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� · §²μ¦¥´¨ÖÌ ¶μ ¸μ¡¸É¢¥´´Ò³ ËÊ´±Í¨Ö³, ¸¢Ö§ ´´ÒÌ
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´Ò° ¶ · ³¥É·. ƒ² ¢´Ò³ μ¡· §μ³ ¨§ÊÎ ÕÉ¸Ö § ¤ Î¨ ¢ ¨´É¥·¢ ²¥ (0, 1). ‚ ÔÉμ³ ¸²ÊÎ ¥
¶μ± § ´μ, ÎÉμ ± ¦¤ Ö ¨§ · ¸¸³ É·¨¢ ¥³ÒÌ § ¤ Î ¨³¥¥É ¡¥¸±μ´¥Î´ÊÕ ¶μ¸²¥¤μ¢ É¥²Ó´μ¸ÉÓ
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�¨¸¸  ¨²¨ � ·¨). Š·μ³¥ Éμ£μ, ±· É±μ · ¸¸³μÉ·¥´  § ¤ Î  ´  ¶μ²Ê¶·Ö³μ° (0,∞). ‚ ÔÉμ³
¸²ÊÎ ¥ ¸¶¥±É· § ¤ Î¨ § ¶μ²´Ö¥É ´¥±μÉμ·ÊÕ ¶μ²Ê¶·Ö³ÊÕ ¨ ¢μ§´¨± ¥É  ´ ²μ£ · §²μ¦¥´¨°
¢ ¨´É¥£· ² ”Ê·Ó¥. „μ± § É¥²Ó¸É¢  μ¸´μ¢ ´Ò £² ¢´Ò³ μ¡· §μ³ ´  É¥μ·¥³¥ � ·¨ ¨, ±·μ³¥
Éμ£μ, ´  ´ Ï¥³ ·¥§Ê²ÓÉ É¥ μ¡Ð¥£μ É¨¶ , μ¡¥¸¶¥Î¨¢ ÕÐ¥³ ¤μ¸É ÉμÎ´Ò¥ Ê¸²μ¢¨Ö ¤²Ö Éμ£μ,
ÎÉμ¡Ò ¶μ¸²¥¤μ¢ É¥²Ó´μ¸ÉÓ ËÊ´±Í¨° ¡Ò²  ¡ §¨¸μ³ �¨¸¸  ¢ L2.
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in the form −u′′ = f(u) + λu, supplied with different sets of standard boundary conditions.
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ˇlls a half-line and an analog of the expansions into the Fourier integral occurs. The proofs
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1. INTRODUCTION
ON THE ORIGINATION OF THE PROBLEM

AN OBSERVATION OF RESULTS

In several last decades, a large progress was achieved in the study of eigen-
value and boundary value problems for equations that involve semilinear second-
order elliptic partial differential operators. There were developed deep and nice
methods, in particular variational and topological ones, to answer many questions
for problems of this type, such as the existence, uniqueness, a number of solu-
tions, their qualitative behavior, etc. There were discovered wide classes of such
problems whose solutions behave similar in a sense to eigenfunctions of linear
self-adjoint second-order elliptic eigenvalue problems. At the same time, a ques-
tion remained open about basis properties of these solutions or eigenfunctions of
nonlinear problems. The author of the present work believes that this question is
known to specialists in the ˇeld. Below he tries to show that it naturally arises.

So, consider, for example, the following problem:

−Δu + c(x)u = k(x)|u|p−1u, u = u(x), x ∈ Ω ⊂ R
N , u

∣∣
∂Ω

= 0,

where Ω is a bounded domain with a sufˇciently smooth boundary, c(x) � 0 and
k(x) > 0 in Ω and c and k are smooth functions in the closure Ω; Δ is the Laplace

operator in R
N, and p > 1 satisˇes p < p� with p� =

N + 2
N − 2

if N � 3, and

p� = +∞ if N = 1, 2. It is well known now (on this subject, see [14, 15]) that
this problem has a solution u0 positive in Ω and an inˇnite sequence of pairwise
different solutions {ul}l=1,2,3,... (in fact, in [14, 15] a more general result is
presented). These solutions obey certain variational characterization. Now, we
describe it brie�y.

Denote by M the set of all subsets of H1
0 (Ω) \ {0}, where H1

0 (Ω) is the
usual Sobolev space, closed and symmetric with respect to 0 (the latter means
that if M ∈ M and u ∈ M , then −u ∈ M ). For any M ∈ M deˇne γ(M) as a
minimal nonnegative integer m such that there exists an odd continuous mapping
of M into R

m \ {0}. For u ∈ H1
0 (Ω) set

J(u) =
∫

Ω

{
1
2
|∇u|2 +

1
2
c(x)u2 − 1

p + 1
k(x)|u|p+1

}
dx

1



and

N =
{

u ∈ H1
0 (Ω) : u �= 0 and

∫
Ω

(|∇u|2 + c(x)u2)dx =
∫

Ω

k(x)|u|p+1dx

}
.

Then, one has
J(ul) = inf

M∈M, M⊂N
γ(M)�l

max
u∈M

J(u).

Note also that one can change this variational principle by the following one:

J(ul) = inf
ϕ

max
u∈ϕ(Sm−1), m�l

J(u),

where the inˇmum is taken over all odd homeomorphisms ϕ of the unit sphere
Sm−1 = {x ∈ R

m : |x| = 1} into N . Note that γ(Sm−1) = m. In fact, this
variational principle is a variant of that by P.H. Rabinowitz [14, 15]; the latter is
used in a number of articles (see, for example, [12, 13]). It is important for us
that the variational characterization above of solutions ul can be interpreted as a
®nonlinear deformation¯ of the well-known minimax principle for eigenfunctions
of linear self-adjoint eigenvalue second-order elliptic problems.

The second our remark concerns the radially symmetric case when Ω = {x ∈
R

N : |x| < 1} and c ≡ k ≡ 1 in Ω. In this case, under the same assumptions as
earlier, the problem has a positive radially symmetric solution u0 and an inˇnite
sequence of solutions ul, l = 1, 2, 3, ..., radially symmetric in Ω and such that
each lth solution, regarded as a function of r = |x|, has precisely l zeros in (0, 1)
(for the proof, see, for example, [25]). So, in the radially symmetric case, this
property of solutions is again quite similar to those of eigenfunctions of linear
SturmÄLiouville operators. Note in addition that the problem above is not very
simple, even in the radially symmetric case, because even the uniqueness of a
solution with a given nonzero number l of zeros currently is unknown.

Finishing our brief consideration of results for the model problem above, we
want to note that in fact there are the essentially wider classes of nonlinear elliptic
second-order problems (both containing a spectral parameter or not so), solutions
of which have properties similar to those of eigenfunctions of linear self-adjoint
second-order elliptic problems. So, the author of the present work believes that
this similarity should lead to the natural question about basis properties of systems
of solutions of these nonlinear problems.

In the early 1990s, the author had the pleasure to meet with Profes-
sor S. I. Pohozaev at the Steklov Mathematical Institute in Moscow and to discuss
with him related problems. Professor S. I. Pohozaev raised the question about
basis properties of eigenfunctions of nonlinear problems ˇrst. The author replied
that these basis properties should hold in a nonlinear sense, we do not even know
in what sense, because the problems are nonlinear. And Professor Pohozaev
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answered: ®I do not know¯. Indeed, the results we consider in what follows
concern basis properties of solutions of semilinear problems in the usual, linear,
sense (these solutions form usual bases). However, the author thinks that only
in the case the ˇeld will be developed an answer on the question: ®Do these
solutions form bases and in what sense, usual linear or ®nonlinear¯?¯ could be
found.

Now, we shall make a general observation of results in the ˇeld our paper is
devoted to. First of all, we should note that the problem seems to be difˇcult, and
generally speaking, the methods and approaches for its treatment are almost not
created yet. Therefore, the results obtained till now concern simpler problems of
the classes mentioned above. Mainly, they are obtained in the spatial dimension 1,
i.e., when differential equations are ordinary and of SturmÄLiouville type.

The list of publications on this subject is not long, too. Probably, the
historically ˇrst related publication was due to K. J. Brown [3]. After that, mainly
A. P.Makhmudov in [8] and in his monographs [9, 10] and also, A. S.Makin
and H.B. Thompson in [11], developed and generalized this result. Below we
reestablish the pioneering theorem by K. J. Brown because of its larger clearness.
We do not present it in its abstract operator form, but we restrict our attention to
its formulation for differential equations. So, consider two equations

−(pu′)′ + q(x)u = λ

(
u +

n∑
i=1

ci(x)uki

)
(1.1a)

and

−(pu′)′ + q(x)u +
n∑

i=1

ci(x)uki = λu, (1.1b)

each of which is supplied with the boundary conditions

a1u(0) + a2u
′(0) = 0 = b1u(1) + b2u

′(1); a2
1 + a2

2 �= 0, b2
1 + b2

2 �= 0. (1.2)

Here q, ci : [0, 1] → R are continuous, ki > 1 are integer and p(x) is positive
and continuously differentiable in [0, 1] (in fact, in [3] K. J. Brown considered this
problem in an arbitrary ˇnite interval (a, b), but this difference is not important).
The result is the following.

Theorem 1.1 (K. J. Brown [3]). Under the above assumptions there exists a
sequence of eigenfunctions {un} of each of these two problems (1.1a), (1.2) and
(1.1b), (1.2) which is a basis in L2(0, 1).

We shall prove this result in Sec. 3. Here we remark that in this theorem
the eigenfunctions of the basis, by construction in the proof, approach zero in
the limit n → ∞ uniformly in x. So, this is a result on small perturbations of a
linear self-adjoint problem in a sense because ki > 1 and therefore, the nonlinear
terms in each equation are o(un) as n → ∞ uniformly in x.
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Note that K. J. Brown in [3] considered in addition a similar problem in the
half-line (0,∞), when the spectrum {λn} of the corresponding linear problem is
discrete and simple and λn → +∞ as n → ∞. His main idea in this case is the
same as in theorem 1.1: eigenfunctions of the nonlinear problem that approach
zero in the limit n → ∞ form a basis in L2.

Now, we observe our recent results on the subject. Everywhere, if otherwise
is not stated, we assume the following about the nonlinearity in the differential
equation.

(f) Let f = f(u) : R → R be an odd continuously differentiable function and
let f(u)/u be a nondecreasing function of u > 0.

First, consider the following autonomous second-order ordinary differential
equation:

−u′′ + f(u) = λu, u = u(x), x ∈ (0, 1), (1.3)

where λ ∈ R is a spectral parameter. Supply equation (1.3) with the boundary
conditions

u(0) = u(1) = 0 (1.4)

and with the following normalization condition:

1∫
0

u2(x)dx = 1. (1.5)

We shall discuss below the reasons why we included the normalization condi-
tion (1.5) in the statement of the problem. In our paper [16], the following result
is established.

Theorem 1.2. Under assumption (f)
(a) for any integer n � 0 there exists a pair (λn, un) consisting of an

eigenvalue λn and the corresponding eigenfunction un of problem (1.3)Ä(1.5)
such that un possesses precisely n zeros in (0, 1);

(b) for any integer n � 0 the eigenfunction un that possesses precisely n
zeros in (0, 1) is unique up to the coefˇcient ±1;

(c) the sequence of all eigenfunctions {un}n=0,1,2,... is a Bari basis in
L2(0, 1).

By deˇnition, a Bari basis in L2(0, 1) is a basis in this space and there exists
an orthonormal basis {en}n=0,1,2,... in L2(0, 1) such that

∞∑
n=0

‖un − en‖2
L2(0,1) < ∞. (1.6)

Note that in view of condition (1.5) the eigenfunctions un do not go to 0 uniformly
in x as n → ∞. Here, it is important for us that a Bari basis is in particular a basis.
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In view of this theorem, our problem (1.3)Ä(1.5) is ®good¯ (or ®well posed¯) in
a sense. Note also that if one changes the normalization condition (1.5) by

1∫
0

u2(x)dx = A,

where A > 0 is arbitrary, then our result still holds with the only change of
the term ®Bari basis¯ by ®Riesz basis¯ in the claim (c). Therefore, if one
considers problem (1.3)Ä(1.4) (i.e., the above problem without the normalization
condition (1.5)), then by this argument the set of all eigenfunctions becomes too
wide (in this case this set will contain ®many¯ bases). At least in this sense, it
seems to be quite appropriate to include a normalization condition as (1.5) in the
statement of the problem.

In the present paper, we shall not prove theorem 1.2; we only make some
comments to it. Claims (a) and (b) of this result are proved in [16] and later
reestablished in monograph [25]. As for the principal claim (c), we have to
note that its proof in [16] contains the essential errors which fortunately can be
corrected; these corrections are published in [18]. In addition, another proof of
theorem 1.2(c) without these errors is established in [17]. A complete proof of
theorem 1.2 is contained in [25] and therefore, we shall not establish it here.

Results similar to theorem 1.2 occur if we supply equations (1.3) and (1.4)
with the normalization condition u′(0) = 1: for any integer n � 0 this new
problem has a unique eigenfunction un with precisely n zeros in (0, 1) and the
sequence {un/‖un‖L2(0,1)}n=0,1,2,... is a Bari basis in L2(0, 1). Quite similar
results still take place for equation (1.3) taken with the boundary conditions

u′(0) = u(1) = 0

or
u′(0) = u′(1) = 0

and with the normalization condition u(1) = 1 (for the proofs of all these results,
see [19, 20]). Methods of the analysis of these three problems are quite similar
to each other, and we shall illustrate them in Sec. 3 with an example. We also
mention paper [23] where an integrodifferential equation is studied.

In Sec. 4, we shall consider two problems. The ˇrst one is a problem without
a spectral parameter:

u′′ + f(u) = 0, u = u(x), x ∈ (0, 1), u(0) = u(1) = 0. (1.7)

In this case, we assume in addition to hypothesis (f) that f(u)/u → +∞ as
u → +∞ and that f ′(0) � 0. Again, for each integer n � 0 this problem has
a solution un unique up to the coefˇcient ±1 that possesses precisely n zeros
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in (0, 1). One of the difˇculties related to the analysis of this problem is that,
unlike it takes place in the case of each previous problem, it seems to be difˇcult
(or even impossible) to ˇnd a linear self-adjoint problem whose eigenfunctions
en satisfy (1.6). However, the following result takes place.

Theorem 1.3. Let the above assumptions be valid. Then, for any integer
n � 0 problem (1.7) has a solution un with precisely n zeros in (0, 1). For each
integer n � 0 such a solution with precisely n zeros in (0, 1) is unique up to the
coefˇcient ±1. The sequence {un}n=0,1,2,... of all solutions is a basis and the
sequence {un/‖un‖L2(0,1)}n=0,1,2,... is a Riesz basis in L2(0, 1).

This result is proved in [21]. We shall consider this proof in Sec. 4.
Second, in Sec. 4, we shall consider brie�y our result for equation (1.3) on

the half-line x > 0. We supply our equation with the boundary conditions

u′(0) = 0, u(0) = p > 0, sup
x>0

|u(x)| < ∞,

where p is a ˇxed parameter. In this case, the ®spectrum¯ of the problem ˇlls a
half-line (note that we even have no common in use deˇnition of the spectrum
for this problem). We establish a result on a possibility of a unique expansion of
an ®arbitrary function¯ into an integral over the eigenfunctions of this problem
analogous to the Fourier transform. Readers may ˇnd our proof of this result
in [24]. This proof is sufˇciently complicated and therefore, we do not establish
it in detail in the present paper. We only outline its main idea.

A large part of proofs of the results in the present work is based on a classical
result of N.K. Bari, the so-called Bari theorem. In addition, we shall apply our
result giving sufˇcient conditions for a sequence of functions to be a Riesz basis
in L2. The proof of the latter is also based on ideas from the proof of the Bari
theorem.

Finishing our introduction, we want to make some remarks. First, of course,
equations (1.3) and (1.7) can be solved by quadratures. However, it seems
to be not clear so far how one can analyze basis properties of systems of their
eigenfunctions using such representations by quadratures for these eigenfunctions.
Second, we want to discuss the normalization condition as (1.5). As the reader
could already see, roughly speaking, the author has the following point of view:
if a nonlinearity obeys assumption (f) and if its sign in the differential equation
is such that the problem without a spectral parameter has an inˇnite sequence of
solutions as it takes place in the case of problem (1.7), then one does not need
to impose a normalization condition and he should look for basis properties of
the family of solutions of the problem without a spectral parameter. While when
the sign at the nonlinearity in the differential equation is opposite as in (1.3), a
normalization condition should be imposed.

Observe the following. In the case of a linear self-adjoint SturmÄLiouville
problem usually one does not include a normalization condition in the statement
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of the problem because if w is an eigenfunction of this linear problem, then for
any α �= 0 αw is still its eigenfunction. On the other hand, in view of this reason,
one may include a normalization condition, such as (1.5) or, say, u′(0) = 1,
in the statement of his linear self-adjoint problem explicitly. Another situation
occurs in the nonlinear case. Above we tried to show that it seems to be natural
to consider sometimes a nonlinear problem with a normalization condition to
make this problem ®good¯ in a sense. It is another question what normalization
condition should be imposed. The author believes that this question may be
solved only in the future if and when the ˇeld will become more developed.
This choice may depend, for example, on the nature of a physical phenomenon
leading to the corresponding mathematical problem. In this connection, the author
wants to note the following. In the publications by A. P.Makhmudov [8Ä10]
and by A. S. Makin and H.B. Thompson [11], problems in the essentially more
general form than (1.3)Ä(1.5) or (1.7) are considered, in particular, with boundary
conditions (1.2) and with nonlinearities of a more general kind than ours. A
typical result in these papers is the existence of a (Riesz or Bari) eigenfunction
basis for L2. However, the author of the present work believes that, in view of
this generality and because these authors do not impose a normalization condition,
they do not prove a uniqueness of their bases; in fact, for their problems, there
exist ®a lot of¯ (in fact, continuum) eigenfunction bases.

As for possible applications of results on basis properties of solutions of
nonlinear problems, the author thinks that if the ˇeld will continue to develop,
then in the future these results may ˇnd applications. The author thinks that
the results of this type can be applied in particular in the Fourier and Galerkin
methods for solving differential equations.

For the convenience of readers, the author tried to include in the paper all the
information from the general theory of non-orthogonal expansions in a Hilbert
space necessary to read it independently of other literature. In particular, in the
following we shall establish the Bari theorem. We hold a little-known and nice
approach presented by Professor N.K. Bari in her pioneering papers [1, 2]. We
shall establish a simple and short proof of this result. In fact, this proof is a
variant of that one in [2]. With this, we shorten and simplify the proof of this
result established in [25], and we remove a gap in the proof occurred in [25].

The author uses this occasion to thank his colleagues for useful discussions
on the subject the work is devoted to. He wants to thank especially Profes-
sor S. I. Pohozaev who contributed much for enlarging the author's interest in the
ˇeld.

2. AUXILIARY RESULTS

First, we introduce some very simple notation. Let L2(a, b), where
0 � a < b � +∞, be the standard Lebesgue space of real-valued and square

7



integrable functions g, h, ... : (a, b) → R; this space is equipped with the scalar

product (g, h)L2(a,b) =

b∫
a

g(x)h(x)dx and the corresponding norm ‖g‖L2(a,b) =

(g, g)1/2
L2(a,b). Denote L2 = L2(0, 1), (·, ·) = (·, ·)L2(0,1) and | · |2 = ‖ · ‖L2(0,1).

We also introduce the space l2 = {a = (a0, a1, ..., an, ...) : ‖a‖l2 < ∞}, where

an ∈ R and ‖a‖l2 =

{ ∞∑
n=0

a2
n

}1/2

. In addition, we equip this space with the

scalar product (a, b)l2 =
∞∑

n=0

anbn making it a Hilbert space.

2.1. Basic Deˇnitions. A Counterexample. The Bari Theorem. Now,
we recall some basic deˇnitions, partly known, we need in the following. Let
H be a separable Hilbert space over the ˇeld of real numbers in which, the
scalar product and the corresponding norm are denoted, respectively, (·, ·)H and

‖ · ‖H = (·, ·)1/2
H . Let {hn}n=0,1,2,... be a sequence of elements of H . Then,

we call this sequence a Schauder basis in H (or simply a basis in H) if for
any h ∈ H there exists a unique sequence {an} of real numbers an such that

h =
∞∑

n=0

anhn in H . We call the sequence {hn} linearly independent in H if the

equality
∞∑

n=0

anhn = 0 with real coefˇcients an holds in H when and only when

0 = a0 = a1 = ... = an = .... The system {hn} is said to be complete in H
if for any h ∈ H and ε > 0 there exist real coefˇcients an, n = 0, 1, ..., N, so
that ‖h − a0h0 + ... + aNhN‖H < ε. We call a system which is not complete
an incomplete system. A basis {hn}n=0,1,2,... in H is called a Riesz basis in H

if the series
∞∑

n=0

anhn with real coefˇcients an converges in H if and only if

a = (a0, a1, ..., an, ...) ∈ l2. Two sequences {hn} ⊂ H and {gn} ⊂ H are called
quadratically close to each other in H (or the system {hn} is called quadratically

close to {gn} in H) if
∑

n

‖gn − hn‖2
H < ∞. A basis in H is called a Bari basis

in H if it is quadratically close to an orthonormal basis in H . Note that, as it
follows from the Bari theorem (see below), a Bari basis in H is a Riesz basis
in H .

Remark 2.1. Sometimes a sequence linearly independent in H is called an
ω-linearly independent system (in particular, this terminology is used in mono-
graph [6]). In the following, we shall use the terminology we just introduced for
brevity. Deˇning the notion of a Riesz basis, we followed the pioneering articles
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by N.K. Bari [1, 2]. In [6], another, equivalent deˇnition is introduced. We also
mention the wonderful fact that the estimates

c‖a‖2
l2 �

∥∥∥∥∥
∑

n

anhn

∥∥∥∥∥
2

H

� C‖a‖2
l2

with positive constants 0 < c < C independent of coefˇcients a ∈ l2 that
sometimes are used to deˇne Riesz bases follow from our deˇnition of these
objects; we shall see this in what follows.

Now, we want to note the following. Sometimes, a mistake occurs that the
completeness and linear independence of a system {hn} ⊂ H together imply that
this system is a basis in H . The following counterexample shows that, generally
speaking, this is not so.

Example 2.2. Let {en}n=0,1,2,... ⊂ H be an orthonormal basis in H , and
consider the sequence h0 = e0, hn = en + e0 for n = 1, 2, 3, .... It is easily
seen that the system {hn}n=0,1,2,... is complete and linearly independent in H .

Let us prove that this system is not a basis in H . Take an h =
∞∑

n=0

cnen ∈ H ,

where c = (c0, c1, ..., cn, ...) ∈ l2 is such that the series
∞∑

n=0

cn is nonconvergent,

and suppose that h =
∞∑

n=0

anhn in H . Then, since the basis {en} is orthonormal,

we ˇnd step by step multiplying the last relation by en, n = 1, 2, 3, ..., in H :

a1 = c1, a2 = c2, ..., an = cn, ... and hence, it must be a0 = c0 −
∞∑

n=1

cn, which

is a contradiction. Therefore, {hn}n=0,1,2,... is not a basis in H . �

One of the tools we use in the present paper is the Bari theorem. It was
established for the ˇrst time by Professor N.K. Bari in [1, 2] and later reestablished
in a number of publications (see, for example, [6, 25]).

Theorem 2.3 (Bari theorem). Let H be a separable Hilbert space over
the ˇeld of real numbers, the scalar product and norm in which are denoted,

respectively, (·, ·)H and ‖ · ‖H = (·, ·)1/2
H . A sequence of elements of this space

linearly independent and quadratically close to a Riesz basis in this space is a
Riesz basis in H .

Proof. Here, we follow the pioneering article by N.K. Bari [2]. Let a
sequence {hn}n=0,1,2,... be linearly independent and quadratically close to a Riesz
basis {en}n=0,1,2,... in H . Then, for a = (a0, a1, ..., an, ...) ∈ l2, we have∥∥∥∥∥

m+p∑
n=m+1

an(en − hn)

∥∥∥∥∥
2

H

�
m+p∑

n=m+1

a2
n

m+p∑
n=m+1

‖en − hn‖2
H → 0

9



as m → ∞ uniformly with respect to p � 0. Hence, the series
∞∑

n=0

an(en − hn)

converges in H .

We associate the element h =
∞∑

n=0

anen ∈ H to each a = (a0, a1, ..., an, ...) ∈

l2. Clearly, the map a → h is a linear one-to-one correspondence of l2 onto H .
In addition, it follows from Banach's general theory of bases in the Banach
spaces that the coefˇcients an which are obviously linear functionals depending
on h ∈ H are in addition continuous functionals (a simple and short proof of
this claim is presented, for example, in [7]). Below we do not prove this fact
referring the reader to other literature, for example, to book [7], for its proof.

For h ∈ H , denote AN :H → l2 so that ANh=aN =(a0, a1, ..., aN , 0, 0, ...)∈
l2. Then, AN are linear continuous operators from H into l2. Since for each
h ∈ H one has

∑
n

a2
n < ∞, for each h ∈ H the sequence {ANh}N=1,2,3,...

is bounded in l2, therefore, by the BanachÄSteinhaus theorem, the sequence of
bounded linear operators {AN}N=1,2,3,... from H into l2 is bounded uniformly in
N . Thus, the linear operator A that maps h ∈ H into a = (a0, a1, ..., an, ...) ∈ l2
is bounded. So, there exists M > 0 such that ‖Ah‖l2 � M‖h‖H for any h ∈ H .

Let F =
∞∑

n=0

an(en − hn), and denote F = Uh, where h =
∑

n

anen. Then,

the operator U : H → H is linear and it is well-deˇned onto the whole space
H . Let us prove that this operator U is completely continuous in H . Denote
BR = BR(0) = {g ∈ H : ‖g‖H < R} and let h ∈ BR. Take an arbitrary ε > 0.

There exists a number N > 0 such that
∞∑

n=N+1

‖en − hn‖2
H < ε, therefore

∥∥∥∥∥F −
N∑

n=0

an(en − hn)

∥∥∥∥∥
2

H

=

∥∥∥∥∥
∞∑

n=N+1

an(en − hn)

∥∥∥∥∥
2

H

�

�
∞∑

n=N+1

a2
n ·

∞∑
n=N+1

‖en − hn‖2
H � M2R2ε.

Hence, in view of the arbitrariness of ε > 0, the set U(BR) is relatively compact
in H and thus, the complete continuity of the operator U in H is proved.

Denote ϕ = h − F and B = Id − U , where Id is the identity. Then,

ϕ =
∞∑

n=0

anhn, B is a bounded linear operator in H and ϕ = Bh. But the equation

Bh = 0 has in H only the trivial solution h = 0 because the system{hn}n=0,1,2,...

10



is linearly independent in H . Therefore, the operator B has a bounded inverse
B−1 in H ; in addition, clearly Ben = hn.

Let u ∈ H and v = B−1u =
∞∑

n=0

anen, where a = (a0, a1, ..., an, ...) ∈ l2.

Then, u = Bv =
∞∑

n=0

anBen =
∞∑

n=0

anhn in H . Conversely, if u =
∞∑

n=0

anhn,

then B−1u =
∞∑

n=0

anen so that a = (a0, a1, ..., an, ...) ∈ l2. Our proof of the Bari

theorem is complete. �

Remark 2.4. It immediately follows from our proof of the Bari theorem that
if {hn}n=0,1,2,... is a Riesz basis in H , then there exist 0 < c < C such that

c‖a‖2
l2 �

∥∥∥∥∥
∞∑

n=0

anhn

∥∥∥∥∥
2

H

� C‖a‖2
l2

for any a = (a0, a1, ..., an, ...) ∈ l2. Indeed, the left-hand side estimate is already
proved, and the right-hand side one follows the Banach theorem because as it is
proved, the correspondence h → a as a map from H into l2 is linear, bounded
and one-to-one, hence the inverse mapping is linear and bounded, too. �

Corollary 2.5. Let again H be a separable Hilbert space over the ˇeld
of real numbers, {en}n=0,1,2,... be an orthonormal basis in H and a system

{hn}n=0,1,2,... ⊂ H be such that
∞∑

n=0

‖en − hn‖2
H = a < 1. Then, {hn}n=0,1,2,...

is a Bari basis in H .
Proof. In view of the Bari theorem 2.3 we need only to prove the linear

independence of the system {hn}n=0,1,2,... in H . Suppose that
∞∑

n=0

cnhn = 0 in H

for some real coefˇcients cn. For any integer N > 0, we have
N∑

n=0

cn(en −hn)+

+αN =
N∑

n=0

cnen in H , where ‖αN‖H → 0 as N → ∞. Hence,

a1/2

(
N∑

n=0

c2
n

)1/2

+ ‖αN‖H �
(

N∑
n=0

c2
n

)1/2

(
N∑

n=0

‖en − hn‖2
H

)1/2

+ ‖αN‖H �
(

N∑
n=0

c2
n

)1/2

for any N , which is possible if and only if 0 = c0 = c1 = ... = cn = .... �

11



Remark 2.6. Riesz and Bari bases being compared with arbitrary bases
possess a number of additions important properties. In particular, a Riesz basis
after an arbitrary permutation of its elements remains the property to be a Riesz
basis. For us, these additional properties of Riesz and Bari bases are less important
because we only try to answer the principal question whether eigenfunctions
of nonlinear problems form bases in some cases; we refer readers to the Bari
article [2] and to monograph [6] for an information about these properties of
Riesz and Bari bases.

2.2. Sufˇcient Conditions for a System of Functions to Be a Riesz Basis in
L2. A Counterexample. In this subsection, ˇrst, we shall reestablish a result on
the subject indicated in the title published in [21].

Theorem 2.7. Let {hn}n=0,1,2,... be a sequence of real-valued, three times
continuously differentiable functions in R. Assume that for each integer n � 0
the following holds:

(1) hn(x+1/(n+1)) = −hn(x) and hn(1/2(n+1)+x) = hn(1/2(n+1)−x)
for any x ∈ R;

(2) h′
n(x) > 0, h′′

n(x) � 0 and h′′′
n (x) � 0 for any x ∈ (0, 1/2(n + 1));

(3) there exist 0 < c < C such that c < hn(1/2(n+1)) < C for all n. Then,
the system {hn}n=0,1,2,... is a Riesz basis in L2.

Corollary 2.8. Let {hn}n=0,1,2,... be a sequence of real-valued, three times
continuously differentiable functions in R satisfying assumptions (1) and (2) of
the previous theorem. Then, {hn}n=0,1,2,... is a basis and {hn/hn(1/2(n +
1))}n=0,1,2,... is a Riesz basis in L2.

Corollary 2.9. Let h be a real-valued, three times continuously differentiable
function in R, such that h(x +1) = −h(x), h(1/2+x) = h(1/2− x), h′(x) > 0,
h′′(x) � 0 and h′′′(x) � 0 in (0, 1/2). Then, the functions hn(x) = h((n + 1)x),
where n = 0, 1, 2, ..., form a Riesz basis in L2.

Proof of theorem 2.7. Denote en(x) =
√

2 sin π(n + 1)x, n = 0, 1, 2, ..., so
that {en}n=0,1,2,... is an orthonormal basis in L2. In addition, note that hn(0) = 0
for each integer n � 0 by conditions (1) and (2) of the theorem.

Lemma 2.10. Let for some integer n � 0 a function hn ≡ g satisfy assump-
tion (1) of theorem 2.9 and g(0) = 0. Then,

g(·) =
∞∑

m=0

cmem(·) in L2,

where real coefˇcients cm are such that c0 = c1 = ... = cn−1 = 0. If in addition
g(x) > 0 for x ∈ (0, 1/(n + 1)), then cn > 0.

Proof. The sequence {e(n+1)(l+1)−1}l=0,1,2,... is an orthogonal basis in
L2(0, 1/(n + 1)). Hence, the expansion above holds in the latter space with
cm = 0 if m �= (n + 1)(l + 1) − 1 for all integer l � 0 (so that in particular
c0 = c1 = ... = cn−1 = 0). In addition, cn > 0 if g(x) > 0 in (0, 1/(n + 1))

12



because in this case two functions en and g are of the same sign everywhere in
(0, 1/(n + 1)). In view of the oddness of functions g and e(n+1)(l+1)−1 with

respect to their zeros k
n+1 , k = 0,±1,±2, ..., the expansion still holds in L2. �

So, for the system {hn}n=0,1,2,..., we have the following sequence of expan-
sions in L2:

hn = an
mem, (2.1)

where

an
0 = an

1 = ... = an
n−1 = 0, an

m = 0 if m �=
�= (n + 1)(l + 1) − 1 for all l = 0, 1, 2, ... and an

n > 0. (2.2)

Denote A = (an
m)n,m=0,1,2,....

Lemma 2.11. Under the assumptions of theorem 2.7, one has:

(an
n)−1|an

(n+1)(m+1)−1| � π

2
(m + 1)−2 from each integer m � 1. In addition,

an
(n+1)(m+1)−1 = 0 if m = 2l + 1 for some integer l � 0.

Proof. The second claim is obvious because the functions e(n+1)(2l+2)−1

are odd with respect to the middles of the intervals (0, 1/(n + 1)), (1/(n + 1),
2/(n + 1)), ..., (n/(n + 1), 1) and hn is even so that an

(n+1)(m+1)−1 =
= (e(n+1)(2l+2)−1, hn) = 0.

Let us prove the ˇrst claim. Let m = 2l. Due to the properties of periodicity,
oddness and evenness of hn and e(n+1)(2l+1)−1, we have

(an
n)−1|an

(n+1)(m+1)−1| =

∣∣∣∣ 1∫
0

hn(x) sin π(n + 1)(m + 1)x dx

∣∣∣∣
1∫
0

hn(x) sin π(n + 1)x dx

=

=

∣∣∣∣∣
1/2(n+1)∫

0

hn(x) sin π(n + 1)(m + 1)x dx

∣∣∣∣∣
1/2(n+1)∫

0

hn(x) sin π(n + 1)x dx

=

= (m + 1)−1

∣∣∣∣∣
1/2(n+1)∫

0

h′
n(x) cos π(n + 1)(m + 1)x dx

∣∣∣∣∣
1/2(n+1)∫

0

h′
n(x) cosπ(n + 1)x dx

=

= (m + 1)−1

∣∣∣∣ 1∫
0

h′
n(x/2(n + 1)) cos π(m+1)x

2 dx

∣∣∣∣
1∫
0

h′
n(x/2(n + 1)) cos πx

2 dx

. (2.3)
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By our assumptions, h′
n(x/2(n+1)) is a positive nonincreasing concave function

in (0, 1). Hence,

1∫
0

h′
n(x/2(n + 1)) cos

πx

2
dx � h′

n(0)

1∫
0

(1 − x) cos
πx

2
dx =

4
π2

h′
n(0). (2.4)

By analogy, as one can easily see on the graph of h′
n,∣∣∣∣∣∣

1∫
0

h′
n(x/2(n + 1)) cos

π(m + 1)x
2

dx

∣∣∣∣∣∣ �

� h′
n(0)

∣∣∣∣∣∣∣
1/(m+1)∫

0

cos
π(m + 1)x

2
dx

∣∣∣∣∣∣∣ =
2

π(m + 1)
h′

n(0). (2.5)

(Indeed, denoting xk =
2k + 1
m + 1

, k = 0, 1, ...,
m

2
, and representing the latter

integral as a sum of the integrals between 0 and x0, x0 and x1, etc., one sees that
the absolute value of the ˇrst integral in this sum is not smaller than the one half
of the absolute value of the second one, the absolute value of the second integral
is not smaller than the absolute value of the third one, and so on, which yields
our estimate.)

Estimates (2.3)Ä(2.5) imply

(an
n)−1|an

(n+1)(m+1)−1| � π

2
(m + 1)−2,

and lemma 2.11 is proved. �

Lemma 2.12. Under the assumptions of our theorem the system {hn}n=0,1,2,...

is linearly independent in L2.

Proof. On the contrary, suppose that
∞∑

n=0

dnhn = 0 in H for some dn ∈ R.

Take the scalar product of the left- and right-hand sides of this equality with e0 in
L2. Then, it follows from (2.1) that d0 = 0. By analogy, multiplying this equality
by e1, e2, ... in L2 we deduce, step by step, that 0 = d1 = d2 = ... = dn = .... �

For each integer m � 0, denote by Bm the linear operator in L2 mapping
en into bn

(n+1)(m+1)−1e(n+1)(m+1)−1, n = 0, 1, 2, ..., where bn
m = (an

n)−1an
m.

Then, for each m, Bm is a bounded linear operator from L2 into L2, ‖Bm‖ �
sup
n�0

|bn
(n+1)(m+1)−1| = bm and B0 = Id. By lemma 2.11,

∞∑
m=1

bm � π

2

∞∑
l=1

(2l + 1)−2 � π

2

∞∫
1/2

(2x + 1)−2dx =
π

8
.
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Hence, ‖B‖ � π
8 < 1, where B =

∞∑
m=1

Bm. Therefore, the operator A = (Id+B)

has a bounded inverse A−1 = Id+
∞∑

n=1

(−1)nBn. Note also that Aen = hn, where

hn = (an
n)−1hn.

Take an arbitrary v ∈ L2 and set u = A−1v =
∞∑

n=0

cnen, where cn ∈ R.

Then,
∑

n

c2
n < ∞ and v = Au =

∞∑
n=0

cnAen =
∞∑

n=0

cnhn, where the inˇnite sums

converge in L2. Therefore, in view of lemma 2.12, the system {hn}n=0,1,2,... is

a basis in L2, and, if
∑

n

c2
n < ∞, then the series

∞∑
n=0

cnhn converges in L2.

Conversely, let a series u =
∞∑

n=0

cnhn converges in L2. Then, A−1u =∑
n

cnen, hence
∑

n

c2
n < ∞. Thus, {hn}n=0,1,2,... is a Riesz basis in L2. Since

under the assumptions of the theorem we easily have 0 < c � an
n � C < +∞

for some constants 0 < c < C independent of n, our proof of theorem 2.7 is
complete. �

Remark 2.13. In the following, theorem 2.7 will be applied to prove
theorem 1.3. So, one can see that the set of all Riesz (or Bari) bases in L2

is essentially wider than the the set of systems of solutions of our nonlinear
problems. However, the same remark still concerns linear problems: the set of
all bases in L2 is essentially wider than the set of sequences of eigenfunctions of
linear problems.

In our proof of theorem 2.7, we essentially used the fact that the matrix A
in the expansions (2.1)Ä(2.2) is upper triangular and all elements of its principal
diagonal are strictly positive. So, one may think that in view of these properties of
the matrix A, the sequence {hn}n=0,1,2,... is always a basis in L2. The following
counterexample taken from our paper [24] shows that this is not so and, generally
speaking, the system {hn}n=0,1,2,... can be even incomplete.

Example 2.14. Let {en}n=0,1,2,... be an orthonormal basis in the space H
introduced earlier, and the system {hn}n=0,1,2,... ⊂ H is deˇned by formu-

las (2.1)Ä(2.2) where, for each n, an
n = a, an

n+1 = −
√

1 − a2, a ∈ (0, 1) does
not depend on n, and an

m = 0 for all other values of n and m. Fix a so small that
A =

√
1 − a2/a > 3 and let us show that the system {hn}n=0,1,2,... is incomplete

in H (note that according to lemma 2.12 this system is linearly independent in
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H). For this aim, let us prove that there exists a constant c > 0 so that

‖c0h0 + c1h1 + ... + cNhN − e0‖H � c

for any real coefˇcients cn and any number N . On the contrary, suppose that
this is not so and there exist sequences of numbers Nm and of real coefˇcients
cm
0 , cm

1 , ..., cm
Nm

so that ‖αm‖H → 0 as m → ∞, where αm = cm
0 h0 + cm

1 h1 +
... + cm

Nm
hNm − e0.

Denote γm,n = (αm, en)H . Then, it is easy to derive that

cm
0 = a−1(1 + γm,0) and cm

n = Acm
n−1 + a−1γm,n, n � 1. (2.6)

Since αm → 0 in H , we have

∑
n

γ2
m,n → 0 as m → ∞. (2.7)

Hence, cm
0 → a−1 > 1 as m → ∞, and applying induction in n to (2.6) and the

facts that A > 3 and, by (2.7), that |γm,n| � a for all n and all sufˇciently large
m, we obtain: cm

n > 1 for all sufˇciently large m and for all n = 0, 1, ..., Nm.
But then, ‖αm‖2

H � (cm
Nm

)2(1 − a2) > 1 − a2 > 0 for all sufˇciently large m,
and we arrive at a contradiction, which completes our proof. �

In the next sections, we need in the following technical result.
Proposition 2.15. Consider the problem

w′′ = g(w), w = w(x), x ∈ R, (2.8)

where g is a continuously differentiable function of its argument. Let w(x) be a
solution of (2.8). Then

(a) if w′(x0) = 0 for some x0 ∈ R, then the solution w is even with respect
to x0, that is, w(x0 + x) = w(x0 − x) for any x;

(b) if in addition the function g is odd and if w(x0) = 0 at some x0 ∈ R, then
this solution w is odd with respect to this point, that is, w(x0 +x) = −w(x0 −x)
for any x.

Proof is elementary. Let us prove, for example, claim (a) (claim (b) can
be proved by the complete analogy). Let w′(x0) = 0 and introduce the function
w1(x) equal to w(x) for x � x0 and equal to w(x0 − (x − x0)) if x > x0.
Then, the direct veriˇcation shows that this new function w1 is continuous
everywhere and that it satisˇes the differential equation in (2.8) in the domains
x � x0 and x � x0. Thus, by the uniqueness theorem for (2.8) with the initial
data w1(x0) = w(x0), w′

1(x0) = 0, one has w ≡ w1, and proposition 2.15 is
proved. �
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3. SEMILINEAR EIGENVALUE PROBLEMS IN A FINITE INTERVAL

In this section, we shall consider nonlinear problems containing a spectral
parameter.

3.1. A Proof of Brown's Result. In this subsection, we shall analyze only
problem (1.1a)Ä(1.2) because problem (1.1b)Ä(1.2) can be studied by the complete
analogy. Consider the linear eigenvalue problem

−(pe′)′ + q(x)e = λe, e = e(x), x ∈ (0, 1), (3.1)

a1e(0) + a2e
′(0) = 0 = b1e(1) + b2e

′(1). (3.2)

It has an inˇnite sequence of eigenvalues {λk}k=0,1,2,... with corresponding eigen-
functions ek, k = 0, 1, 2, ..., normalized to 1 in L2 so that {ek}n=0,1,2,... is an
orthonormal basis in L2. In addition, to each integer k � 0 the eigenfunction ek

possesses precisely k zeros in (0, 1).
Lemma 3.1. Take an arbitrary integer k � 0. There exists an interval

Ik � 0 such that for each α ∈ Ik, α �= 0, there exists an eigenfunction uk of
problem (1.1a), (1.2) which possesses precisely k zeros in the interval (0, 1) and
satisˇes the estimate |uk − αek|2 = αγk(α), where γk(α) → 0 as α → 0. The
corresponding eigenvalue goes to λk as α goes to 0.

Remark 3.2. In fact, in [3] the author applies a stronger result, the CrandallÄ
Rabinowitz bifurcation theorem, taken from [5]. However, these two approaches,
our one and the approach in [3], in the context of our problem lead us to the same
goal. Below we shall use the fact that we deal only with ordinary second-order
differential equations, and our methods are quite elementary.

Proof of lemma 3.1. Consider the Cauchy problem

−(pw′)′ + q(x)w = λ

(
w +

n∑
i=1

ci(x)wki

)
x ∈ (0, 1), (3.3)

a1w(0) + a2w
′(0) = 0, a2w(0) − a1w

′(0) = A. (3.4)

By (3.4), the values w(0) and w′(0) are uniquely determined and one has: c|A| �
|w(0)| + |w′(0)| � C|A| for all A : |A| < 1, where positive constants 0 <
c < C do not depend on A. Hence, by the continuous dependence theorem,
max

x∈[0,1]
|w(x)| → 0 as A → 0 for any ˇxed λ. Furthermore, since the absolute

values of the nonlinear terms in (3.3) can be estimated from above by C1|w|1+κ

for constants C1 > 0 and κ > 0 independent of sufˇciently small A �= 0, we
obtain from (3.3) applying Gronwell's lemma:

max
x∈[0,1]

|w(x)| � C2|A| (3.5)

for all sufˇciently small A �= 0 and a constant C2 > 0 independent of A.
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By the oscillation theorem (see, for example, [4]), for each integer n � 0
there exist two strictly positive functions α = α(A) and β = β(A) of the
argument A �= 0 going to 0 as A → 0, such that for any sufˇciently small A �= 0
each of two solutions wα and wβ of problem (3.3)Ä(3.4) taken respectively with
λ = λk + α(A) and with λ = λk − β(A) has precisely k zeros in (0, 1) and
sign(b1wα(1) + b2w

′
α(1)) · (sign(b1wβ(1) + b2w

′
β(1)) < 0.

For each sufˇciently small A �= 0, take for λk(A) the largest lower bound
of those values of λ ∈ [λk − β(A), λk + α(A)] for each of which the corre-
sponding solution w(x) of problem (3.3)Ä(3.4) has precisely k zeros in (0, 1)
and sign(b1w(1) + b2w

′(1)) = sign(b1wα(1) + b2w
′
α(1)). Then, this is a simple

corollary of the oscillation and continuous dependence theorems that the solution
w(x, A) of problem (3.3)Ä(3.4) taken with λ = λk(A) has precisely k zeros in
(0, 1) and b1w(1, A) + b2w

′
x(1, A) = 0. So, we have proved that there exists

a function m = m(A) of sufˇciently small values of A going to 0 as A → 0
and such that the solution wk of problem (3.3)Ä(3.4) taken with λ = λk + m(A)
satisˇes problem (1.1a), (1.2).

Denote by ck = ck(A) ∈ R \ {0} a constant such that ek = ckek satisˇes
a2ek(0) − a1e

′
k(0) = A. Then, by the arguments above and Gronwell's lemma,

there exists C3 > 0 such that for any sufˇciently small A �= 0 one has

max
x∈[0,1]

|wk(x) − ek(x)| � C3A
1+κ. (3.6)

Lemma 3.1 is proved. �

Proof of the Brown theorem 1.1. We apply lemma 3.1. For each integer

k � 0 take α = αk ∈ Ik, αk �= 0, so small that γ2
k(αk) < 2−

k+4
2 . Consequently

|α−1
k wk(x) − ek(x)|22 = γ2

k(αk) < 2−
k+4
2 . Hence,

∞∑
k=0

|α−1
k wk − ek|22 � 1

2

and thus, by corollary 2.5, {αkwk}k=0,1,2,... is a Bari basis in L2. Theorem 1.1
is proved. �

Remark 3.3. In fact, with theorem 1.1 we have proved the existence of a Bari
basis consisting of normalized eigenfunctions of problem (1.1a), (1.2). In addition,
we mention here the paper by Makin and Thompson [11] in which the authors
present a stronger result on the property of being a basis for eigenfunctions of a
similar problem. In their theorem, the eigenfunctions un do not go to 0 uniformly
in x as n goes to ∞, but these eigenfunctions are sufˇciently small in a sense
uniformly in n.

3.2. On the Existence and Uniqueness of Eigenfunctions. In this section,
we shall prove a result on the existence and uniqueness of eigenfunctions of a
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nonlinear problem we need in the following. Consider the following problem:

−d2u

dx2
+ f(u) = λu, u = u(x), x ∈ (0, 1), (3.7)

u(0) = p > 0, (3.8)

u′(0) = u(1) = 0, (3.9)

where λ ∈ R is a spectral parameter and p > 0 is an arbitrary ˇxed parameter.
Our result is as follows.

Theorem 3.4. Let assumption (f) be valid. Then, for any integer
n � 0 problem (3.7)Ä(3.9) has a unique eigenfunction un = un(x) that pos-
sesses precisely n zeros in the interval (0, 1).

Proof. Of course, equation (3.7) can be solved by quadratures. However,
below we establish its qualitative analysis which is more simple visually and
applicable to wider classes of problems. In addition to problem (3.7)Ä(3.9),
consider the Cauchy problem

−d2u

dx2
+ f(u) = λu, u = u(x), x ∈ (0, 1), (3.10)

u(0) = p, u′(0) = 0. (3.11)

It is easy to see that if u(x) is a solution of problem (3.10)Ä(3.11), then it satisˇes
the identity

1
2
[u′(x)]2 +

λ

2
[u2(x) − p2] + F (p) − F (u(x)) = 0, (3.12)

where F (u) =

u∫
0

f(s)ds. To obtain this relation, it sufˇces to multiply equa-

tion (3.10) by u′(x) and integrate the result from 0 to x. In view of this identity,
it is easily seen that if a solution u(x) of problem (3.10)Ä(3.11) is bounded in a
bounded interval [0, a), then it can be continued onto a right half-neighborhood
of the point x = a.

Lemma 3.5. For any λ ∈ R, denote by [0, a) the maximal interval on which
the corresponding solution of problem (3.10)Ä(3.11) can be continued. Then, if
u′′(0) > 0, the solution u satisˇes u(x) � p for all x ∈ [0, a), and if u′′(0) � 0,
then |u(x)| � p for any x ∈ [0, a).

Proof. Let u′′(0) > 0. Then, u(x) > p in a right half-neighborhood of the
point x = 0. Suppose that u(x) = p for some x ∈ [0, a). By (3.12) and (3.10),
it follows that u′(x) = 0 and u′′(x) > 0. But then, u(x) > p for all x �= x
sufˇciently close to x.
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Now, suppose that u′′(0) � 0. If u′′(0) = 0, then u(x) ≡ p for all x by the
uniqueness theorem. Let u′′(0) < 0. Then, u(x) < p in a right half-neighborhood
of the point x = 0. Suppose that u(x) = p for some x ∈ (0, a). Then, as in the
case u′′(0) > 0, it can be proved that u(x) < p for all x �= x sufˇciently close to
x. This completes our proof. �

Take an arbitrary integer n � 0 and denote by Λn the set of all values of λ∈R

such that for each of them the corresponding solution u(x) of problem (3.10)Ä
(3.11) has at least (n + 1) zeros in the interval (0, b), where b = min{1; a}. By
the arguments above, each of these solutions is global, that is each of them can
be continued on the entire real line x ∈ R. By the oscillation theorem, for any
sufˇciently large λ > 0 the corresponding solution u(x) has no less than (n + 1)
zeros in (0, 1) so that Λn �= ∅. In addition, by lemma 3.5, the set Λn is bounded
from below.

Denote λn = inf Λn and consider the corresponding solution un(x) of prob-
lem (3.10)Ä(3.11) taken with λ = λn. Clearly, |un(x)| � p for all x so that un

is a global solution. Let us prove that un has no less than n zeros in (0, 1) and
that un(1) = 0 (so that un is an eigenfunction of problem (3.7)Ä(3.9)). Take
a sequence {λk} ⊂ Λn, k = 1, 2, 3, ..., such that λk ↘ λn as k → ∞. De-
note by uk(x) the corresponding solutions of problem (3.10)Ä(3.11) taken with
λ = λk. Then, each solution uk can be continued onto the whole interval [0, 1]
and it has at least (n + 1) zeros in (0, 1). Observe that u′

n(x) �= 0 if un(x) = 0
because otherwise un(x) ≡ 0 by the uniqueness theorem. Therefore, zeros of
un(x) are isolated and hence, un has a ˇnite number of zeros in [0, 1). Let
0 < x1 < ... < xm < 1 be these zeros. As is indicated above, u′

n(xl) �= 0 for any
l = 1, 2, ..., m. This immediately yields that m � n because otherwise, by the
continuous dependence theorem, there exists λ < λn belonging to Λn which is a
contradiction. By analogy, if it would be m < n, then for any λ sufˇciently close
to λn the corresponding solution of problem (3.10)Ä(3.11) would have at most
(m + 1) � n zeros in the interval (0, 1) which contradicts our deˇnition of the
set Λn. Hence, m � n and thus, m = n. By the complete analogy, un(1) = 0.
So, we have proved, for any integer n � 0, the existence of an eigenfunction un

of problem (3.7)Ä(3.9) that possesses precisely n zeros in the interval [0, 1).
Finally, let us prove, for each integer n � 0, the uniqueness of the eigen-

function un of problem (3.7)Ä(3.9) that has precisely n zeros in the interval
[0, 1). On the contrary, suppose that there exists two values of λ, say λ1 < λ2,
such that each of the corresponding two solutions u1 and u2 of the Cauchy
problem (3.10)Ä(3.11) has precisely n zeros in [0, 1) and ui(1) = 0, i = 1, 2.
Then, by identity (3.12), |u′

1(x1)| < |u′
2(x2)| for any x1, x2 ∈ [0, 1] such that

u1(x1) = u2(x2) �= ±p. In addition, it is a simple corollary of proposition 2.15
that the zeros and the points of extremum of each solution u1 and u2 in [0, 1]

are precisely the points xk =
2k + 1
2n + 1

and x̂k =
2k

2n + 1
, respectively, where
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k = 0, 1, ..., n. But on the other hand, it follows from the arguments above that
the ˇrst zero of u1 in (0, 1) is strictly larger than the ˇrst zero of u2 in the same
interval. This contradiction completes our proof of theorem 3.4. �

Remark 3.6. Let un be the nth eigenfunction of problem (3.7)Ä(3.9) given by
theorem 3.4. Then, as is proved above, the zeros and the points of extremum of

un in the interval [0, 1] are precisely the points xn
k =

2k + 1
2n + 1

and x̂n
k =

2k

2n + 1
,

respectively, where k = 0, 1, ..., n. In addition, |un(x)| � p for all x and n.
3.3. A Result on Basis Properties of Eigenfunctions. In this section, we shall

consider basis properties of eigenfunctions of problem (3.7)Ä(3.9). Our result is
the following.

Theorem 3.7. Under assumption (f) the sequence of eigenfunctions
{un}n=0,1,2,... of problem (3.7)Ä(3.9) given by theorem 3.4 is a Riesz basis and
the sequence {un/|un|2}n=0,1,2,... is a Bari basis in the space L2.

Proof. In view of proposition 2.15 and remark 3.6 by the complete analogy
with lemma 2.10, we have the following sequence of expansions:

un(·) =
∞∑

k=0

an
kek(·) in L2, n = 0, 1, 2, ...,

where en(x) =
√

2 cos
π(2n + 1)x

2
, n = 0, 1, 2, ..., form an orthonormal basis

in L2, an
k are real coefˇcients, an

k = 0 for any k = 0, 1, ..., n − 1 and an
n > 0.

Therefore, by the complete analogy with lemma 2.12, the system {un}n=0,1,2,...

is linearly independent in L2.

Denote en(x) = p cos
π(2n + 1)x

2
. Clearly, {en}n=0,1,2,... is an orthogonal

basis and a Riesz basis in L2. To apply the Bari theorem, let us prove that the
sequences {un}n=0,1,2,... and {en}n=0,1,2,... are quadratically close to each other
in L2. The functions en are the eigenfunctions of the linear problem

−e′′n = μnen, en = en(x), x ∈ (0, 1),

en(0) = p, e′n(0) = en(1) = 0,

where μn =
(

π(2n + 1)
2

)2

, n = 0, 1, 2, .... In addition, since by remark 3.6

one has |un(x)| � p for all x and n and by the comparison theorem

|λn − μn| � C1, n = 0, 1, 2, ..., (3.13)

where C1 = sup
u∈(0,p]

∣∣∣∣f(u)
u

∣∣∣∣.
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Set wn = un − en. By (3.13) and the estimate |un(x)| � p,

−w′′
n + Un(x) = μnwn, wn = wn(x), x ∈ (0, 1), (3.14)

wn(0) = w′
n(0) = wn(1) = 0, (3.15)

where Un(x) = f(un(x)) + (λn − μn)un(x) so that |Un(x)| � C2 for a constant
C2 > 0 independent of x and n. In addition, by identity (3.12),

|w′
n(1)| � C3 (3.16)

for a constant C3 > 0 independent of n (for the functions en, an identity analogous
to (3.12) takes place).

Multiply equation (3.14) by 2xw′
n(x) and integrate the result over the interval

[0, 1]. Then, after an integration by parts, using (3.15), we obtain:

μn

1∫
0

w2
n(x)dx = −2

1∫
0

xw′
n(x)Un(x)dx −

1∫
0

[w′
n(x)]2dx + [w′

n(1)]2.

Thus, since 2|xw′
n(x)Un(x)| � [w′

n(x)]2 + [Un(x)]2 and by (3.16), we obtain
|wn|22 � C4(n+1)−2 so that indeed the systems {un}n=0,1,2,... and {en}n=0,1,2,...

are quadratically close to each other in the space L2. Since this is still so for the
systems {un/|un|2}n=0,1,2,... and {en}n=0,1,2,... and in view of the Bari theorem,
theorem 3.7 is completely proved. �

Remark 3.8. The above proof of theorem 3.7 is taken from our pa-
pers [19, 20]. In addition, in [20], a direct proof of this result, not based on
the Bari theorem, is established.

Remark 3.9. As is noted in Introduction, a result similar to theorem 3.7 takes
place if we supply equation (3.7) with one of the following two sets of boundary
conditions:

u(0) = u(1) = 0, u′(0) = p > 0

or
u′(0) = u′(1) = 0, u(0) = p > 0,

where in both cases p > 0 is a ˇxed parameter. These claims are proved in [20];
their proofs are completely analogous to the above proof of theorem 3.7. In fact,
the sequence of all eigenfunctions {un}n=0,1,2,... of equation (3.7) taken with the
second set of boundary conditions is a Riesz basis in L2, while the sequence
of all eigenfunctions of the same equations taken with the ˇrst set of boundary
conditions is a basis (but not a Riesz basis) in this space. However, in each
case the sequence {un/|un|2}n=0,1,2,... is a Bari basis in L2. In the case of the
boundary conditions of the ˇrst kind, the sequence of eigenfunctions is not a
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Riesz basis in L2 because in this case the eigenfunctions approach zero uniformly
in x as n → ∞, therefore, since the system {un/|un|2}n=0,1,2,... is a Bari basis

in L2, the series
∞∑

n=0

anun converges in L2 not only when (a0, a1, ..., an, ...) ∈ l2.

Remark 3.10. As for theorem 1.2 in Introduction, the proof of its principal
claim (c) in [17, 25] is completely analogous to the above proof of theorem 3.7.
Claims (a) and (b) of this theorem are proved, for example, in [16, 25]; these are
technical results, their proofs are sufˇciently cumbersome and therefore, we do
not consider them here.

4. FURTHER RESULTS

In this section, we shall consider two results on the subject the paper is de-
voted to. First, we shall prove theorem 1.3. As was already noted in Introduction,
one of the main difˇculties arising in this case consists in the fact that a linear
self-adjoint problem whose eigenfunctions would be arbitrary close to the solu-
tions of problem (1.7) for n sufˇciently large is unknown. We shall overcome
this difˇculty by applying theorem 2.7 and, then, the Bari theorem 2.3. With this
approach, we follow our article [21] in which in fact a bit more general result
is obtained. Second, we shall discuss brie�y a result published in [24] on the
expansions over eigenfunctions of an equation of the type of (1.3) in the half-line
[0, +∞). In this case the spectrum of the problem ˇlls a half-line [λ, +∞) and an
analog of the Fourier transform occurs: ®an arbitrary function¯ can be uniquely
expanded in an improper integral over eigenfunctions of the nonlinear problem
similar to the representation of this function by its Fourier transform. In the
present paper, we shall not establish a complete proof of this result, but we only
shall sketch main idea of this proof. We refer the reader to our paper [24] for
the complete proofs.

4.1. A Problem without a Spectral Parameter: Proof of Theorem 1.3. In
this subsection, we shall prove theorem 1.3. For the convenience of readers, we
repeat the statement of the problem:

−u′′ = f(u), u = u(x), x ∈ (0, 1), (4.1)

u(0) = u(1) = 0, (4.2)

where the nonlinearity f satisˇes the assumptions of theorem 1.3. The ˇrst part
of this theorem, the existence of a sequence of solutions {un}n=0,1,2,... so that
each nth solution has precisely n zeros in the interval (0, 1) is a standard and
well-known result (see, for instance, [25]). Let us prove, for each integer n � 0,
that a solution un that possesses precisely n zeros in the interval (0, 1) is unique
up to the coefˇcient ±1.
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Again, as in Sec. 3, the following identity takes place for solutions of equa-
tion (4.1):

1
2
[u′2(x) − u′(0)2] + [F (u(x)) − F (u(0))] = 0, x ∈ [0, 1], (4.3)

where F (u) =

u∫
0

f(s)ds. Consequently, since f(u)/u → +∞ as |u| → ∞,

for any solution u(x) of equation (4.1) the quantity |u′(x)| + |u(x)| is bounded
in an arbitrary interval on which this solution is continuable. Therefore, an
arbitrary solution of equation (4.1) is global, that is, it can uniquely continued
onto the entire real line x ∈ R. In addition, by proposition 2.15, for each integer
n � 0, the zeros and the points of extremum in [0, 1] of an arbitrary solution of
problem (4.1)Ä(4.2) that has precisely n zeros in the interval (0, 1) are precisely

the points xn
k =

k

n + 1
, where k = 0, 1, ..., n + 1 and yn

k =
2k + 1

2n
, where

k = 0, 1, ..., n− 1, respectively.
Now, suppose that for some integer n � 0 there exist two different solutions

u1 and u2 of problem (4.1)Ä(4.2) each of which has precisely n zeros in the
interval (0, 1). Let for deˇniteness u2′(0) > u1′(0) > 0. Then, it easily follows
from identity (4.3) that u2′(x2) > u1′(x1) for any x1, x2 ∈ (0, yn

1 ) such that
u1(x1) = u2(x2). But then u2(x) > u1(x) everywhere in (0, xn

1 ) and by the
standard comparison theorem applied to equation (4.1) in this interval it follows
that the ˇrst positive point of maximum of the solution u2 must be smaller
than that of the solution u1 (because f(u2(x))/u2(x) � f(u1(x))/u1(x) for any
x ∈ [0, yn

1 ] and there exists a point x in this interval at which this inequality
is strict). This contradiction proves our claim. Thus, it is proved that for any
integer n � 0 the solution of our problem that possesses precisely n zeros in the
interval (0, 1) is unique up to the coefˇcient ±1.

Now, we turn to proving that the sequence {un/|un|2}0,1,2,... is a Riesz basis
in the space L2. By lemmas 2.10 and 2.12, this sequence is linearly independent
in this space. So, to apply the Bari theorem, it sufˇces to construct a sequence
of functions {hn}n=0,1,2,... that satisˇes the conditions of theorem 2.7 and is
quadratically close to our sequence {un/|un|2}n=0,1,2,... in the space L2.

Observe that, since f(u)/u is a nondecreasing function of u > 0 and since
it goes to +∞ as |u| → ∞, we have f ′(u) � f(u)/u for all u > 0, and
therefore, there exists a constant u > 0 such that f ′(u) > f ′(u), f(u) > f(u),
F (u) > F (u) for any 0 < u < u and, in addition, f ′(u) > 0. We ˇx this choice
of the constant u.

Without the loss of generality, we accept that u′
n(0) > 0. By the comparison

theorem, un(yn
1 ) → +∞ as n → ∞. For each n sufˇciently large, denote by

zn ∈ (0, yn
1 ) the point such that un(zn) = u. Then, un(yn

1 )−u = u′
n(pn)(yn

1 −zn)
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for some pn ∈ (zn, yn
1 ). Hence, since by equation (4.1) one has u′′

n(x) < 0 in
[zn, yn

1 ], we obtain:

u′
n(zn) � u′

n(pn) >
3
2
(n + 1)un(yn

1 )

for all sufˇciently large n. In addition, since sup
n

max
x∈[0,zn]

|u′′
n(x)| < +∞, we have

0 < zn � u

(n + 1)un(yn
1 )

� (n + 1)−1 (4.4)

for all sufˇciently large n.
For each sufˇciently large n, we deˇne the function hn(x) to be equal to

un(x) for any x ∈ [zn, yn
1 ]. To deˇne this function in the interval [0, zn), we

introduce two functions g1(x) and g2(x); we require that each of them is three
times continuously differentiable in the interval [0, yn

1 ] and identically equal to
un(x) in [zn, yn

1 ]. In the interval [0, zn), we deˇne these functions as follows.
For sufˇciently small δ1 ∈ (0, zn), we set g′′′1 (x) = δ−1

1 (x − zn + δ1)u′′′
n (zn)

in [zn − δ1, zn) and g1(x) = 0 in [0, zn − δ1). Further, for a sufˇciently small
δ2 ∈ (0, zn), take a continuous non-positive function ω(x) equal to u′′′

n (x) in

[zn, yn
1 ], to 0 in [0, zn − δ2] and such that

zn∫
zn−δ2

ω(x)dx = u′′
n(zn) (we use here

the fact that u′′′
n (zn) < 0 which follows from equation (4.1)). In the interval

[0, zn), we deˇne g2(x) as a function three times continuously differentiable in
[0, yn

1 ] and such that g′′′2 (x) = ω(x) in [0, zn). By construction, the functions g1

and g2 exist and are unique.
Let us prove that if we take constants δ1 and δ2 sufˇciently small, then

g1(0) < 0 and g2(0) > 0. For this aim, ˇrst, observe that if δ1 > 0 is sufˇciently
small, then g1(0) is arbitrary close to

un(zn) − znu′
n(zn) +

z2
n

2
u′′

n(zn).

The latter expression is negative by construction if δ1 > 0 is sufˇciently small
because, by our choice of u and equation (4.1), it is smaller than

0 = un(0) = un(zn) − znu′
n(zn) +

zn∫
0

dx

zn∫
x

u′′
n(t)dt.

Further, for δ2 > 0 sufˇciently small g2(0) is arbitrary close to u − znu′
n(zn).

By (4.3) and our choice of u, u′
n(zn) < u′

n(x) for any x ∈ [0, zn), therefore, we
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have for δ2 > 0 sufˇciently small:

u =

zn∫
0

u′
n(x)dx > znu′

n(zn)

so that indeed g2(0) > 0 if δ2 > 0 is sufˇciently small.
Fix now a choice δ1 > 0 and δ2 > 0 such that g1(0) < 0 and g2(0) > 0.

Then, σg1(0)+ (1− σ)g2(0) = 0 for some σ ∈ (0, 1). We set hn(x) = σg1(x) +
(1 − σ)g2(x) for all x ∈ [0, yn

1 ]. Note that hn(x) ≡ un(x) in [zn, yn
1 ]. For all

x ∈ R, we continue the function hn(x) be the rules:

hn(yn
1 − x) = hn(yn

1 + x) and h′
n(xn

1 + x) = −h′
n(xn

1 − x).

So, we have constructed a sequence of functions {hn}n�N , where N > 0
is a sufˇciently large integer number. For n = 0, 1, ..., N − 1, we take for hn

arbitrary functions satisfying the assumptions of corollary 2.8. Then, the sequence{
hn

hn(yn
1 )

}
n=0,1,2,...

satisˇes the conditions of theorem 2.7, hence, it is a Riesz

basis in the space L2.
Let us prove that the sequences {hn}n=0,1,2,... and {un}n=0,1,2,... are quadrat-

ically close to each other in L2. By construction, we have for n � N :

max
z∈[0,zn]

|u′′
n(x)| = max

u∈[0,u]
|f(u)| � C1 < +∞

and
max

x∈[0,zn]
|h′′

n(x)| = |h′′
n(zn)| = |u′′

n(zn)| � C1.

Therefore,
|un(x) − hn(x)| � C2z

2
n

for any x ∈ [0, zn], where the constant C2 > 0 does not depend on n and x.
Denote αn = hn(yn

1 ). Then, αn → +∞ as n → ∞ and, since each function
hn is concave in [0, yn

1 ], there exist 0 < c < C so that cαn � |hn|2 � Cαn for
all n. Using in addition (4.4), we obtain for all n sufˇciently large:

|α−1
n (un − hn)|22 � C3(n + 1)−5

for a constant C3 > 0 independent of n so that indeed the sequences
{α−1

n un}n=0,1,2,... and {α−1
n hn}n=0,1,2,... are quadratically close to each other

in the space L2. Thus, by the Bari theorem, the system {un/αn}n=0,1,2,...

is a Riesz basis in the space L2. In view of the almost obvious estimate
c|un|2 � αn � C|un|2 with constants 0 < c < C independent of n, our proof of
theorem 1.3 is complete. �
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Remark 4.1. Note that if f ′(0) = 0, then, under the assumptions of theo-
rem 1.3, it follows from equation (4.1) that, for each integer n � 0, one has
u′

n(x) > 0, u′′
n(x) � 0 and u′′′

n (x) � 0 everywhere in [0, yn
1 ) so that in this case

theorem 1.3 immediately follows from corollary 2.8.
4.2. An Analog of the Fourier Transform Associated with a Nonlinear

Problem. In this subsection, we shall consider a problem for equation (1.3) in an
unbounded interval. In fact, we consider the problem

−u′′ + f(u) = λu, u = u(x), x ∈ (0,∞), (4.5)

u(0) = p > 0, (4.6)

u′(0) = 0, sup
x>0

|u(x)| < +∞, (4.7)

where p > 0 is an arbitrary ˇxed parameter and λ ∈ R is a spectral parameter.
First of all, we discuss the notions of the eigenvalue and the corresponding
eigenfunction for this problem. In our paper [24], it is accepted for simplicity
that if a pair (λ, u) consisting of a λ ∈ R and a real-valued function u(x) twice
continuously differentiable in [0, +∞) satisˇes problem (4.5)Ä(4.7), then λ is an
eigenvalue and u(x) the corresponding eigenfunction of this problem. However,
the problem is nonlinear, and the equation is considered in an unbounded interval;
in addition, in [24], it is found that the set of all its eigenvalues understood in the
sense above (that we call the spectrum of the problem) ˇlls a half-line [λ, +∞).
Therefore, for this problem, even common in use approaches for deˇning the
notions of the eigenvalue and eigenfunction are not created yet. Here, we want
only to mention one of such approaches that seems to be reasonable. Given a
pair (λ, u) that satisˇes equations (4.5) and (4.6) and the condition u′(0) = 0,
one can consider the following linear eigenvalue problem:

−w′′ +
f(u)

u
w = μw, w = w(x), x ∈ (0,∞), w′(0) = 0,

where the function
f(u)

u
is deˇned by continuity at the point u = 0 and μ ∈ R

is a spectral parameter. Then, it can be said that if μ = λ and w(x) ≡ u(x) are
an eigenvalue and the corresponding eigenfunction of the latter linear problem,
then they are an eigenvalue and the corresponding eigenfunction of the nonlinear
problem (4.5)Ä(4.7), respectively. However, in the following we use deˇnitions
of these notions introduced in [24].

Let Λ be the spectrum of problem (4.5)Ä(4.7). Denote by S the Schwartz
space of functions g in R inˇnitely differentiable and such that for any integer

n, m � 0 one has: sup
x

∣∣∣∣xm dng

dxn

∣∣∣∣ < +∞. Let Se and So be the subspaces of the

space S consisting respectively of even and odd functions from S. Below we
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denote by u(λ, x) the eigenfunctions of problem (4.5)Ä(4.7) to indicate explicitly
their dependence on λ. Our result for this problem is as follows.

Theorem 4.2. Let assumption (f) be valid and let in addition f be a ten-time
continuously differentiable function in R. Then

(a) Λ = [f(p)/p, +∞) (we denote λ = f(p)/p);
(b) for each λ ∈ (λ, +∞) there exists a minimal positive zero k(λ) of u(λ, x)

regarded as a function of x � 0. The correspondence k : (λ, +∞) → (0, +∞) is
continuously differentiable, k′(λ) < 0 for any λ ∈ (λ, +∞), lim

λ→λ+0
k(λ) = +∞

and lim
λ→+∞

k(λ) = 0. By λ = λ(k) we denote the function deˇned in (0,∞)

inverse to k(λ);
(c) |u(λ, x)| � p for all x � 0 and λ ∈ Λ;
(d) for any g(·) ∈ Se there exists a function g(·) continuous in (0, +∞) that

satisˇes the following two conditions:
(d1) there exist C > 0 and γ ∈ (0, 1) such that

|g(k)| � Ckγ−1(1 + k)−1−γ

for any k > 0;

(d2) g(x) ≡
∞∫
0

g(k)u(λ(k), x)dk for any x � 0, where the integral in the

right-hand side is understood as an improper one;
(e) a continuous function g(·) that satisˇes properties (d1) and (d2) is unique.
Remark 4.3. Clearly, the expansion of g(x) in claim (d2) is an analog of

the representation of an ®arbitrary function¯ by its Fourier transform. The author
believes that the assumption that the nonlinearity f is ten times continuously
differentiable is technical and not necessary, and that it sufˇces to assume (f).
However, when proving theorem 4.2 in [24], he met large technical difˇculties
that led him to the necessity of this additional assumption.

Now, we establish the main idea of the proof of theorem 4.2. In this result,
claims (a)Ä(c) are technical, and they are partly proved with theorem 3.4. We
focus our attention on the principal claim (d2). Denote e(k, x) = p cos πx

2k and,
for g(·) ∈ Se, by ĝ(·) the renormalized Fourier transform of this function so that

g(x) ≡
∞∫
0

ĝ(k)e(k−1, x)dk.

Then, according to theorem 3.7, we can uniquely expand e(k, x), regarded as a
function of x, into the series

e(k, x) =
∞∑

n=0

dn(k)u
(

k

2n + 1
, x

)
(4.8)
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with real coefˇcients dn(k); this series converges at least in the space L2(0, k)
(we can do this because, as is proved in [24] (and as it is easily seen), the nth
eigenfunction un(·) of the problem similar to (3.7)Ä(3.9) but considered in the

interval (0, k) coincides with the eigenfunction u

(
k

2n + 1
, x

)
of problem (4.5)Ä

(4.7) regarded as a function of the second argument). Due to the properties of

periodicity of e(k, x) and u

(
k

2n + 1
, x

)
in x following from proposition 2.15,

the expansions (4.8) still hold in the spaces L2(a, b) for arbitrary 0 � a < b <
+∞, i.e., ®almost¯ in the entire half-line (0,∞). Therefore, we have, quite
formally, of course:

g(x) =

∞∫
0

k−2ĝ(k−1)
∞∑

n=0

dn(k)u
(

k

2n + 1
, x

)
dk =

=
∞∑

n=0

∞∫
0

k−2ĝ(k−1)dn(k)u
(

k

2n + 1
, x

)
dk =

=
∞∑

n=0

∞∫
0

ĝ(k−1(2n + 1)−1)
(2n + 1)k2

dn((2n + 1)k)u(k, x)dk =

=

∞∫
0

{ ∞∑
n=0

ĝ(k−1(2n + 1)−1)
(2n + 1)k2

dn((2n + 1)k)

}
u(k, x)dk =

=

∞∫
0

g(k)u(k, x)dk,

where g(k) =
∞∑

n=0

ĝ(k−1(2n + 1)−1)
(2n + 1)k2

dn((2n + 1)k). Of course, all these equal-

ities are completely formal so that it is not seen from them at once even that
the function g(k) is well-deˇned. What we did in paper [24] is a justiˇcation
of this sequence of formal relations. The arguments in this paper are sufˇciently
complicated and cumbersome and therefore, we do not establish them here; we
refer the reader to the paper [24] for the complete proof of theorem 4.2.

Remark 4.4. A result analogous to theorem 4.2 occurs if one considers
equation (4.5) with the boundary conditions

u(0) = 0, u′(0) = p > 0, sup
x>0

|u(x)| < +∞.

In this case, a unique expansion similar to that in theorem 4.2 (d2) of an ®arbitrary
function¯ g(·) ∈ So occurs.
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