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For nucleons and pions, the relations among the propagators and vertex functions
to describe the vector electroweak transitions are acquired as immediate corollary of
symmetries of the hadron strong and electroweak interactions. A point of value is
that the considered system comprises strongly interacting hadrons of different sorts.
The electromagnetic corrections to hadron vertex functions and propagators are taken
into account up to e2 order. The sequels are discussed in the light of calculation of
the radiative corrections in describing the nucleon and pion electroweak transitions.
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INTRODUCTION

In these days, the investigations in the realm of elementary particles are
usually associated with the high-energy physics on the modern super-accelerators.
It is so just because the large momentum transfer is generally considered to
be quite necessary to inquire into the structure of particles. Notwithstanding,
thorough study of the low-energy electromagnetic and weak (EW) interactions
of hadrons with the gauge ˇelds, in particular the neutron and pion β-decay, is
realized to be appropriate to gain an insight into the elementary particle physics.
Such investigations can especially serve to check up conceivable deviations of
experimental data from predictions of the Standard Model (SM) which is widely
believed to be the real theory of elementary particles [1, 2]. That is why there
exists the unwaning interest in studying the semileptonic processes [3]. Yet
these differences between SM predictions and experimental measurements can
never be expected to amount more than ∼ 1%. Consequently, the accuracy of
experimental measurements and theoretical calculations has at least to be a few
tenth of per cent in order to descry these feasible discrepancies, for otherwise
they would be indiscernible. This high-precise study has also to be all-round
comprising manifold characteristics of the considered phenomena. By now, the
rates of the neutron and pion β-decay have been measured with the highest
accuracy, ∼ 0.1% [4, 5]. Other characteristics of these processes are believed to
be obtained with the same precision in the relevant experiments before long [3, 6].
Then, in its own right, the theory is required to provide the respective trustworthy
computations which ought to be correct at the 10−3-level in order to try and
make certain of SM validity. In the case that some ambiguities (for instance, any
ad-hoc quantities such as the cut-off parameters and so on) slip in consideration,
any uncertainties induced thereby must be elucidated explicitly.

In so far as the accuracy 10−2 or better goes, consistent allowance for the
radiative corrections (RC) becomes of crucial value in the theoretical treatment of
the electroweak processes involving hadrons. In calculating RC to the processes of
hadron interaction with the electromagnetic ˇeld and to the semileptonic processes,
such as the neutron and pion β-decay, one faces three rather different problems.
The infra-red (IR) and ultra-violet (UV) divergences inherent in the RC compu-
tation are removed amenably to the method elaborated in Ref. [7], and pursuant
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to the on-mass-shell renormalization scheme [2, 8, 9] in the SM framework (see
Refs. [10Ä12]). The third problem is how to allow for the hadron strong interac-
tion and the hadron compositeness, intrinsic structure of the hadron. Although, in
principle, it is just the SM where allowance for the hadron structure and strong
interaction ought systematically to be carried out in a given electroweak process,
the third problem still persists unsolved, remaining by now an unsettled computa-
tional challenge. An attractive and encouraging idea is to sidestep the immediate
allowance for hadron compositeness with recourse to the certain general relations
between the propagators, scattering amplitudes and vertex functions of hadrons
interacting with the gauge ˇelds. The way how to put this idea into effect could be
perceived in the widely known work [13], with some kind of the WardÄTakahashi
(WT) identities designed to treat the pure vector part of RC to the pion β-decay.

Utilizing the respective WT identities, ˇrst set forth in Ref. [13], is pivot of
the ensuing calculations [14Ä16] of RC to the β-decay of hadrons. The manifold
posterior papers (see, for instance, Refs. [17] and plenty of others) have merely
been reasoning about the issues of the work [16]. Thus, to repose full trust and
conˇdence in the results obtained in this approach, one ought ˇrst of all to acquire
consistently the WT identities directly dictated by symmetries of the theory. In
consequence, the respective WT identities to describe the vector interaction of
nucleons and pions with the gauge ˇelds are obtained (Sec. 3) as direct corollary of
the global gauge invariance of the pure hadron lagrangian, that provides the total
hadron vector current conservation (Sec. 1), and of the local gauge invariance of
the lagrangian to describe hadron interactions with the electromagnetic and weak
ˇelds (Sec. 2). The evaluation of the electromagnetic corrections to the nucleon
and pion vertex functions and propagators is carried out with the accuracy of
order e2. The outcome is discussed (Sec. 4), especially in correlating with what
was asserted in Refs. [13Ä17] concerning the RC computation.

Even in mere deducing the WT identities themselves one gets to realize
to what extent they are pertinent to bypass the immediate allowance for hadron
compositeness in RC calculation. None the less, the inquiry into the WT identities
is of principle value in its own right.

1. THE CONSERVED HADRON CURRENTS

Pursuing the general Lagrange method (see, for instance, Refs. [1, 2, 18,
20Ä22]), let

{φ(x)} ≡ {φ1(x1), φ2(x2), ...} and {∂μφ(x)} ≡ {∂μφ1(x1), ∂μφ2(x2), ...}
(1.1)

be sets of generic hadron ˇelds and their ˇrst derivatives, and the lagrangian

Lh ≡ Lh[{φ(x)}, {∂μφ(x)}] (1.2)
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describe a system of these strongly interacting ˇelds φ which satisfy the EulerÄ
Lagrange equations

∂μ
∂Lh

∂[∂μφr(x)]
=

∂Lh

∂φr(x)
. (1.3)

The canonically-conjugated momentum is deˇned

Πr(x) =
∂Lh

∂
(
∂0φr(x)

) , (1.4)

and the equal-time (anti)commutation relations hold

φs(x)φr(y) ± φr(y)φs(x) = Πs(x)Πr(y) ± Πr(y)Πs(x) = 0,

φs(x)Πr(y) ± Πr(y)φs(x) = iδsr · δ(x − y), x0 = y0.
(1.5)

When the lagrangian (1.2) is invariant under a gauge transformation

φ′
r(x) =⇒ φr(x) − iεa(x)�a

rsφs(x) (1.6)

with constant inˇnitesimal parameters εa, i.e., under a global transformation, the
corresponding hadronic currents

Ja
μ(x) =

∂Lh(x)
∂[∂μεa(x)]

= −i
∂Lh(x)

∂[∂μφr(x)]
�a
rsφs(x) (1.7)

are conserved
∂μJa

μ(x) = 0. (1.8)

The time components of the currents (1.7) read as

Ja
0 (x) = −iΠr(x)�a

rsφs(x) (1.9)

and the commutators come out

[Ja
0 (x), φr(y)] = −δ(x − y)�a

rsφs(x). (1.10)

Let our general objective be studying the strangeness-conserving electroweak
transitions of non-strange hadrons. The nucleon and the pion are only non-
strange hadrons which are stable against strong decay modes. In this respect,
the generic set of the hadronic ˇelds {φr(x)} can be considered as consisting of
a doublet of nucleon ˇelds φr(x) ≡ ψN (x), N = n, p, and a triplet of physical
pion ˇelds φr(x) ≡ πa(x), a = 0,±, deˇned as usual through the isovector ˇeld
ϕ = {ϕr}, r = 1, 2, 3,

π0(x) = ϕ3(x), π±(x) =
1√
2
[ϕ1(x) ∓ iϕ2(x)]. (1.11)
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Strong interactions of these ˇelds ψN (x), πa(x) ought to be taken into consider-
ation in due course.

The conserved vector hadron currents are induced as we explore this isospin
symmetric hadron system described by the lagrangian Lh (1.2). Invariance of
the nucleonÄpion lagrangian Lh(x) (1.2) under the global SU(2) rotation of the
ˇelds

ψ′
N (x) =⇒ ψN (x) − iεr

τr NN ′

2
ψN ′(x) , (1.12)

ϕ′
s(x) =⇒ ϕs(x) − εstrϕt(x)εr , (1.13)

N, N ′ = n, p, r, s, t = 1, 2, 3

yields, amenably to the general Eqs. (1.6)Ä(1.8), the conserved hadron isovector
current J μ(x) , {Jr μ(x)} (r = 1, 2, 3), one current Jr μ(x) of the triplet for each
εr in Eqs. (1.12), (1.13). The lagrangian Lh(x) (1.2) of the considered system
is also invariant under the global UY (1) transformation, with the hypercharge
Y = 1 for the nucleon isodoublet and Y = 0 for the pion isotriplet. Then, the
invariance of Lh(x) under the nucleon ˇeld UY (1) transformation

ψ′
N (x) =⇒ ψN (x) − iε0INN ′ψN ′(x)

Y

2
, Y = 1, (1.14)

yields the conserved neutral isoscalar current J0 μ(x). The conserved currents
J μ

r (x) and J μ
0 (x) in the usual way serve to construct the neutral current

J0
μ(x) = J3 μ(x) + J0 μ(x), (1.15)

and the charge transition currents

J±
μ (x) = J1 μ(x) ± iJ2 μ(x). (1.16)

These conserved physical currents J0
μ(x), J±

μ (x) simultaneously take their origin
in the invariance of the lagrangian Lh(x) (1.2) under the global gauge transfor-
mation (1.6) of the doublet of nucleon ˇelds ψN (x) and the triplet of physical
pion ˇelds πa(x),

ψ′
N (x) =⇒ ψN (x) − iεa�a

NN ′ψN ′(x), a = 0,±, N, N ′ = n, p, (1.17)

π′r(x) =⇒ πr(x) − iεa�a
rsπ

s(x), a, s, r = 0,±, (1.18)

with the constant matrices �a
rs

�a
NN ′ =

1
2
δa0(INN ′ + τ0

NN ′) + a2τa
NN ′ , a = 0,±, N, N ′ = n, p, (1.19)

�+
0− = −�+

+0 = �−−0 = −�−0+ =
√

2, �0
++ = −�0

−− = 1, (1.20)
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where τ0 = τ3, τ
± = (τ1 ± iτ2)/2 are the Pauli matrices; all the other elements

of the �-matrices are equal to zero. The notations (1.19), (1.20) prove to be
convenient in the further evaluations. As one observes, the charged current
J+

μ (x) increases and J−
μ (x) decreases electric charge of a hadron system by

unity. J±
μ (x) are the transition currents between states with charges differing

by one. They actually occur in treating the β-decay of hadrons. The neutral
current J0

μ(x), the combination of the third component of the isovector current
and the isoscalar current, is rightly understood to be the electromagnetic current,
which stands to describe interaction of a hadronic system with an electromagnetic
ˇeld. So, hereafter any current with the upper index 0 is implied to be the
electromagnetic current, J0

μ(x) ≡ Jem
μ (x).

With having recourse to the SM concepts [1, 2, 8, 9, 22], the third component
J μ

3 (x) of the isotriplet current J μ(x) and the isoscalar current J μ
0 can still be

combined giving, besides Jem
μ (x), the conserved neutral weak current

JZ
μ (x) = J3 μ(x)

(
1 − 2s2

W

)
− J0 μ(x)s2

W , s2
W = 1 − M2

W

M2
Z

, (1.21)

with the coefˇcients chosen so as this current (1.21) serves to describe the feasible
hadron transitions in the neutral Z-boson ˇeld [1, 2, 22]. This conserved current
JZ

μ is due to Lh(x) (1.2) invariance under the global gauge transformation (1.17),
(1.18) with a → Z and

�Z
NN ′ = −1

2
s2

W +
1
2
τ0
NN ′

(
1 − 2s2

W

)
, (1.22)

�Z
rs = �Z

++ = −�Z
−− =

(
1 − 2s2

W

)
. (1.23)

Here MZ , MW are the Z- and W -boson masses.
It is right off to stress that just the very total hadron currents J μ

r (x),J μ
0 (x),

J0
μ(x) ≡ Jem

μ (x), J±
μ (x), JZ

μ (x) are conserved, and not the currents of nuc-
leons and pions separately, as we consider the system of interacting hadrons.
The lagrangian Lh(x) (1.2) is to be invariant under the simultaneous gauge
transformation of nucleon and pion ˇelds. And it can not be required to be
invariant under the transformation (1.12) or (1.13) of nucleon and pion ˇelds
separately.

A particular form of the conserved current Ja
μ(x) is speciˇed by a concrete

form of Lh (1.2), provided it is invariant under the transformations (1.12)Ä(1.14),
(1.17)Ä(1.20), (1.22), (1.23). This lagrangian is put into the usual form

Lh(x) = LN (x) + Lπ(x) + Lint
str(x), (1.24)

where
LN (x) = iψ̄N (x)[γμ∂μ − MN ]ψN (x), (1.25)
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Lπ(x) =
1
2
[∂μϕ∂μϕ − m2ϕϕ] = ∂μπ+∂μπ− − m2π+π−+

+
1
2
∂μπ0∂μπ0 − 1

2
m2π02, (1.26)

and we choose, for the sake of deˇniteness, the hadron ˇeld interaction in the
widely applied expedient form

Lint
str = gNN ′πψ̄N ′(x)γ5

(
τ0π0(x) +

√
2π+(x)τ+ +

√
2π−(x)τ−

)
ψN (x)−

− λ

4
(
πaπ−a

)2
, (1.27)

so as the total hadron lagrangian is invariant under the global gauge transforma-
tions (1.12)Ä(1.14), (1.17)Ä(1.20), (1.22), (1.23), and the total hadron currents are
conserved. These total hadron conserved currents are then written as the sum

Ja
μ(x) = ja

N μ(x) + ja
π μ(x), a = 0,±, Z, (1.28)

of the nucleon

ja
N μ(x) = ψ̄N (x)γμ�a

NN ′ψN ′(x), N, N ′ = n, p, (1.29)

and pion
ja
π μ(x) = −i�a

rs∂μπ(−r)(x)πs(x), r, s = 0,±, (1.30)

currents. In the formulae (1.25)Ä(1.30) and in the akin expressions hereafter, the
N -products of ˇeld operators are implied.

So far the lagrangian (1.24) involves pure strong interactions, the masses of
the members of a certain isomultiplet are equal in the expressions (1.25)Ä(1.27).
Distinctions between the members of an isomultiplet are on account of the hadron
interaction with the electromagnetic ˇeld introduced afterwards in due course.

As said above, the upper index a = 0 by any ˇeld and current operators
means that they are operators of the electromagnetic ˇeld and current. When the
multiplier a occurs in any formulae, it is implied having got the value a = 0 or
a = ±, corresponding to the elecrtomagnetic, J0

μ, or transition, J±
μ , current with

which a comes in conjunction.
In actual fact, any strong hadron interactions are allowable in place of the

suggested Lint
str (1.27), in particular the interactions generally received in the chiral

perturbation theory [23], provided the lagrangian Lh (1.24) remains invariant un-
der the global gauge transformations (1.12)Ä(1.14), (1.17)Ä(1.20), (1.22), (1.23).
A distinct form of Lint

str does not matter for our further treatment. In the same
light, although the expressions (1.24)Ä(1.27) incorporate explicitly the genuine
nucleon and pion ˇelds solely, this lagrangian Lh (1.24) is in general certain
to describe a variety of non-stable hadrons, hadron resonances, with consistent
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allowance for expedient strong interactions Lint
str. Thus, having recourse to the

expressions (1.24)Ä(1.27) does not spoil generality of our treatment, in point of
actual fact.

We deal with the Heisenberg ˇeld operators

φr(x) = S+
str(x0)φ0 r(t,x)Sstr(x0), (1.31)

where φ0 r(x) stand for ˇeld operators in the interaction representation, and the
matrix Sstr is dictated by Lint

str(x):

Sstr(x0) = T exp [i

x0∫
−∞

dt

∫
dxLint

str(t,x)], (1.32)

with the time ordering operator T . This Lint
str incorporates all the sorts of inter-

acting hadrons which are involved into consideration. In the case speciˇed by
(1.24)Ä(1.27), those are nucleons and pions. It stands to reason that the nucleon
ˇeld operators ψN (x) occur in the pion current ja

π μ(x) (1.30), and vice versa the
pion ˇeld operators πr(x) occur in the nucleon current ja

N μ(x) (1.29). Then, a
matrix element of ja

π μ(x) between pure nucleon states, 〈Nf | ja
π μ(x) | Ni〉, as

well as a matrix element of ja
N μ(x) between pure pion states, 〈πf | ja

N μ(x) | πi〉,
does not vanish in the general case.

It is here of crucial value to emphasize once more that only the total current
Ja

μ(x) (1.28) is conserved, when we deal with a system of interacting hadrons of
different kinds, nucleons and pions in the case considered. The nucleon and pion
currents ja

N μ (1.29) and ja
π μ (1.30) themselves are not conserved separately, as

strong interactions Lint
srt(x) are involved into Lh(x).

2. HADRON INTERACTION WITH THE GAUGE FIELDS

Now we are to construct the electroweak lagrangian LEW
int (x) to describe

interaction of the genuine hadron ˇelds φr in Lh (1.2) with the electromagnetic
ˇeld Aem

μ (x), and with the charged A±
μ (x) and neutral AZ

μ (x) ˇelds associated
with the W±- and Z-boson ˇelds. It originates from requirement of Lh (1.2)
invariance under a local (i.e., with spaceÄtime dependent parameters ε(x)) gauge
transformation (1.6).

In order for the local gauge transformation (1.6), displaced for the considered
case by Eqs. (1.12), (1.13), (1.17)Ä(1.20), (1.22), (1.23) with the spaceÄtime
dependent parameters ε(x), to be an invariance of the lagrangian Lh(x) (1.2),
(1.24), the derivatives ∂μφi(x) in Lh(x) are known (see, for instance, [1, 2, 18,
20,21]) to be replaced by the respective covariant derivatives Dμ(x) that read for
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our consideration as

∂μφs(x) =⇒ Dμφs(x) = ∂μφs(x) + ieAa
μ(x)�a

srφr(x), (2.1)

where the coefˇcients �a
sr are given by Eqs. (1.19), (1.20), (1.22), (1.23), and

Aa
μ(x), with a = 0,±, Z, are the respective gauge ˇelds. Then the lagrangian

LEW
int results in terms of the hadron currents Ja

μ(x) (1.28) and these ˇelds Aa
μ(x).

They are known to be related to the physical ˇelds Aem
μ (x), W±

μ (x), Zμ(x) and
the effective coupling constants by the equations

A0(x) ≡ Aem
μ (x), eA±

μ (x) =
√

GMW

21/4
W±

μ , eAZ
μ (x) =

√
GMZ

21/4
Zμ, (2.2)

with the Fermi interaction constant G, so that to provide the true effective de-
scription of nucleon and pion interaction with the electromagnetic and weak
ˇelds [1, 2, 18,23]. It is expedient to treat linear interactions of hadrons with the
external ˇelds A±

μ (x), AZ
μ (x), which are deˇned in Eq. (2.2), and alike with the

external electromagnetic ˇeld A
(e)
μ (x), separated explicitly from Aem

μ (x),

Aem
μ (x) = A(e)

μ (x) + Aem
μ (x), (2.3)

so as Aem
μ (x) remains to describe the quantum electromagnetic ˇeld.

What eventually counts is the effective lagrangian to explore the electromag-
netic corrections in describing the nucleon and pion β-decay, and their transitions
in external electromagnetic and neutral Z-boson ˇelds

L̃EW
int (x) = L̃em(x) + L̃1W (x) + L̃Wem(x) + L̃1Z(x) + L̃Zem(x), (2.4)

L̃em(x) = L̃1em(x) + L̃2em(x), (2.5)

L̃1em(x) = −eA0
μ(x)J̃0 μ(x) = −eAem

μ (x)J̃em μ(x) =

= −eJ̃0 μ(x)
(
A(e)

μ (x) + Aem
μ (x)

)
, (2.6)

L̃2em(x) = e2Aem
μ Aem μπ̃−(x)π̃+(x) ≈

≈ e2Aem
μ Aem μπ̃+(x)π̃−(x) − e2A(e) μ(x)j̃0μ(x), (2.7)

j̃a
μ(x) = Aem

μ (x)π̃s(x)π̃r(x)�a
dr�

0
(−d)s, d, s, r = 0,±, a = 0,±, Z, (2.8)

L̃1W (x) = −eAa μ(x)J̃a
μ(x) = −

√
GMW

21/4
J̃a

μ(x)W a μ(x), a = ±, (2.9)

L̃Wem(x) = −e2A0
μ(x)Aa μ(x)π̃s(x)π̃r(x) [�a

dr�
0
(−d)s] ≈

≈ −e2j̃a
μ(x)Aa μ(x) ≈ −ej̃a

μ(x)
√

GMW

21/4
W a μ(x), a = ±, (2.10)

8



L̃1Z(x) = −
√

GMZ

21/4
J̃Z

μ (x)Zμ(x), (2.11)

L̃Zem(x) ≈ −ej̃Z
μ (x)

√
GMZ

21/4
Zμ(x). (2.12)

All the interactions quadratic in the external ˇelds A(e)(x), A±
μ (x), AZ

±(x) are

abandoned in LEW(x) (2.4). As the interactions L̃Wem(x), L̃Zem(x), (2.10),
(2.12) explicitly involve the external ˇelds A±

μ (x), AZ
μ (x), the ˇeld Aem

μ (x) is
therein replaced by the pure quantum ˇeld Aem

μ (x), omitting the external ˇeld

A
(e)
μ (x). Retaining the terms linear in the external ˇeld A

(e)
μ (x), last rewriting

Eq. (2.7) gets clear. The contribution of the gauge ˇelds Aa
μ(x) themselves

Lgauge(Aa, ∂μAa) into the lagrangian of the treated system will not occur in the
further consideration, therefore there is here no need to plunge into its construc-
tion and further to add Lgauge(Aa, ∂μAa) to the total lagrangian Ltot (2.13).
For completeness' sake, we have rewritten Eqs. (2.6)Ä(2.12) through Aem

μ (x),
W±

μ (x), Zμ(x) and the respective coupling constants, though the particular form
of the coefˇcients in these expressions does not matter in further acquiring the
desirable WT identities.

The interactions L̃1Z(x), L̃Zem(x), (2.11), (2.12) are observed to be of the
same contents as the interactions L̃1W (x) , L̃Wem(x), (2.9), (2.10) are, with mere
replacing W±(x), J±

μ (x), j±μ (x) by WZ(x), JZ
μ (x), jZ

μ (x). Therefore, in order
to avoid super�uous writing we treat hereafter the hadron β-decay and the hadron
transitions due to interaction with an external electromagnetic ˇeld, and we shall
further leave out the feasible hadron transitions caused by interactions with the
external neutral weak Z-boson ˇeld. All the more that these transitions would be
actual when the large momenta, k2 ∼ M2

Z , were transferred thereby. Yet this is
rather not the case we are interested in for now.

As the total lagrangian to describe the considered system is the sum

Ltot(x) = L̃h[{φ̃}, {∂μφ̃}] + L̃EW
int [{φ̃}, {∂μφ̃}, {Aa}], (2.13)

the dependence of all the Heisenberg ˇeld operators φ̃i(x) on time, i.e., on x0,
is just determined by this Ltot(x) (2.13). The sign ®tilde¯, ∼, over the hadron
Heisenberg ˇeld operators and currents in Eqs. (2.4)Ä(2.12), as well as over all the
operators hereafter, designates the additional time dependence caused by L̃EW(x).
Let us recall that, as has been mentioned after Eq. (1.24), the N -products of ˇeld
operators are implied in expressions (2.4)Ä(2.12), as well as everywhere in the
akin formulae.

We purpose to calculate the electromagnetic corrections to the hadron cur-
rents, propagators, and vertex functions describing interaction of hadrons with

the external gauge ˇelds A
(e)
μ (x), W±

μ (x). The needful expression of the hadron

9



Heisenberg ˇeld operators φ̃i(x) is given in the usual way [22]:

φ̃i(x) = S+
em(x0)φi(x)Sem(x0), (2.14)

Sem(x0) = T · exp
(

i

x0∫
−∞

dτ

∫
dxLqem(τ,x)

)
, Sem(∞) ≡ Sem, (2.15)

in terms of the hadron interaction with the quantum electromagnetic ˇeld Aem
μ (x),

Lqem(x) = −eJ0 μ(x)Aem
μ (x) + e2Aem

μ (x)Aem μ(x)π+(x)π−(x), (2.16)

as seen from Eq. (2.5)Ä(2.7). Consequently, with allowance for the general
equation for S-matrix, one gets

∂μφ̃i(x) = S+
em(x0)∂μφi(x)Sem(x0)+

+ igμ0S
+
em(x0) [φi(x),

∫
dyLqem(x0,y)]Sem(x0). (2.17)

Then, the current J̃a
μ(x) (1.28) that occurs in Eqs. (2.6), (2.9) proves to be put

into the form

J̃a
μ(x) = S+

em(x0)Ja
μ(x)Sem(x0) − egμ0j̃

a
0(x), (2.18)

where the ˇrst order e-dependence is explicitly set forth in the second term.
To ascertain the desirable WT identities we are to calculate the current di-

vergence

∂μJ̃a
μ(x) = S+

em(x0)∂μJa
μ(x)Sem(x0)+

+ iS+
em(x0) [Ja

0 (x),
∫

dyLqem(x0,y)]Sem(x0) − e∂0j̃a
0(x). (2.19)

As the current Ja
μ(x) (1.28) is conserved, see Eq. (1.8), the ˇrst term here

disappears. Then, with the respective application [20Ä22] of Eqs. (1.5), (1.9),
(1.10) for ˇeld operators and their derivatives, the divergence (2.19) directly
transforms to

∂μJ̃a
μ(x) = ieaAem

ν (x)S+
em(x0)Ja ν(x)Sem(x0)−e∂ν j̃a

ν(x)+

+ ie2aAem ν(x)j̃a
ν(x), a = 0,±, (2.20)

in place of Eq. (1.8). As one might behold, Eq. (2.20) could be said to be, in a
way, in line with the theorem asserted in Ref. [25]. The last term in Eq. (2.20)
is due to the interaction L̃2em (2.7). The second term in the divergence (2.20)
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could be actually associated with the so-called Schwinger terms which are known
to occur in the current algebras approach, see, for instance, Refs. [20, 21]. Let
us remark that this term turns out to be determined by the divergence ∂μj̃a

μ(x) of
that, in a manner of speaking, ®current¯ j̃a

μ(x) which determines the interactions

L̃Wem(x), L̃2em(x), (2.10), (2.7), alike the current J̃a
μ(x) determines the inter-

actions L̃1em(x), L̃1W (x), (2.6), (2.9). This point proves to be of value in the
presented treatment.

In order to acquire the WT identities, we consider the vacuum expectation
value

K̃afi
μ ({φ}x, y, z) = 〈0 | T [J̃a

μ(x)φ̃f (y)φ̃i(z)] | 0〉 (2.21)

of the time ordered product of the Heisenberg ˇeld operators φ̃i(x) and the
currents J̃a

μ(x) (1.28) which determine the interactions L̃1em(x), L̃1W (x), (2.6),
(2.9). The divergences of these currents are given by Eq. (2.20). In Eq. (2.21),
as well as in all the expressions thereafter, the product φ̃f (y)φ̃i(z) of Heisenberg

ˇeld operators means ψ̃N (y) ˜̄ψN ′(z), N, N ′ = n, p, or π̃b(y)π̃c(z), b, c = 0±,
in considering the nucleon isodublet or pion isotriplet, respectively. Fourier
transfer (FT) of the quantity (2.21),

FT
(
K̃afi

μ ({φ}x, y, z)
)
≡

∫
dxdydz exp [ikx + ipfy + ipiz]K̃afi

μ ({φ}x, y, z),

(2.22)
is generally received (see, for instance, [18,19]) to be presented as follows:

FT
(
K̃aNN ′

μ ({ψ}x, y, z)
)

= (2π)4δ(k+pN+pN ′)Γ̃a
μ({ψ}N, pN ; N ′,−pN ′; k)×

× [ − G̃N (pN )G̃N ′(−pN ′)], N, N ′ = n, p, a = 0,±, (2.23)

FT
(
K̃abc

μ ({π}x, y, z)
)

= (2π)4δ(k + pb + pc)Γ̃a
μ({π}b, pb;−c,−pc; k)×

× [ − G̃b(pb)G̃−c(−pc)], a, b, c = 0,±, (2.24)

in terms of the nucleon and pion propagators

iG̃N (p) = FT(〈0 | T {ψ̃N (x) ˜̄ψN ′(x′)} | 0〉)δNN ′ , (2.25)

iG̃d(p) = FT(〈0 | T {π̃d(x)π̃−d(x′)} | 0〉), (2.26)

and the proper, one-particle irreducible, vertex function (VF) Γ̃a
μ({φ}f, pf ; i,

−pi; k) to describe transitions of a hadron from a state i with a momentum pi to
a state f with a momentum pf , a momentum k transferred to hadrons thereby.
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As understood, these transitions are due to the current J̃a
μ(x) that causes the

interactions L̃1em(x), L̃1W (x), (2.6), (2.9). As usual,

G̃−1
j (p) = G−1

j (p) − Σ̃j(p). (2.27)

Here Gj(P ) is the free hadron propagator dictated by LN (x), Lπ(x), (1.25),
(1.26), and the self-energy is

Σ̃j(p) = Σh
j (p) + Σ̃he

j (p) , (2.28)

where Σh
j (p) is caused by the pure strong interaction Lint

str(x) (1.27) in Lh(x)
(1.24), and Σ̃he

j (p) is due to the electromagnetic interactions L̃1em(x), L̃2em(x),
(2.6), (2.7) in L̃EW(x) (2.4), with taking the strong interaction Lint

str(x) (1.27) into
account therein as well. The self-energies Σh

j (p) are equal for all the members of a

given isomultiplet, whereas Σ̃he
j (p) are different for charged and neutral particles.

Involving the electromagnetic interaction, i.e., being of order e2 at least, the
quantities Σ̃he

j (p) are obviously considered to be much smaller as compared to

Σh
j (p).

When strong interactions are turned off, i.e., for non-interacting structureless
particles, the self-energy reduces in e2-order to

Σ(2)
N (p) = e2δNp

∫
dq

(2π)4i
Dλν(q)γλGN (p + q)γν , N = n, p, (2.29)

Σ(2)
d (p) = e2d2

∫
dq

(2π)4i
Dλν(q)Gd(p + q)(2pλ+qλ)(2pν +qν), d = 0,±, (2.30)

for the nucleon and pion, respectively, where

Dλν(q) = iFT〈0 | T [Aem
λ (x)Aem

ν (x′)] | 0〉 (2.31)

is the usual photon propagator. VF Γ̃a
μ({φ}f, pf ; i,−pi; k) is depicted by the

diagram

↑

pi

k

pf

Γ̃a
μ

. (2.32)

It should be emphasized that here we deal with the very proper (®truncated¯) VF,
without external hadronic lines.

The matrix element, dictated by the interactions L1em(x), L1W (x), (2.6),
(2.9), to describe transitions between states i and f of real free hadrons in an
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external ˇeld is given, in accordance with Eqs. (2.23), (2.24), in terms of VF Γ̃a
μ

Ma
if ({φ}pf , pi, k) = 〈φf , pf |

∫
dx

(
−ieAa

μ(x)J̃a μ(x)
)
| φi, pi〉 =

= −ie

∫
dq

(2π)4
Aa

μ(q)
∫

dx exp(iqx)〈φf , pf | J̃a
μ(x) | φi, pi〉 =

= −ieAa μ(k)U+(φfpf)Γ̃a
μ({φ}f, pf ; i,−pi; k)U(φi, pi), (2.33)

where Aa
μ(k) is the component of Fourier transformation of an external ˇeld

Aa
μ(x), k = pi − pf is a momentum transferred, and U+(φf , pf ), U(φi, pi) are

the wave amplitudes of free particles: the Dirac bispinor amplitudes ūN(pN ),
uN ′(pn′), N, N ′ = n, p, for nucleons, and the scalar amplitudes u∗

a(pa), ub(pb),
a, b = 0,±, for pions.

For non-interacting, point-like nucleons and pions, i.e., when Sstr = 1 in
Eq. (1.31), we have directly got, to order e2, the VFs

Γa
0 μ({ψ}N, p; N ′, p + k; k) = γμ�a

NN ′ + �0
NN ′e2

∫
dq

(2π)4i
Dλν(q)×

× γλGN (p + q)γμGN ′(p + k − q)γν , N, N ′ = n, p, (2.34)

Γa
0 μ({π}b, p;−c, p + k; k) = �a

b(−c)[2pμ + kμ]−

− (cb)e2

∫
dq

(2π)4i
Dλν(q)G−c(p + k − q)Gb(p − q)×

× (2pλ − qλ)(2(p + k)ν − qν)�a
b(−c)[2(p − q)μ + kμ], a, b, c, = 0±, (2.35)

which give place to Eqs. (2.23), (2.24) in the general case. The usual diagrams,
with the vertices corresponding to the interactions L1em(x), L1W (x), (2.6), (2.9),

↑

p + k

k

p

↑

p + k

k

p
+ (2.36)

will serve to illustrate these equations. Apparently, the second terms in
Eqs. (2.34)Ä(2.36) are non-vanishing only for interactions of charge particles
with an electromagnetic ˇeld, i.e., at a = 0.

We shall keep in view that these VFs treated in Eqs. (2.22)Ä(2.36) stand
to describe the hadron electroweak transitions caused only by the interactions
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L̃1em(x), L̃1W (x), (2.6), (2.9), which involve the current J̃a
μ(x), yet not by the

whole interaction L̃EW(x) (2.4). And yet the actual electroweak hadron transi-
tions are certainly caused by the very total interaction L̃EW(x) (2.4). Therefore,
VFs (2.22)Ä(2.36) themselves can not be correlated with the respective experi-
mental data that could serve to parameterizing the vertex functions. Thus, the VF
Γ̃a

μ has to be accomplished so as to gain a certain total VF Γ̃a
tot μ to describe the

observable electroweak transitions. The transitions caused by the left-over inter-
actions L̃2em(x), L̃Wem(x), (2.7), (2.10) will naturally come into consideration
in due course later on.

3. THE RELATIONS BETWEEN HADRON VERTEX FUNCTIONS
AND PROPAGATORS

Having acquired the hadron current divergence (2.20) and the electroweak
VFs (2.23)Ä(2.35), we now consider the key expression [19]

FT

(
∂μ

x K̃afi
μ

(
{φ}x, y, z

))
≡ (−ikμ)FT

(
K̃afi

μ

(
{φ}x, y, z

))
≡

≡ FT

(
K̃0afi

(
{φ}x, y, z

))
+ FT

(
K̃afi

(
{φ}x, y, z

))
(3.1)

to obtain the WT identities. Here the quantity FT

(
K̃afi

μ

(
{φ}x, y, z

))
is deˇned

by Eqs. (2.21), (2.22) and

K̃0afi
(
{φ}x, y, z

)
= δ(x0 − y0)〈0 | T {[J̃a

0 (x), φ̃f (y)]φ̃i(z)} | 0〉+

+ δ(x0 − z0)〈0 | T {φ̃f (y)[J̃a
0 (x), φ̃i(z)]} | 0〉, (3.2)

K̃afi
(
{φ}x, y, z

)
= 〈0 | T {∂μ

x J̃a
μ(x)φ̃f (y)φ̃i(z)} | 0〉, (3.3)

where the current divergence ∂μ
x J̃a

μ(x) is put into the expedient form (2.20).
Now, we are to work out the right-hand side of Eq. (3.1) by way of ascer-

taining the relations between the electroweak VFs and the propagators of hadrons:
the WT identities.

With allowance for Eqs. (1.4), (1.5), (1.9), (1.10) for the Heisenberg ˇeld
operators φ̃(x), the ˇrst term on right-hand side of Eq. (3.1) transforms to

FT
(
K̃0aNN ′

({ψ}x, y, z, )
)
= i(2π)4δ(pN+pN ′+k)�a

NN ′ [G̃N (pN )−

− G̃N ′(−pN ′)], N, N ′ = n, p, (3.4)
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for nucleons, and to

FT
(
K̃0abc({π}x, y, z, )

)
= i(2π)4δ(pb + pc + k)�a

b(−c)[G̃b(pb)−

− G̃−c(−pc)], a, b, c = 0,± (3.5)

for pions.
Terms of different kinds are incorporated into expression (3.3).
As presumed, all the calculations are carried out with the accuracy of

e2-order. With this precision, we can put Sem = 1 in the contribution to (3.3)
from the last (third) term of the divergence (2.20),

ie2a
√

2〈0 | {N [Aem
ν (x)Aem ν(x)]} | 0〉×

× 〈0 | T {N [π0(x)π−a(x)]φf (y)φi(z)} | 0〉 = 0, (3.6)

that vanishes apparently as a pure vacuum expectation value of an N -product
of electromagnetic ˇeld operators occurs therein. (Let us here recall the remark
given after Eqs. (1.28)Ä(1.30)). Then, we are left with the contributions to this
expression (3.3) from the ˇrst and the second terms of Eq. (2.20)

FT
(
K̃afi({φ}x, y, z, )

)
= FT

(
K̃1afi({φ}x, y, z, )

)
+ FT

(
K̃2afi({φ}x, y, z, )

)
,

(3.7)

FT
(
K̃1afi({φ}x, y, z, )

)
= ieaFT

(
〈0 |T {Aem

ν (x)Jaν(x)φf (y)φi(z)Sem}|0〉
)
,

(3.8)

FT
(
K̃2afi({φ}x, y, z, )

)
= −eFT

(
〈0 |T {∂μ

x j̃a
μ(x)φ̃f (y)φ̃i(z)}|0〉

)
. (3.9)

First we consider the quantity (3.8). Retaining the terms ∼ e2, it is rewritten
as follows

FT
(
K̃1afi({φ}x, y, z, )

)
≈

≈ ae2FT
(
〈0 | T {Aem

ν (x)Ja ν(x)φf (y)φi(z)
∫

dx′Aem
λ (x′)J0 λ(x′)} | 0〉

)
=

= a

∫
dq

i(2π)4
Dμν(q) · T a

1 μν({φ}f, pf ; i, pi; k − q, q), (3.10)

where the Fourier transfer of the vacuum expectation value of the product of
currents (1.28) and ˇeld operators φr(x) is introduced

T a
1 μν({φ}f, pf ; i, pi; k − q, q) =

=
∫

dx

∫
dy

∫
dz

∫
dx′ exp[ix(k − q) + ix′q + iypf + izpi]×

× e2〈0 | T {Ja ν(x)J0 μ(x′)φf (y)φi(z)} | 0〉. (3.11)
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This quantity (3.11) is generally received to be given (see, for instance, [18]) as
follows:

T a
1 μν({ψ}N, pN ; N ′, pN ′ ; k − q, q) =

= (2π)4δ(pN + pN ′ + k)[−G̃N (pN )G̃N ′(−pN ′)]×
× e2Ma

1 μν({ψ}N, pN ; N ′,−pN ′; k − q, q), N, N ′ = n, p, a = 0,± (3.12)

T a
1 μν({π}b, pb; c, pc; k − q, q) = (2π)4δ(pb + pc + k)[−G̃b(pb)G̃−c(−pc)]×

× e2Ma
1 μν({π}b, pb;−c,−pc; k − q, q), a, b, c = 0,± (3.13)

in terms of the proper VFs Ma
1μν({φ}f, pf ; i,−pi; k1, k2) to describe transitions

of nucleons and pions from a state i with momentum pi to a state f with mo-
mentum pf , momenta k1 = k − q and k2 = q transferred thereby. As seen
from Eq. (3.11), these transitions are caused by the product of two currents,
Ja

ν (x), a = 0,±, and J0
μ(x′) ≡ Jem

μ (x′), determining the interactions L̃1W (x)
(2.9) and L̃1em (2.6). Evidently, the quantities Ma

1 μν do not involve electromag-
netic interactions, which are separated explicitly in Eqs. (3.10)Ä(3.13) to order
e2, the multiplier e2 in front of Ma

1 μ.
If anything, it goes as a matter of course that the very expressions (3.10),

(3.11), which stand to introduce this quantity Ma
1 μν , are gauge invariant. Indeed,

when we replace Aem
μ (x) → ∂μ, expression (3.10) apparently gets equal to zero

due to the vector current conservation (1.28), (1.8).
Equations (3.12), (3.13) are pronouncedly understood to deˇne the proper

VFs Ma
1μν in such a way that they do not include the corrected external hadronic

states.
In turn, the quantity (3.8) is rewritten in terms of these VFs Ma

1 μν :

FT
(
K1aNN ′

({ψ}x, y, z)
)

= (2π)4δ(pN + pN ′ + k)[−G̃N (pN )G̃N ′(−pN ′)]×

× e2a

∫
dq

i(2π)4
Dμν(q)Ma

1μν({ψ}N, pN ; N ′,−pN ′; k − q, q), (3.14)

FT
(
K1abc({π}x, y, z)

)
= (2π)4δ(pb + pc + k)[−G̃b(pb)G̃−c(−pc)]×

× e2a

∫
dq

i(2π)4
Dμν(q)Ma

1μν({π}b, pb;−c,−pc; k − q, q), (3.15)

for transitions within nucleon and pion isomultiplets, respectively.
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VFs Ma
1 μν are depictured by the typical diagram:

Ma
1 μν

pf pi

k − q q↖ ↗

. (3.16)

There is to emphasize that here we deal with the very proper, ®truncated¯,
VF Ma

1 μν , alike VF (2.22)Ä(2.24), (2.32), without external hadron lines.

For non-interacting structureless nucleons and pions, i.e., with Sstr = 1 in
Eq. (1.31), direct evaluation gives, with the accuracy ∼ e2,

e2Ma
0 1 μν({ψ}N, pN ; N ′,−pN ′ ; k − q, q) =

= ie2[�a
NN ′′γμGN ′′(−pN ′ − q)γν�0

N ′′N ′+

+ �0
NN ′′γνGN ′′(pN + q)�a

N ′′N ′γμ], pN + pN ′ + k = 0, (3.17)

e2Ma
0 1 μν({π}b, pb;−c,−pc; k − q, q) =

= −ie2
√

2[(2pc + q + k)μ(2pc + q)νGc(pc + q)δb0δac+
+ (2pb + q + k)ν(2pb + q)μGb(pb + q)δc0δab],

pb + pc + k = 0, a, b, c = 0,±, (3.18)

which are replaced by Eqs. (3.12), (3.13) in the general case. These Eqs. (3.17),
(3.18) could be displayed by the familiar diagrams:

↑
k−q

↑
q

↑
q

↑
k−q

p p+k p p+k

+ .
(3.19)

For free real particles in initial and ˇnal states, VF Ma
1 μν({φ}f, pf ; i,−pi;

q1, q2) serves to determine the ®Compton scattering amplitude¯ caused by the
interactions L̃1em(x), L̃1W (x), (2.6), (2.9) (but not by L̃2em(x), L̃Wem (2.7),

(2.10)) in the external gauge ˇelds A
(e)
ν (x), Aa

μ(x), (a = 0,±), with momenta
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q1, q2 transferred to hadrons,

Ma (ext)
1 ({φ}f, pf ; i, pi; q1, q2) =

= e2

∫
dx

∫
dx′〈φf , pf | T {Ja ν(x)J0 μ(x′)} | φi, pi〉Aa

μ(x)A(e)(x′) =

= e2

∫
dq1

(2π)4

∫
dq2

(2π)4
Aa

μ(q1)A(e)
ν (q2)(2π)4δ(pf − pi + q1 + q2)×

× U+(φf , pf)Ma
1 μν({φ}f, pf ; i,−pi; q1, q2)U(φi, pi), (3.20)

where A
(e)
ν (q2), Aa

μ(q1) are the components of Fourier transformation of the
external gauge ˇelds, and U(φi, pi), U+(φf , pf) are the wave amplitudes of free
particles: the Dirac bispinors uN (pN ), ūN ′(pn′), N, N ′ = n, p, for nucleons, and
the scalar amplitudes ub(pb), u∗

a(pa), a, b = 0,±, for pions, alike in Eq. (2.33).
In much the same manner, when hadrons interact with quantum gauge ˇelds
W±

μ (x), VF Ma
1 μν({φ}f, pf ; i,−pi; q1, q2) will give the free W±-boson photo-

production amplitude

Ma
1 μν({φ}f, pf ; i, pi; q1, q2) = iU+(φf , pf ) ·

√
GMW

21/4
w±

μ (q2)×

× Ma
1 μν({φ}f, pf ; i,−pi; q1, q2)U(φi, pi) · eeν(q1), (3.21)

where eν stands for the polarization vector of a photon and w±
μ of a W±-boson,

and e and

√
GMW

21/4
are the respective coupling constants.

As understood, the aforesaid quantities (3.10)Ä(3.21), which stem from
Eq. (3.8), are purely due to the currents Ja

μ(x) (1.28) that determine the interac-

tions L̃1em(x), L̃1W (x), (2.6), (2.9), and yet the interactions L̃2em(x), L̃Wem(x),
(2.7), (2.10) are obviously not involved, alike in treating VF Γ̃a

μ in
Eqs. (2.22)Ä(2.36).

Now, we turn to calculating the quantity (3.9). With allowance for Eqs. (1.4),
(1.5), (1.9), (1.10) for the Heisenberg ˇeld operators φ̃(x), it transforms to

FT
(
K̃2afi({φ}x, y, z, )

)
= eikνFT

(
〈0 | T {j̃a

ν(x)φ̃f (y)φ̃i(z)} | 0〉
)

=

= eikνFT
(
〈0 | T {ja

ν(x)φf (y)φi(z)Sem} | 0〉
)
. (3.22)

As one recognizes, this quantity (3.22) shows up to be determined by the same
®current¯ j̃a

μ(x) that determines the interactions L̃2em(x), L̃Wem(x), (2.7), (2.10)

in the lagrangian L̃EW, (2.4), alike the current J̃a
μ(x) determines L̃1em(x),

L̃1W (x), (2.6), (2.9). This point is noteworthy to perceive the physical con-
tents of the treatment.
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Alike Eq. (2.22), which serves to deˇne the proper VFs (2.23), (2.24), (2.32),
the quantity (3.22) is presented as follows:

FT
(
K̃2aNN ′

({ψ}x, y, z)
)

=

= i(2π)4δ(pN+pN ′+k)kν [G̃N (pN )G̃N ′(−pN ′)]×
× Γ̃a

2 ν({ψ}N, pN ; N ′,−pN ′ ;k), N, N ′ = n, p, (3.23)

FT
(
K̃2abc({π}x, y, z)

)
=

= i(2π)4δ(pb + pc + k)kν [G̃b(pb)G̃−c(−pc)]×
× Γ̃a

2 ν({π}b, pb;−c,−pc; k), a, b, c = 0,±, (3.24)

through the proper VF Γ̃a
2 ν({φ}f, pf ; i,−pi; k) to describe transitions of a hadron

from a state i with momentum pi to a state f with momentum pf , a momentum k
transferred thereby. As determined by Eq. (3.22), these transitions are now due to
the ®current¯ j̃a

μ(x), which causes the very interactions L̃2em(x), L̃Wem(x), (2.7),

(2.10), in place of the current J̃a
μ(x) and the interactions L̃1em(x), L̃1W (x), (2.6),

(2.9), associated with VFs Γ̃a
μ (2.23), (2.24), (2.32). In turn, the matrix element,

dictated by L̃2em(x), L̃Wem(x), (2.7), (2.10), which describes transitions between
states i and f of free real hadrons, is given in terms of VF Γ̃a

2 ν({φ}f, pf ; i,−pi; k)
as follows:

Ma
2 if ({φ}pf , pi, k) = −ieAa μ(k)U+(φf , pf)Γ̃a

2 μ({φ}f, pf ; i,−pi; k)U(φi, pi),
(3.25)

in place of Eq. (2.33).

Let us mention that VF Γa
2 ν({ψ}N, pN ; N ′,−pN ′ ; k) evidently vanishes for

non-interacting structureless particles, and VF Γ̃a
2 ν({π}b, p;−c, p + k; k) in this

case directly reduces to

Γa
0 2 ν({π}b, p;−c, p + k; k) =

=−e2

∫
dq

i(2π)4
Dμν(q)

{
Gc(p+k+q)(2p+2k+q)μ[2cδa0δb(−c)−a

√
2δb0δac]+

+ Gb(p + q)(2p + q)μ[2bδa0δb(−c) − a
√

2δc0δab]
}
,

a, b, c = 0,±, pb+pc+k = 0, (3.26)
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that could be depictured by the diagrams:

↖k ↗ k

p p+k p p+k

+

q q

,

(3.27)

where vertices correspond to the interactions L1em(x), L2em(x), LWem(x) , (2.6),
(2.7), (2.10).

At the same time, it is expedient to rewrite Eqs. (3.9), (3.22), retaining terms
∼ e2, in the form

FT
(
K̃2afi({φ}x, y, z, )

)
≈

≈ e2kνFT
(
〈0|T {ja

ν(x)φf (y)φi(z)
∫

dx′Aem
μ (x′)Jem μ(x′)}|0〉 =

= kν

∫
dq

i(2π)4
Dνμ(q)T a

2 μ({φ}f, pf ; i, pi; k − q, q), (3.28)

where we deˇne

T a
2 μ({φ}f, pf ; i, pi; k − q, q) =

=
∫

dx

∫
dy

∫
dz

∫
dx′ exp[ix(k − q) + ix′q + iypf + izpi] · [�a

dr�
0
(−d)s]×

× e2〈0 | T {Jem
μ (x′)πs(x)πr(x)φf (y)φi(z)} | 0〉. (3.29)

It can be observed that the quantity T a
2 ν (3.29) is akin to the quantity T a

μν (3.11).
In much the same way as Eqs. (3.12), (3.13) deˇne the proper VFs
Ma

1 μν({φ}f, pf ; i,−pi; k1, k2), the following analogous equations

T a
2 μ({ψ}N, pN ; N ′, pN ′ ; k − q, q) =

= (2π)4δ(pN + pN ′ + k)[−G̃N (pN )G̃N ′(−pN ′)]×
× e2Ma

2μ({ψ}N, pN ; N ′,−pN ′; k − q, q), (3.30)

T a
2 μ({π}b, pb; c, pc; k − q, q) =

= (2π)4δ(pb + pc + k)[−G̃b(pb)G̃−c(−pc)]×
× e2Ma

2 μ({π}b, pb;−c,−pc; k − q, q), (3.31)

serve to draw into consideration the very special proper VF Ma
2 ν({φ}f, pf ; i,−pi;

k1, k2) to describe hadron transitions from a state i with momentum pi to a state
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f with momentum pf , momenta k1, k2 transferred to hadrons thereby. These
transitions are caused by the product of the current Jem

ν (x), which determines
the interaction L̃1em(x) (2.6), and the operator πs(x)πr(x)[�a

dr�
0
(−d)s], which

determines, in turn, the interactions L̃2em(x), L̃Wem(x), (2.7), (2.10). The
quantity Ma

2 ν evidently does not involve electromagnetic interactions separated
explicitly in Eqs. (3.28)Ä(3.31).

This VF Ma
2 ν could, conceivably, be depictured by the diagram:

k↗

Ma
2 ν

pf pi

−q q↖ ↗

. (3.32)

One recognizes from Eqs. (3.29)Ä(3.32) that VF Ma
2 ν could serve to describe

certain conceivable physical processes with real free hadrons in initial and ˇnal
states. For instance, one could discuss a free real hadron transition from a state
i to a state f with emitting (or absorbing) two photons and a W±-boson, with
certain momenta and polarizations.

With allowance for Eqs. (3.28)Ä(3.31), VFs Γ̃a
2 ν deˇned by Eqs. (3.22)Ä

(3.24) are rewritten, with the accuracy ∼ e2, in terms of these quantities Ma
2 ν as

follows:

kνΓ̃a
2 ν({ψ}N, pN ; N ′,−pN ′ ; k)=

= −e2kν

∫
dq

(2π)4
Dνλ(q)Ma

2 λ({ψ}N, pN ;N ′,−pN ′ ; k−q, q), N, N ′ = n, p,

(3.33)
kνΓ̃a

2 ν({π}b, pb;−c,−pc; k) =

= −e2kν

∫
dq

(2π)4
Dνλ(q)Ma

2 λ({π}b, pb;−c,−pc; k − q, q), a, b, c, = 0,±,

(3.34)

where dependence on the photon propagator Dμ(q) is set forth explicitly. In
conjunction, VFs Γ̃a

2 ν and Ma
2 ν can be depictured by the diagram

↑

pi

k

pf

Γ̃a
2 μkμ = − kμ e2Ma

2 λ

pf pi

k

q

Dμλ(q)
↖

. (3.35)

21



For non-interacting point-like pions, Eqs. (3.34), (3.35) directly reduce to (3.26),
(3.27). As the operator ja

μ(x) (2.8) in this case involves the pure pion ˇeld
operators, VF (3.33) apparently vanishes.

In correlating Eqs. (2.23), (2.24), (2.32)Ä(2.36), which determine VF Γ̃a
μ,

with Eqs. (3.23)Ä(3.27), (3.32)Ä(3.35), which determine VF Γ̃a
2 ν , one realizes

that these VFs inherently differ from each other, stemming from different inter-
actions in L̃EW(x) (2.4). VF Γ̃a

μ involves the electromagnetic corrections ∼ e2 to

the uncorrected value, whereas VF Γ̃a
2 ν∼e2 completely emerges due to electro-

magnetic interactions. So, the last would apparently vanish in the nucleon case,
when strong interactions were turned off.

Now, all the terms in the identity (3.1) have been acquired and their physical
purport elucidated. Upon inserting all the calculated quantities (2.23), (2.24),
(3.4), (3.5), (3.14), (3.15), (3.23), (3.24), (3.33), (3.34) into the identity (3.1), we
arrive at the relations among the electroweak VFs and propagators of nucleons
and pions, respectively:

kνΓ̃a
ν({ψ}N, pN ; N ′,−pN ′; k) = �a

NN ′ [G̃−1
N ′ (−pN ′) − G̃−1

N (pN )]+

+ e2a

∫
dq

(2π)4
Dμν(q)Ma

1 μν({ψ}N, pN ; N ′,−pN ′ ; k − q, q)+

+ kμe2

∫
dq

(2π)4
Dμν(q)Ma

2 ν({ψ}N, pN ; N ′,−pN ′; k − q, q), (3.36)

pN + pN ′ + k = 0, a = 0,±, N, N ′ = n, p,

kνΓ̃a
ν({π}b, pb;−c,−pc; k) = �a

b(−c)[G̃
−1
−c(−pc) − G̃−1

b (pb)]+

+ e2a

∫
dq

(2π)4
Dμν(q)Ma

1 μν({π}b, pb;−c,−pc; k − q, q)+

+ kμe2

∫
dq

(2π)4
Dμν(q)Ma

2 ν({π}b, pb;−c,−pc; k − q, q), (3.37)

pb + pc + k = 0, a, b, c = 0,±.

These equations are to be rewritten, displacing the last terms to the left-hand sides
and treating the total VF

Γ̃a
tot ν = Γ̃a

ν + Γ̃a
2 ν , (3.38)

to describe the electroweak transitions caused by all the interactions involved into
L̃EW(x) (2.4). Then, we arrive at

kνΓ̃a
tot ν({ψ}N, pN ; N ′,−pN ′ ; k) = �a

NN ′ [G̃−1
N ′ (−pN ′) − G̃−1

N (pN )]+

+ e2a

∫
dq

(2π)4
Dμν(q)Ma

1 μν({ψ}N, pN ; N ′,−pN ′; k − q, q), (3.39)
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kνΓ̃a
tot ν({π}b, pb;−c,−pc; k) = �a

b(−c)[G̃
−1
−c(−pc) − G̃−1

b (pb)]+

+ e2a

∫
dq

(2π)4
Dμν(q)Ma

1 μν({π}b, pb;−c,−pc; k − q, q). (3.40)

The relations of this kind are generally referred to as the generalized WT identities.
As expounded, we have ascertained them with the e2 accuracy.

For the sake of elucidation, the expressions of VFs for structureless non-
interacting hadrons were purposely presented at every stage in the course of the
aforesaid consideration, see Eqs. (2.34), (2.35), (2.29), (2.30), (3.17), (3.18),
(3.26). Now, having them at our disposal, it is just straightforward matter to
become convinced that Eqs. (3.36)Ä(3.40) get trivial in the case of free point-like
particles.

4. CONSEQUENCES OF THE WT IDENTITIES AND DISCUSSION

The identities (3.36)Ä(3.40) hold true for any strong interactions Lint
str(x) that

cause the hadron propagators and VFs therein, provided the total vector hadron
currents Ja

μ(x) are conserved (1.8). So, when, in treating RC to the electroweak
hadron transitions, one evaluates the propagators and VFs amenably to some
plausible approach, for instance, in the framework of the chiral perturbation
theory [24, 26], the results are to satisfy the identities (3.36)Ä(3.40). Such an
available test of consistency is thought to be of use to repose full conˇdence in
the computations carried out within the effective ˇeld theory [27].

From the outset, what is to be highlighted is that the left-hand sides of
Eqs. (3.39), (3.40) are just the total VFs to describe the electroweak transitions
caused by all the electroweak interactions L̃EW(x) (2.4), and not just solely by
L̃1em(x), L̃1W (x), (2.6), (2.9), which are due to the very currents J̃a

μ(x) giving
rise to VFs Ma

1 μν . As to the ®currents¯ j̃a
μ(x), which cause the electroweak

interactions L̃2em(x), L̃Wem(x), (2.7), (2.10), they are not involved into these
quantities Ma

1 μν determining right-hand sides of Eqs. (3.39)Ä(3.40).
In this regard, the approach asserted in the work [13], Eqs. (9.10)Ä(9.14),

and thereupon in the ensuing computations [14Ä16], do not evidently go with our
plain straightforward consideration.

In so far as we explore a system of strong interacting hadrons of different
kinds, nucleons and pions, the WT identities hold true only for the total VF Γ̃a

tot ν ,
and not separately for the Γ̃a

μ itself.
The WT identities (3.36)Ä(3.40) simultaneously treat the weak and electro-

magnetic transitions both of nucleons and pions in the uniˇed way. That may
safely be pointed out as being a noteworthy distinction from what was done in
Refs. [13Ä16].
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Just for the very total electromagnetic VFs, i.e., for a = 0 in Eqs. (3.39),
(3.40), the WT identities are

kνΓ̃0
tot ν({ψ}N, pN ; N ′, pN + k; k) =

= �0
NN ′ [G̃−1

N ′ (pN + k) − G̃−1
N (pN )], N, N ′ = n, p, (4.1)

kνΓ̃0
tot ν({π}b, pb;−c, pb + k; k) =

= �0
b(−c)[G̃

−1
−c(pb + k) − G̃−1

b (pb)], b, c = 0,±, (4.2)

which evidently manifest that the gauge invariance holds. Of course, one directly
recognizes these equations as the familiar WT identities in the electrodynamics.
Yet they now deal with the hadrons, strongly interacting composed particles. For
the neutron, n, and neutral pion, π0, Eqs. (4.1), (4.2) reduce to

kνΓ̃0
tot ν({ψ}n, pn; n, pn + k; k) = kνΓ̃0

tot ν({π}0, p0; 0, p0 + k; k) = 0. (4.3)

Certainly, it does on no account mean that VFs

Γ̃0
tot ν({ψ}n, pn; n, pn+k; k) and Γ̃0

tot ν({π}0, p0; 0, p0 + k; k)

themselves are equal to zero at arbitrary k. In fact, these quantities have by now
been well measured in manifold experiments and evaluated in various plausible
models.

In obtaining the generalized WT identities (3.36)Ä(3.40), the momentum k
transferred by a considered transition has been nowhere presumed to be small in
any sense, and therefore the outcome, i.e., Eqs. (3.36)Ä(3.40) and all the following
Eqs. (4.1), (4.2), (4.3) . . . , holds true at arbitrary k values. Quite the contrary was
the approach explicated in Ref. [13] (and thereupon utilized in Refs. [14Ä16]) in
that the key starting point, see Eq. (9.11) in [13], was the momentum transferred
which tended to zero, k → 0.

What is procured by the principal Eqs. (3.36)Ä(3.40) is just the scalar product
kνΓ̃a

tot ν of the VF Γ̃a
tot ν and the momentum transferred kν , yet obviously not

the VF Γ̃a
tot ν itself. For a simple apt illustration, let us point out what was said

around Eq. (4.3). For that matter, we added any quantities of the form

ΓC μ(k) = (kμ − gμαkα) ·C(k2) or ΓC μ(k) = (γμγα − γαγμ)kα ·C(k2) (4.4)

to a distinct VF Γ̃a
tot μ, Eqs. (3.36)Ä(3.40) undergo no modiˇcations at all.

The relations among the hadron propagators G̃i(pi) and VFs Γ̃a
tot ν(k) and

Ma
1 μν(k) themselves could be hoped to be of crucial value in calculating RC

to the electroweak processes, in particular at an inˇnitesimal momentum trans-
ferred [14Ä17]. That is why now we try and explore Eqs. (3.36)Ä(3.40) at the limit
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k → 0, on the purpose to specify VFs Γ̃a
tot ν(0). Up to now, our consideration

has been rigorous, to order e2. It has been based on the symmetry principles
and on the general relations of the Lagrange method. There have been made no
loose presuppositions concerning the quantities involved into Eqs. (3.36)Ä(3.40).
Yet, in order to proceed to acquire VFs Γ̃a

tot ν(0), we now presume all the terms
in Eqs. (3.39), (3.40) to be regular at kα = 0. At least, let they and their ˇrst
derivatives do really exist, have got ˇnite values, at kα = 0. Furthermore, let
the derivative in respect to kα of the second terms on the right-hand sides of
Eqs. (3.39), (3.40) be drawn under integral sign, so as the differentiation could be
put onto the function Ma

1 μν(k) which resides in the respective integrand. Then,
upon expanding all the terms in Eqs. (3.39), (3.40) in a power series in kα and
equating the coefˇcients by corresponding kα powers, we would arrive, on these
suppositions, at the following relations between the hadron VFs and propagators:

0 = �a
NN ′ [Σhe

N (p) − Σhe
N ′(p)]+

+ ae2

∫
dq

(2π)4
Dμν(q) · Ma

1μν({ψ}N, p; N ′, p;−q, q), (4.5)

0 = �a
b(−c)[Σ

he
b (p)] − Σhe

−c(p)]+

+ ae2

∫
dq

(2π)4
Dμν(q) · Ma

1 μν({π}b, p;−c, p;−q, q), (4.6)

Γ̃a
tot λ({ψ}N, p; N ′p; 0) = �a

NN ′γλ
1
2
[Z−2

N ′ (p) + Z−2
N (p)]+

+ ae2

∫
dq

(2π)4
Dμν(q)∂k λMa

1 μν({ψ}N, p; N ′, p + k; k − q, q) |k=0 (4.7)

Γ̃a
tot λ({π}b, p;−c, p; 0) = (2pλ)�a

b(−c)

1
2
[Z−2

b (p) + Z−2
−c (p)]+

+ ae2

∫
dq

(2π)4
Dμν(q)∂k λMa

1 μν({π}b, p;−c, p + k; k − q, q) |k=0, (4.8)

N, N ′ = n, p, a, b, c = 0,±,

where the familiar deˇnitions are introduced

Z−2
N (p) =

∂

∂p̂
G−1

N (p), p̂ ≡ γμpμ; Z−2
b (p) =

∂

∂p2
G−1

b (p). (4.9)

Equations (4.5), (4.6) apparently get trivial for a hadron system in an electro-
magnetic ˇeld, i.e., for a = 0, and they could, in general, serve to acquire the

25



differences between mass operators of the neutral and charged members of a
certain isomultiplet.

Next, to reduce further these formulae, let us, in turn, presume the formal
approximations

Z−1
N (p) ≈

√
1 − ∂Σh

N(p)
∂p̂

(
1 − 1

2
∂Σ̃he

N (p)
∂p̂

(
1 − Σh

N (p)
∂p̂

)−1
)

, (4.10)

Z−1
b (p) ≈

√
1 − ∂Σh

b (p)
∂p2

(
1 − 1

2
∂Σ̃he

b (p)
∂p2

(
1 − Σh

b (p)
∂p2

)−1
)

, (4.11)

with recalling what was reasoned of concerning Eqs. (2.27), (2.28). Of course,
one recognizes these quantities ZN (p), Zb(p) giving at p̂ = MN , p2 = m2

b ,
i.e., on the mass shell, the renormalization constants of hadron states [1, 2, 18],

UN(p) = ZN (p)uN (p) |p̂=MN , N = n, p, Ub(p) = Zb(p)ub(p) |p2=m2
b
, b = 0,±,

(4.12)
where uN (p), ub(p) are the wave amplitudes of real free nucleons and pions, and
UN (p), Ub(p) stand for the respective renormalized amplitudes. Pursuing this
approach, Eqs. (4.7), (4.8) are rewritten in the form

ZN (p)Γ̃a
tot λ({ψ}N, p; N ′, p; 0)ZN ′(p) ≈

≈ �a
NN ′γλ + ae2

∫
dq

(2π)4
Dμν(q)ZN (p)

∂

∂kλ
×

× Ma
1 μν({ψ}N, p; N ′, p + k; k − q, q) |k=0 ZN ′(p), (4.13)

Zb(p)Γ̃a
tot λ({π}b, p;−c, p; 0)Z−c(p) ≈

≈ �a
b(−c)(2pλ) + ae2

∫
dq

(2π)4
Dμν(q)Zb(p)

∂

∂kλ
×

× Ma
1 μν({π}b, p;−c, p + k; k − q, q) |k=0 Z−c(p). (4.14)

With allowance for Eqs. (4.10)Ä(4.12), these expressions would lead to the re-
lations among matrix elements of VFs between the real hadron states, at zero
momentum transferred,

ŪN (p)Γ̃a
tot λ({ψ}N, p; N ′, p; 0)UN ′(p) ≈

≈ �a
NN ′ ūN (p)γλuN ′(p) + ae2ŪN (p)

∫
dq

(2π)4
Dμν(q)

∂

∂kλ
×

× M1 μν({ψ}N, p; N ′, p + k; k − q, q) |k=0 UN ′(p), (4.15)
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U∗
b (p)Γ̃a

tot λ({π}b, p;−c, p; 0)U−c(p) ≈

≈ �a
b(−c)u

∗
b(p)(2pλ)u−c(p) + ae2U∗

b (p)
∫

dq

(2π)4
Dμν(q)

∂

∂kλ
×

× M1 μν({π}b, p;−c, p + k; k − q, q) |k=0 U−c(p). (4.16)

Obviously, these identities are in perfect agreement with the requirement of gauge
invariance, as all the foregoing were. In particular, they at a = 0 reduce to the
familiar relations that hold in the electrodynamics.

At ˇrst thought, the relations (4.15), (4.16) could now seem to be akin
to Eq. (9.14) of Ref. [13] and to the analogous expressions in Refs. [14Ä17],
for example, Eq. (10) in Ref. [14], Eq. (4.3) in Ref. [15]. Yet even at this
stage, after all the aforesaid simplifying assumptions, such a kinship is actually
ostensible because the quantities involved into (4.15), (4.16) and into Eq. (9.14)
in Ref. [13] are, in fact, of different physical contents. This inference emerges
in correlating the thread of our treatment with reasoning that leads to Eq. (9.14)
in Ref. [13]. In particular, one must behold that in the sum (3.38) only the ˇrst
term Γ̃a

μ is due to the current J̃a
μ (1.28), which causes VFs Ma

1 μν (3.11)Ä(3.13),

whereas the second term Γ̃a
2 μ is determined by the quantity j̃a

μ that does not come
into Ma

1 μν .

Next, it is to the point having a good look at how the quantities

Ma
1 μν({ψ}N, pN ; N ′,−pN ′ ; k − q, q) and Ma

1 μν({π}b, pb;−c,−pc; k − q, q)

deˇned in Eqs. (3.11)Ä(3.13) depend on the momenta q and k. Obviously,
the momentum conservation pN + pN ′ + k = 0, pb + p−c + k = 0 dic-
tated by the respective δ-functions in Eqs. (3.12)Ä(3.18), (3.36)Ä(3.40) does
not concern the variable of integration q that is perfectly independent of the
momenta k, pi, pf . So, the functions Ma

1 μν determined by Eqs. (3.11)Ä(3.13)
do separately depend on the variables k − q and q themselves, and there is
no way to transform the dependence on the variable q into the dependence on
the variable k or k − q. Consequently, the derivatives ∂Ma

1 μν(k − q, q)/∂kα

which occur in Eqs. (4.7), (4.8) cannot be transformed into the derivatives
∂Ma

1 μν(k − q, q)/∂qα. As a mere pertinent elucidation, let us consider the
quantity Ma

1 μν({ψ}p, pp; n, pp + k; k − q, q) obtained in the case that the pionÄ
nucleon interaction (1.27) is taken into account in the lowest feasible, second,
order. It incorporates, along with others, the contribution

g2
NNπ

∫
dQ

(2π)4
ūp(pp)γ5Gp(pp−Q)γμGp(q+pp−Q)×

× γνGn(pp+k−Q)γ5un(pp + k)Gπ0(Q) (4.17)
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of the process depicted by the diagram:

pp pp+k
pp−Q

pp+q−Q pp+k−Q
Q

Gπ0(Q)

↑ ↑q k−q

. (4.18)

As seen, the contribution (4.17) to Ma
1 μν({ψ}N, pN ; N ′,−pN ′ ; k − q, q) does

apparently depend on q and k separately. What is here signiˇcant, as well as
in the general case considered, is that the strong interaction between hadrons of
different sorts is involved, at least in the lowest order.

Thus, there is no way to rearrange the second terms on the right-hand sides
in Eqs. (4.7), (4.8), (4.13)Ä(4.16) so that they would contain the integrands

Dμν(q)
∂Ma

1μν(k − q, q)
∂qα

in place of Dμν(q)
∂Ma

1μν(k − q, q)
∂kα

, (4.19)

and then the differentiation in respect to qα could be put onto Dμν(q), by inte-
grating by parts.

So, the integrands in Eqs. (4.7)Ä(4.16) can not be transformed to the form

∂Dμν(q)
∂qα

Ma
1μν({ψ}N, pN ; N ′,−pN ′; k − q, q) |k=0,

and (4.20)

∂Dμν(q)
∂qα

Ma
1μν({π}b, pb;−c,−p−c; k − q, q) |k=0,

as opposed to what was asserted in the work [13] concerning the integrand in
Eq. (9.14), and then was posited in the ensuing computations in Refs. [14Ä
16], as a matter of fact. The presumptive transformation of the integrands in
Eqs. (4.15), (4.16) to the form (4.20) is a substantial point in pursuing the
approach of Refs. [13Ä17]. This was quite necessary to arrive at the essential
inference, proclaimed in [16,17], that RC to the β-decay amplitude would merely
have been multiple to the uncorrected amplitude itself. In turn, this very result
would have promoted to avoid the immediate allowance for hadron compositeness
in RC computing. Actually, it does not hold true.

All the presented discussion persuades us that the handy issues of
Refs. [14Ä17] can not hold with the actual calculation of RC to the hadron
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β-decay. As understood, there sees no strict way from the principle WT iden-
tities (3.36)Ä(3.40), dealing with the scalar product kμΓ̃a

μ(k) at arbitrary k-
values, to the relations (4.15), (4.16) between the propagators Gh and VFs
Γ̃a

μ(0), M1,λν(0) themselves at kμ = 0, which could be conjectured to pro-
mote the RC computation in treating the neutron and pion β-decay. Moreover, it
is even not clear how to estimate the accuracy of several loose presuppositions
needful to pass this way. All the more so, there is no reason to warrant the trans-
formation of the integrands in Eqs. (4.15), (4.16) as was discussed just above,
around Eqs. (4.17)Ä(4.20). Therefore, even if the RC computation underlain by
Eqs. (4.15), (4.16) was somehow carried out, all the more with utilizing transfor-
mations (4.19), (4.20), the inescapable ambiguities inherent in the outcome could
not be safely estimated.

At every stage of the consideration presented in the work, especially in Sec. 4,
we have been realizing that the relations asserted and utilized in Refs. [13Ä17]
are not in line with the plain ˇndings of the consistent inquiry into the actual
relations among the propagators and electroweak VFs of strongly interacting
nucleons and pions. As seen, the differences especially take their rise in respect
of needful accounting for strong interactions in a system incorporating hadrons
of different sorts. Evidently, the plain inferences of the presented consistent
consideration can not uphold the approach upon which the RC calculations [14Ä
17] are based. Thus, high as one appreciates the scientiˇc signiˇcance of advances
of the investigations [14Ä17], one cannot help avowing, bold though it may seem,
that these RC investigations are �awy. It especially concerns the very high
computation accuracy, ∼ 0.01%, proclaimed in the aforesaid papers [16,17]. This
assertion is all the more deceptive that the hadron axial-current interaction with
the gauge ˇelds intrudes into the RC computation even in the pion β-decay case,
i.e., 0−→0− transition [20,21], though the e-zero-order matrix element of an axial
current evidently vanishes in this case. Needless to say, how still more complex
and tangle the calculation becomes in the neutron β-decay case that the interaction
caused by the axial current is involved just on the e-zero-order level. Resort to
the WT identities could at best have promoted to cope with the strong interaction
effects in calculating RC to the pure vector interactions in hadron semileptonic
decays. To get over the hardships of allowance for hadron compositeness in
the case that axial current coming into a considered process, some untenable
vague reasoning was expounded [16] that is not persuasive, especially in so far
as the accuracy ∼ 1% or better goes. In particular, there proves no reason
for presuming RC to the β-decay amplitude to be simply proportional to the
uncorrected amplitude. So, even if one had somehow completely circumvented,
with a conceivable recourse to any WT identities, the actual allowance for hadron
compositeness in computing RC to the pure vector interaction, the total RCs to
any semileptonic process could not have been safely obtained in such a way with
the sufˇcient accuracy, against what was asserted in Refs. [16, 17]. One cannot
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help realizing the inescapable tangible ambiguities inherent into the outcome of
the computations [14Ä17]. All the more in respect that the UV divergences which
occur in RC calculating were not treated amenably to the up-to-date on-mass-
shell renormanization scheme in the SM framework [1, 2, 8, 9], but they were
removed by the obsolete ®cut-off¯ precept, as a matter of fact, with the additional
ambiguities intruded thereby.

In ˇne, in calculating RC to the electroweak processes, the consistent trust-
worthy allowance for the hadron compositeness and strong interaction still persists
pending. Sure enough, this does not mean to say that the WT identities cannot
be of service in treating RC. Obtained the relations (3.36)Ä(3.40), we are on
the point of utilizing them to advance in calculating RC in due course. In this
respect, the chiral perturbation theory [24, 26, 27] is thought to be resort to. For
now, all-round renewal of the RC calculation gets the current objective. As to our
mind, there sees no option but parameterizing the effects of hadron structure and
strong interactions. The parameters entailed thereby are to be speciˇed by due
processing the needful high precision experimental data on various characteristics
of the electroweak processes.
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