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Modiˇcation of the FUMILI Minimization Package.
In memory of Prof. I. N. Silin

FUMILI renovation is suggested which allows the following: a more convenient
and friendly user interface; no restriction on the number of parameters and exper-
imental points; speed advantage when the number of parameters is high enough; a
possibility to deˇne analytically an arbitrary number of parameter derivatives. An
additional package of subroutines, including track reconstruction in the straw tube
chambers, is suggested. All programmes are written using FORTRAN-90.

The investigation has been performed at the Veksler and Baldin Laboratory of
High Energies, JINR.
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INTRODUCTION

This work has been done in memory of outstanding mathematician
Prof. I. N. Silin, who went out on 21 November 2006. His famous program
FUMILI [1Ä4] was the ˇrst one in the early sixties to provide the very advanced
minimization method which gave physicists a quite effective tool to solve many
sophisticated non-linear problems. The key algorithm of the error matrix trans-
formation was several times improved by him. The last changes were done in
2002. On the other hand, the user interface, which was ˇxed in the sixties as beta-
version, was kept unchangeable. The new user interface, suggested in this paper,
was previously discussed between me and I. N. Silin in part and was supported
by him, but at that time he was involved completely in other problems, such as
constrained data ˇtting [5], or the combination of Monte-Carlo and Korobov's
methods [6].

One more problem, related to the wide class of tasks, arises when the number
of parameters exceeds essentially 100, which is declared as the maximum for
FUMILI. Let us consider the simplest example of a source of the huge number
of parameters:

NT = N0 + N1Ns, (1)

where NT is the total number of parameters, N0 is the number of parameters
common for all events to be handled, N1 is the number of parameters common for
some subgroup, Ns is the number of subgroups. When a user faces the problem of
adjusting big experimental setup offsets, such a combination (or more complicated
one) arises frequently with large enough Ns. In the author's practice the total
number of parameters and events achieved several hundreds and about 2 millions,
respectively. The last librarian version of the source program allows one to have
only 70 free parameters, and only an advanced user can improve the situation, if he
has the FORTRAN source. The matter is, in this case it is necessary to redeˇne
not only user COMMON-blocks, but also several COMMON-blocks for only
inner use. On the other hand, the huge length of COMMON-blocks (especially
for error matrixes, with the size of about N2

T elements) can be inconvenient for
tasks with the small number of parameters. Therefore, all arrays in the new
program, declared earlier in COMMON-blocks, have been replaced by adjustable
ones. To compensate the unavoidable slowing down of the program in this case,
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the programming style has been changed proceeding from the fact that one has the
unlimited address-space. Recall that the memory of the USSR computer leader
of the sixties, BESM-6, had about 192 kbytes for user tasks, and the FUMILI
original was written with a special care of computer memory, often to the speed
detriment. The basic code of FUMILI (the error matrix transform) during this
optimization was kept unchangeable. The renewed version of FUMILI is named
FUMILIM.

Below we assume that User is the name.

1. USER GUIDE

1.1. FUMILI. All programs described below use ®IMPLICIT
REAL*8(A-H,O-Z)¯.

For better understanding of the new program, let us recall the user guide for
FUMILI. The call has the form

CALL FUMILI(S,NPAR,N1,N2,NIT,EPS,AKAP,ALAM,IPR,IEND).

Here input parameters:
NPAR Å the number of parameters,
N1=2, N2=1 (recommended values),
NIT Å restriction for the number of iterations,
EPS Å desirable accuracy (recommended values are 0.01Ä0.1),
IPR Å to print each ith iteration (IPR < 0 Å no print);

output parameters:
S=χ2/2,
AKAP, ALAM, NC Å parameters characterizing the iteration convergence,
IEND Å 	ag of conditions of the exit from the program.
An array of experimental points should be placed at

COMMON/EXDA/EXDA(LEXD,NEXD),

where LEXD and NEXD are the number of words in each experimental point and
the number of experimental points, respectively. These values should be deˇned
in

COMMON/NED/NED(2)

as NED(1)=NEXD and NED(2)=LEXD. The content of one experimental point
is the following:

EXDA(1,I) Å yi-value of an experimental point;
EXDA(2,I) Å σi, its error;
(3:LEXD,I) Å xi-array of an experimental point.
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Initial values of parameters (which will be replaced after the ˇt by ˇnal ones),
and possible restrictions for them should be deˇned in

COMMON/A/A(NP)/AL/AMIN(NP)/AU/AMAX(NP),

respectively. Here should be NPAR � NP � 100. User should also deˇne re-
strictions for parameter steps during one iteration in

COMMON/PL/PL(NP).

If they are not deˇned (equal to 0.d0) or negative, the corresponding parameters
will be treated as ˇxed. After ˇt, the parameter errors and correlation factors are
placed in

COMMON/SIGMA/SIGMA(NP) and
COMMON/R/R(NP), respectively.

User should write the function FUNCT(X), depending on parameters
A(1:NPAR) (the corresponding common-block should be declared in this func-
tion). Here X (either a scalar or an array) is arguments of experimental points.
The numerical computation of derivatives is used in this case.

If User prefers to deˇne also parameter derivatives, he should write the
subroutine ARITHM(Y), which will replace the program with the same name in
the librarian package. The derivatives array should be declared in

COMMON/DF/DF(NEXD).

In some linkers con	icts between User's and librarian subroutines are pos-
sible. Here we have the following alternative: either no one (FUNCT) or all
derivatives (ARITHM) are to be deˇned.

1.2. FUMILIM. The call has now the form

H=FUMILIM(A,NAM,NPAR,EXDA,LEXD,NEXD,USFUN,NIT,LUN).

Here (input parameters only) NPAR and NIT are the same as in the FUMILI
call, the sense of LEXD and NEXD are described above, A(NPAR,1:6) Å array
of initial (and ˇnal) values for parameters. The equivalence between old and new
arrays is the following:

A(J,1) Ä A(J); A(J,4) Ä PL(J);
A(J,2) Ä SIGMA(J); A(J,5) Ä AMIN(J);
A(J,3) Ä R(J) (correlation factor); A(J,6) Ä AMAX(J).

NAM(NPAR) Å character array of the parameter names (up to 15 symbols)
(this idea is taken from the famous MINUIT program [7]);

EXDA(LEXD,NEXD) Å array of experimental points, having the structure
described above;

USFUN(X,AF,DF) Å User's function for data ˇt (should be declared via
EXTERNAL in the calling program);
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X,AF,DF Å argument(s), parameters and their derivatives, respectively;

(AF(1:NPAR) Å array in USFUN is equivalent to A(1:NPAR,1)-slice in the
main program),

LUN Å the output unit number (lun = 0, 6 means the screen output, other
numbers should be associated with ˇle names). Output is switched off when
LUN < 0.

The value of the function is χ2/NDF (Number of Degrees of Freedom).

If User does not want to deal with the parameter names, he can write

H=FUMILIM(A,'*',NPAR,EXDA,LEXD,NEXD,USFUN,NIT,LUN).

The suggested user interface simpliˇes programming appreciably when
several FUMILIM calls are used in the main program (the new or old A-
or EXDA-arrays can be used, the different USFUN can be written instead of
complicated bifurcations in the only possible FUNCT in the FUMILI case).

User is free to deˇne any number of parameter derivatives in USFUN.

In the new program initial parameter restrictions are ±huge values, exactly
as in the old one. The difference is: in FUMILI these values are deˇned via
DATA-operator, but in FUMILIM the A(J,5)- or A(J,6)-values, equal to 0.d0, are
considered as undeˇned, and the redeˇnition (huge values) follows in this case.

The treatment of PL(I) is slightly changed. Now A(I,4)==0.d0 is considered
as undeˇned value, and the redeˇnition follows (rather large value). The advan-
tage of such an approach is the following. If, for example, USFUN is linear

with respect to AF(J)

(
∂F (x, A)
∂A(J)

= f(x)
)

, the deˇnition of A(J,4) is rather

harmful than senseless (the same result may be with the larger number of
iterations). In particular, if USFUN is linear with respect to all parameters,
User is free to deˇne nothing in the A(1:NPAR,1:6)-array. And a task will
be solved during one iteration. The deˇnition of A(J,4) is hardly useful, when
the corresponding ˇrst derivative is deˇned analytically. There are many other
cases, when User is free from deˇnition of A(J,4). So, it is recommended not
to deˇne A(1:NPAR,4) always when starting the ˇt. And only if the result is
suspicious, one can start to play with only those A(J,4) for which USFUN is
not linear with respect to corresponding AF(J), and, simultaneously, DF(J) is not
deˇned analytically.

One can see that the input parameters N1,N2,EPS from FUMILI now are not
in the list of parameters. They are deˇned inside the program via DATA-operator
by recommended values, but advanced User can redeˇne them in

COMMON/FUMINPUT/EPS, N1, N2, NPAROPT. (2)
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The omitted output parameters AKAP,ALAM,IEND can be found in

COMMON/FUMOUTPUT/HISQ,IEND,NITER,AKAPPA,ALAMBD.

Here HISQ=χ2, NITER is the number of real iterations, values of IEND are the
following:

1 Ä MINIMIZATION IS FINISHED SUCCESSFULLY,
2 Ä MINIMIZATION IS FINISHED SUCCESSFULLY IN PART WHILE

SOME PARAMETERS ARE FIXED ON BOUND,
3 Ä MINIMIZATION IS TERMINATED AS ALL PARAMETERS ARE

FIXED ON BOUND,
4 Ä ITERATION LIMIT IS REACHED,
5 Ä MINIMIZATION IS FINISHED SUCCESSFULLY IN PART WHILE

SOME PARAMETERS ARE UNDEFINED,
6 Ä MINIMIZATION IS TERMINATED AS NO FURTHER DECREASE IN

CHISQ IS OBTAINABLE,
7 Ä ALL PARAMETERS ARE FIXED,
8 Ä MINIMIZATION IS TERMINATED AS ALL PARAMETERS EITHER

FIXED ON BOUND OR HAVE INFINITE ERROR ESTIMATION.

The speed optimization is used, when parameter boundaries are completely
absent, and the number of free parameters is greater than 15. This value can
be redeˇned in NPAROPT (Eq. (2)). Speeding up is appreciable, when NT �
N0 + N1 (Eq. (1)). The error matrix has many empty elements in this case.
The author is not sure that this optimization is 100% correct. So, if results are
suspicious, User should set up NPAROPT > NPAR.

Special kind of optimization is applied for NPAR=2 and LUN < 0 (typical for
the track reconstruction). In such a case the control is delivered to FUMI2PAR.
The direct call

H=FUMI2PAR(A,EXDA,LEXD,NEXD,USFUN,NIT)

is also possible. This program ignores parameter boundaries (A(J,5),A(J,6)).
FUMILIM starts to work from User's error check:

1. The number of experimental points should not be less than the number of
parameters: NEXD � NPAR;

2. Length of Block of one experimental point should be LEXD � 3;
3. EXDA(2, I) (experimental error) should be positive;

4. Initial value of parameter should be within up- and down-limits for it:
A(J, 5) � A(J, 1) � A(J, 6).

Error number 3 arises frequently when the real structure of EXDA-array does
not match with its deˇnition via LEXD,NEXD. Each negative check is FATAL
for User's program. Error check is switched off, when LUN < 0.
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Below is the recommendation for users who want to replace FUMILI by
FUMILIM, but have many old programs. The sequence of such lines as

COMMON/A/A(100)/PL/PL(100)/AU/AMX(100)/AL/AMN(100)
COMMON/NED/NED(2)
NED(1)=250
NED(2)=4
NPAR=20
eps=0.01D0
N1=2
N2=1
NIT=25
IPR=1
...
CALL FUMILI(S,NPAR,N1,N2,NIT,EPS,AKAP,ALAM,IPR,IEND)

can be replaced by

PARAMETER(NPAR=20,NED1=250,NED2=4)
COMMON/A/A(NPAR),SIG(NPAR),R(NPAR),PL(NPAR),AMN(NPAR),

AMX(NPAR)
EXTERNAL USFUN
NIT=25
· · ·
H=FUMILIM(A,'*',NPAR,EXDA,NED2,NED1,USFUN,NIT,6).

In this case one can keep unchangeable all deˇnitions of A(J), PL(J), AMN(J)
and AMX(J) in the old program.

1.3. FUMIDOUB. A procedure is widely spread such as the double ˇt, when
the second step is fulˇlled after removing so-called ®bad points¯. When adjusting
physical detectors offsets, one deals with the huge number of events and ®bad
points¯ form statistically meaningful wings of the χ-distribution, where

χi =
yi − Y (xi)

σi
.

Here Y (xi) is the value of ˇtted function for xi arguments of the ith experimental
point. The advanced method of ®bad points¯ removing is used in FUMIDOUB,
which gives much better results in comparison with the simplest criterium of
χ2

i < C. The algorithm is described in Section 2. The FUMIDOUB call is
identical with the FUMILIM call.

The work of FUMIDOUB is organized as follows. Firstly, the ordinary FU-
MILIM call is fulˇlled. Then, the parameters χ0(j), σ(j) of the χ-distribution
are calculated for each AF(J)-parameter, and the new EXDA-array is formed (re-
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placing initial one) with the condition |χi −χ0(j)| < kσ(j), for each j for which
∂Y (xi)/∂A(J) �= 0. The value of k = 2.5 is deˇned in COMMON/FDOUB/k via
DATA-operator and can be redeˇned by User. Then the second FUMILIM call is
fulˇlled with the redeˇned value of NEXD. If one wishes to repeat FUMIDOUB-
procedure, he can write one more line, identical to the ˇrst one.

1.4. FUMSTRAW. The track reconstruction in the straw tube chambers,
where x = A ∗ z + B, is not linear with respect to A and B parameters. So, there
is a large probability to ˇnd the local minimum. To ˇnd the global minimum,
four sets of initial parameter values are analyzed ˇrst in FUMSTRAW (one-
iteration FUMI2PAR call for each set), then for the set, provided the least χ2,
the FUMI2PAR call with rather large iteration limit is being done. But, as a rule
(99%), the convergence is achieved during 0Ä1 iterations. Four possible sets of
parameters for two tubes with the smallest and the largest z-coordinates are used
as initial conditions. The call have the form

H=FUMSTRAW(A,B,EXDA,NEXD),

where EXDA is input array of experimental points:

EXDA(1,I) Å space radius (not time);
EXDA(2,I) Å radius error;
EXDA(3,I) Å z-coordinate of a wire (along the beam);
EXDA(4,I) Å x-coordinate of a wire (transversal to z).

All values in EXDA should be in the same units. The ascending (descending)
order of z-coordinates is assumed. At least, the tubes with the largest and the
smallest z-coordinates should be the ˇrst and the last. Each FUMI2PAR call
within FUMSTRAW is done with the reference to the user function, named
FSTRAWD, which is included in the FUMILIM-package.

1.5. ERREXDA. This program is an analog of the original program ERRORF.
It calculates theoretical conˇdence band for each experimental point. The results,
together with the experimental point data, will be written to the ˇle associated
with LUN. Here Silin's original algorithm is used. The call has the form

CALL ERREXDA(A,EXDA,USFUN,LUN),

where all parameters are described above.

1.6. ERRFUNCT. This program calculates the conˇdence band as a set of
points, which allows one to plot data. The algorithm used is the same as in
ERREXDA. The call has the form

CALL ERRFUNCT(ALIM,BLIM,N,A,EXDA,USFUN,LUN).

Here ALIM and BLIM are the lowest and the highest values of the argument,
respectively, N is the number of points within {ALIM,BLIM}-interval. The other
parameters are described above. It is assumed that experimental points have only
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Fig. 1. Polynomial ˇt of data with calculation of the conˇdence band

one argument. The structure of the output array is the following:

x(1), y(1), ymin(1), ymax(1) . . .

The work of this program is illustrated in Fig. 1.
When the number of arguments is higher, the following program is applied:

CALL ERRFMULT(ALIM,BLIM,NDOT,A,EXDA,USFUN,IX,X,LUN).

Here IX is the argument number, which will be scanned. The values of other
arguments should be deˇned by User in the X(1:(LEXD-2))-array.

2. CALCULATION OF DISTRIBUTION PARAMETERS FOR FUMIDOUB

The distribution parameters χ0 and σ are deˇned as

χ0 =
1

NEXD

∑
χi, (3)

σ2 =
1

NEXD2

∑
χ2

i − χ2
0. (4)

Here

χi =
yi − Y (xi)

σi
,

yi = EXDA(1, I), σi = EXDA(2, I), Y (xi) is the ˇtted function value. In the

ˇrst approximation we use χ0 = 0 and σ0 =

√
χ2

NDF
.

Then 100-bin histograms with edges ±10σ0 are ˇlled by χi-values. It is easy
to see that the bin width in this case is 0.2σ0. In cases when NT � N0 + N1, it
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is useful to have the separate histogram for each parameter. That allows one to
collect in histograms only events correlated with the considered parameter. The
condition of the presence of the correlation is ∂Y (xi)/∂A(J) �= 0.

To calculate the distribution parameters in the second approximation, only
histogram bins close to the bin with the maximum value are collected. The
condition is wk > wm, where wm = wmaxe

−2 (it is equivalent to the condition
|χk − χ0| < 2σ for Gaussian). Here χk is the bin argument, wk is the bin value.
More exactly, the kth bin is included, if both inequalities wk+1 < wm and wk+2 <
wm are true (for the histogram right wing), or wk−1 < wm and wk−2 < wm (for
the left wing). The latter double conditions prevent one from effects of the
thin structure of a histogram. Approximately, about 20 bins are involved into
calculations. The following formulae are used for the selected bins:

χ0 =
∑

χkwk∑
wk

, (5)

σ2 =
∑

χ2
kwk∑
wk

− χ2
0. (6)

The value of σ calculated in this approach is underestimated. For the ideal
Gaussian we have σ = 0.879σG, where σG is the true value. This factor is
taken into account for the ˇnal value of σ. This approach helps to suppress
the contribution of the distribution wings and of their asymmetry. It was tested
many thousands of times in the author's own histogram package, similar to the
famous HBOOK. It gives results close to the ones ˇtted by Gaussian+background
function. For histograms with many peaks, this method gives right values of
χ0, σ for the highest of them. The subsidiary program is used to calculate χ0, σ.
Its call has the form

CALL HISMOM8(HIST,NH,A,B,χ0, σ).

Here HIST(1:NH) is the histogram array, A and B are the left and right boundaries
of the histogram, respectively.

In this way the χ0(1:NPAR)- and σ(1:NPAR)-arrays are formed. As a rule,
some elements of these arrays are identical, but minimization of the number of
histograms is a rather complicated combinatoric task, which produces no result,
apart from saving some address space. For example, the number of independent
histograms in the simplest case, described by Eq. (1), is Ns + 1.

3. TESTING

A number of testing programs and dozens of real ones were used for compara-
ble testing of FUMILI and FUMILIM. No one case with nonidentical results was
found. When all parameters are common for all events and NPAR > 2, the new
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Fig. 2. Dependence of the solution time on the number of parameters. Open and solid
circles show the time solution when no one parameter derivative is deˇned

program works 5Ä15% faster. The solution time grows as t � a + c ∗ NPAR2.
At NPAR = 2 (and LUN < 0) the speed advantage of the new program is about
of factor 2.5(1.5) when all parameter derivatives are deˇned (not deˇned). When
N0 + N1 � NT (Eq. (1)), the solution time grows as t � a + c ∗ NPAR. The
speed of FUMILI is the same in both cases.

The more parameter derivatives are deˇned analytically, the shorter the solu-
tion time. For the linear task with respect to all parameters the solution is 2.5Ä4
times faster when all derivatives are deˇned in comparison with the case when
no one derivative is deˇned. The test results for different cases of solution time
vs NT for FUMILIM are shown in Fig. 2. Taking into account that at Nt = N0

the solution times for FUMILI and FUMILIM are more or less the same, the ex-
trapolations of curves in Fig. 2 predict that the speed advantage of FUMILIM in
comparison with FUMILI at NT � N0 +N1 can achieve one order of magnitude
at 100 parameters and two orders of magnitude at 1000 parameters.

When the experimental points array is subdivided into several sets, which
are not correlated to each other (N0 = 0), the global ˇt with all parameters
is nevertheless preferable in comparison with doing cycle from 1 to Ns (and
ˇltering is, as a rule, necessary, because events belonging to different sets are
frequently distributed randomly in the common array of experimental points).
The programming in this case is simpler, and the solution time is slightly better
(because of no ˇltering).

The programs FUMSTRAW and FUMIDOUB were tested in the real exp.305
data processing (Saturne-2, Saclay). More exactly, they were created to improve
the rather complicated data analysis of this experiment. The apparatus offsets
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Fig. 3. Comparison of the elastic peak separation for two squared 4-momentum transfer
intervals

were ˇrst adjusted with the help of FUMILI. The preliminary results of this
experiment are presented in [8]. Thereafter the same job was fulˇlled with the
help of FUMIDOUB. In particular, when adjusting straw tubes offsets (time shifts
(drifting), wire eccentricity and so on), about 250 parameters and two million
events were involved into the ˇt. As the result, with new offsets the number of
events passed through the set of criteria increased appreciably. The elastic peak
resolution also became better. The comparison of the old results [8] and present
ones are demonstrated in Fig. 3. In the latter case the elastic peak resolution
(σ = 0.017) is proved to be close to the theoretical expectations (σth = 0.014).
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