
positive integers:

n = n1 + n2 + . . . + nk, ni ∈ Z, ni > 0, i = 1, . . . , k. (1)

The main idea of the new approach is to study the set of partitions of any n
as a polytope (i.e., a bounded polyhedral sets). This shift from the set to the
polytope brings geometry into arithmetic and gives hope of clarifying a resulting
geometrical structure related to convex combinations.

In general, there are two ways of describing any polytope: 1) by means of
its facets (faces of the maximal dimension) and 2) via its vertices. In [6], with
the use of a representation of Pn as a polytope on a partial algebra, all facets
of the partition polytope were described. Along with this, some sufˇcient and,
separately, necessary conditions for a partition to be a vertex of Pn were proved
there. In [4], the vertices were studied in more detail. A lifting type method for
constructing all vertices of Pn was proposed. The main result is a criterion of
whether a given partition is a convex combination of two others. With its use,
a great amount of partitions that are not vertices (actually, all for up to n = 20)
can be recognized. The criterion generalizes all previously obtained necessary
conditions for a partition to be a vertex and yields new ones, in particular, an
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exact upper bound = log (n + 1) on the number of distinct parts in any vertex
following from it as a consequence.

Vertices of the partition polytope form a subset of the set of all partitions
that generates the whole set, since each partition can be expressed as a convex
combination of ˇnite tuples of vertices. Hence, the polyhedral approach allows
avoiding enumeration of all partitions of a given n.

In this work, we show that it is sufˇcient to know only a small subset of
vertices because all others can be constructed from these ones with the use of two
simple combinatorial operations. The essence of both operations is that some parts
of a partition are combined into greater parts. When one operation is applied, the
new part is constructed from two different parts, while in the case of the second
operation, the new part is built of all entries of one part.

In Sec. 1, we deˇne the polytope of partitions, introduce notation, and formu-
late the previous results to be used further. In Sec. 2, we deˇne the combinatorial
operations of combining the parts of a partition and prove that their application
to vertices leads to the vertices. Further on, we introduce the notion of a support
vertex and present some experimental data on the number of support vertices for
small n. The results of the work as well as some problems it evokes are discussed
in Conclusion.

1. BASIC NOTIONS, NOTATION, AND SOME PREVIOUS RESULTS

When the polyhedral approach to partitions is applied, each partition (1)
of the integer n is associated with a point x = (x1, x2, . . . , xn) ∈ R

n, whose
ith component xi is a nonnegative integer equal to the number of entries of
the part i in the given partition, 1 � i � n. For example, the partition
8 = 1 + 1 + 2 + 4 corresponds to the point x = (2, 1, 0, 1, 0, 0, 0, 0) ∈ R

8.
We identify partition (1) with the corresponding point x throughout the text. The
summands ni participating in (1) are called the parts of the partition.

The following notation is used: Z+ denotes the set of positive integers;
[1, m] denotes the segment {1, 2, . . . , m} of integers, m ∈ Z+. Let x � n denote
that x ∈ Z

n
+ is a partition of n, and let S(x) denote the set {i ∈ [1, n] |xi > 0};

so S(x) is the set of distinct parts of x � n. For a given polytope P , let vert P
denote the set of its vertices. To this end, we write 0k for the sequence of k
zeroes.

The polytope Pn ⊂ R
n of partitions of n is deˇned as the convex hull of the

set

Tn = {x ∈ Z
n|x1 + 2x2 + . . . + nxn = n, xi ∈ Z, xi � 0, i = 1, . . . , n}

of incidence vectors of all partitions of n:

Pn = conv Tn.
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The polytope Pn belongs to the hyperplane x1 + 2x2 + . . . + nxn = n and is
(n − 1)-dimensional; in fact, it is a pyramid with the point (0n−1, 1) as the apex
and the base lying in the hyperplane xn = 0 [6]. Nevertheless, we study it as
lying in R

n.
For any polyhedron P , its point x is a vertex if it cannot be represented as

a convex combination x =
k∑

j=1

λjy
j of some other points yj ∈ P , 1 � j � k,

k > 0; here λ1, λ2, . . . , λk are real numbers satisfying
k∑

j=1

λj = 1, λj > 0. The

same refers to the polytope Pn. Since every partition of n, which is not a
vertex, is a convex combination of some vertices, the vertices of Pn form a
kind of basis, regarding the operation of taking a convex combination, for the
whole set of partitions of n. This means that the set of all partitions can be
reduced to the set of vertices, which is smaller in size. A direct calculation shows
that the gap in their sizes is noticeable, though we cannot estimate how big the
difference is. Anyway, this reduction could be used, for instance, for solving
linear optimization problems on partitions, because these are vertices that provide
their optimal solutions.

Let us cite some results from [4]. The next theorem gives a criterion of
representability of a given partition as a convex combination of two others.

Theorem A [4]. A partition x � n is a convex combination of two partitions
(and hence x /∈ vert Pn) if and only if there exist two disjoint subsets of parts
of x, S1, S2 ∈ S(x), and two tuples of integers u = 〈uj ∈ Z+; j ∈ S1〉 and
v = 〈vk ∈ Z+; k ∈ S2〉 satisfying the following relation:

∑

j∈S1

ujj =
∑

k∈S2

vkk, 0 < uj < xj , 0 < vk < xk. (2)

The Theorem easily implies the following corollary.
Corollary. For a given x ∈ vert Pn none integer k ∈ [1, n] that can be

represented as a nonnegative integer combination

k =
∑

i∈S(x)

αii, αi ∈ Z+, αi � xi, (3)

of some distinct parts of x, is a part of x. In other words, any k of form (3)
satisˇes k /∈ S(x).

2. GENERATING VERTICES OF THE PARTITIONS POLYTOPE

Now we introduce two combinatorial operations of combining some parts of
a partition and show that if applied to a vertex of the polytope Pn each of them
produces a new vertex.
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Operation 1. Let x � n and let u, v ∈ S(x), u �= v, be two distinct
parts of x. To be more speciˇc, we consider that xu � xv . Then build the point
y = Cu,v(x) ∈ Z

n
+ with the components yu = 0, yv = xv−xu, yu+v = xu+v+xu,

and yj = xj , for j ∈ [1, n], j �= u, v, u + v.
Operation 2. Let x be a partition of n such that some part u ∈ S(x) enters

x more than once, i.e., xu > 1. Then build the point y = Cu(x) ∈ Z
n
+ with the

components yu = 0, yau = xau + 1, and yj = xj , for j ∈ [1, n], j �= u, au.
For brevity, denote xu = a, xv = b.
Theorem 1. Let a vertex x of the polytope Pn contain two distinct parts

u, v ∈ S(x), u �= v. Then, y = Cu,v(x) is also a vertex of Pn.
Proof. At ˇrst, let us show that y � n. Indeed,

n∑

i=1

yii =
n∑

j=1,
j �=u,v,u+v

yjj + (b − a)v + (xu+v + a)(u + v) =

=
n∑

j=1,
j �=u,v,u+v

xjj + bv − av + xu+v(u + v) + a(u + v) =
n∑

i=1

xii = n.

Now prove that y ∈ vert Pn. It follows from the corollary that xu+v = 0.
Suppose, on the contrary, that y /∈ vert Pn. Then, y is a convex combination

y =
k∑

t=1
λty

t,
k∑

t=1
λt = 1, λt > 0, of some partitions yt � n, 1 � t � k. It follows

from yu = 0 that yt
u = 0 for all t. Deˇne integer points xt ∈ R

n, 1 � t � k,
with the components

xt
u = yt

u+v,

xt
v = yt

u+v + yt
v,

xt
u+v = 0,

xt
j = yt

j, j �= u, v, u + v.

All xt are partitions of n, since

n∑

i=1

xt
ii =

n∑

j=1,
j �=u,v,u+v

xt
jj + xt

uu + xt
vv =

=
n∑

j=1,
j �=u,v,u+v

yt
jj + yt

u+vu + (yt
u+v + yt

v)v =
n∑

i=1

yt
ii = n,
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where the last equality follows from yt � n. Now we obtain a representation of

x as a convex combination x =
k∑

t=1
λtx

t, since

∑

t

λtx
t
u =

∑

t

λty
t
u+v = yu+v = xu,

∑

t

λtx
t
v =

∑

t

λt(yt
u+v + yt

v) =
∑

t

λty
t
u+v +

∑

t

λty
t
v =

= yu+v + yv = a + (b − a) = b = xv,

∑

t

λtx
t
u+v =

∑

t

λt0 = 0 = xu+v,

∑

t

λtx
t
j =

∑

t

λty
t
j = yj = xj , for j �= u, v, u + v.

However, this contradicts x being a vertex of Pn. Therefore, y is a vertex of Pn

and the Theorem is proved.
Theorem 2. Let a vertex x of the polytope Pn contain a part u ∈ S(x) more

than once, i.e., xu = a > 1. Then, y = Cu(x) is also a vertex of Pn.
Proof. It follows from the corollary that xau = 0, hence yau = 1. As in the

previous theorem, one can check that y � n

n∑

i=1

yii =
n∑

j=1,
j �=u,au

yjj + au =
n∑

j=1,
j �=u,au

xjj + xuu =
n∑

i=1

xii = n.

Now prove that y ∈ vert Pn. Suppose, on the contrary, that y /∈ vert Pn. Then, y

is a convex combination y =
k∑

t=1
λty

t,
k∑

t=1
λt = 1, λt > 0, of some partitions yt,

1 � t � k, of n. Deˇne integer points xt ∈ Z
n
+, 1 � t � k, with the components

xt
u = ayt

au,

xt
au = 0,

xt
j = yt

j , j �= u, au,

for all t. All xt are partitions of n, since

n∑

i=1

xt
ii =

n∑

j=1,
j �=u,au

xt
jj + xt

uu =
n∑

j=1,
j �=u,au

yt
jj + ayt

auu =
n∑

i=1

yt
ii = n,
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where the last equality follows from y � n. Now, for x we have a representation

x =
k∑

t=1
λtx

t, since

∑

t

λtx
t
u =

∑

t

λtayt
au = a

∑

t

λty
t
au = ayau = a = xu,

∑

t

λtx
t
au =

∑

t

λt · 0 = 0 = xau,

∑

t

λtx
t
j =

∑

t

λty
t
j = yj = xj , for j �= u, au.

So, we obtained that the partition x is a convex combination of partitions xt,
1 � t � k, which contradicts x being a vertex of Pn and ends the proof.

Let us illustrate the application of the operations of combining parts of par-
titions using the polytope P6 as an example. Following [6], 7 partitions listed
below are all vertices of P6, while the total number of partitions of 6 is 11:

x1 = (6, 0, 0, 0, 0, 0), x2 = (2, 0, 0, 1, 0, 0), x3 = (1, 0, 0, 0, 1, 0),

x4 = (0, 3, 0, 0, 0, 0), x5 = (0, 1, 0, 1, 0, 0), x6 = (0, 0, 2, 0, 0, 0),

x7 = (0, 0, 0, 0, 0, 1).

Applying Operation 1 to x2 leads to x3, while applying it to x3 and x5 leads
to x7. With the help of Operation 2, we obtain x5 from the vertex x2, and x7

again from the vertices x4 and x6. On the other hand, it is not hard to verify that
none of the vertices x1, x2, x3, x6 can be obtained from any other vertex with
the use of these two operations. Therefore, all vertices of the polytope P6 can
be obtained from 4 vertices x1, x2, x3, x6 and this is a minimal set of this kind,
relative to inclusion.

The next deˇnition is natural.
Deˇnition. A vertex of a partition polytope is called the support vertex if it

cannot be obtained as a result of application of any operation of combining parts
from any other vertex of the same polytope.

It follows from above that x1, x2, x3, x6 are support vertices of the poly-
tope P6.

Numbers of partitions, vertices and support vertices for n = 6, 10, 20

n 6 10 20
# partitions 11 42 627
# vertices 7 19 99

# support vertices 4 9 29

Numerical data of the number of partitions, vertices, and support vertices of
the partition polytopes for n = 6, 10 and 20 is presented in the Table.
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We can see from the Table that if part of the support vertices for n = 6
constitutes 36% of the whole set of partitions, then in the case of n = 10 it
decreases to 21%, while in the last case of n = 20 it falls down to less than 5%.
It is not hard to notice that the ratio of the number of support vertices to the
number of vertices in total also deˇnitely decreases, while n grows up.

CONCLUSION

For the most known polytopes, their vertex description demands the know-
ledge of the full list of their vertices. The results of this work show that in the
case of the partition polytope a peculiar situation takes place. It is possible to
avoid calculation of all vertices of Pn if one would have constructed its support
vertices. All others can be built from these ones with the use of consequent
application of the operations of combining parts introduced in the work. The full
list of partitions of an integer n can be obtained afterwards from the vertices of
Pn by calculating all integer points of R

n that are convex combinations of the
vertices. The questions of how to construct the set of support vertices for a given
n and what is its cardinality remain the tasks for the future research.
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