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1. INTRODUCTION
ON THE ORIGINATION OF THE PROBLEM
AN OBSERVATION OF RESULTS

In several last decades, a large progress was achieved in the study of eigen-
value and boundary value problems for equations that involve semilinear second-
order elliptic partial differential operators. There were developed deep and nice
methods, in particular variational and topological ones, to answer many questions
for problems of this type, such as the existence, uniqueness, a number of solu-
tions, their qualitative behavior, etc. There were discovered wide classes of such
problems whose solutions behave similar in a sense to eigenfunctions of linear
self-adjoint second-order elliptic eigenvalue problems. At the same time, a ques-
tion remained open about basis properties of these solutions or eigenfunctions of
nonlinear problems. The author of the present work believes that this question is
known to specialists in the field. Below he tries to show that it naturally arises.

So, consider, for example, the following problem:

—Au+c(x)u = k(x)|uP " u, u=u(x), zecQcRY, 0,

“|aQ =

where (2 is a bounded domain with a sufficiently smooth boundary, ¢(x) > 0 and
k(x) > 0in Q and ¢ and k are smooth functions in the closure 2; A is the Laplace

N +2
operator in RY, and p > 1 satisfies p < p* with p* = N—+2 if N > 3, and

p* = +o0 if N =1,2. It is well known now (on this subject, see [14, 15]) that
this problem has a solution ug positive in 2 and an infinite sequence of pairwise
different solutions {u;};=123,. (in fact, in [14,15] a more general result is
presented). These solutions obey certain variational characterization. Now, we
describe it briefly.

Denote by M the set of all subsets of Hg(2) \ {0}, where Hi(Q) is the
usual Sobolev space, closed and symmetric with respect to 0 (the latter means
that if M € M and v € M, then —u € M). For any M € M define v(M) as a
minimal nonnegative integer m such that there exists an odd continuous mapping
of M into R™ \ {0}. For u € H}(Q) set

p+1

J(u) = /Q {%VuQ + %c(:v)u2 - Ll~c(:n)|up+1} dx



and

N = {u € H(Q): u#0and /Q(|Vu|2 + c(z)u?)dz = /

k(x)u|p+1dx} .
Q

Then, one has

J(up) = inf  maxJ(u).
MeM, MCN yeM
S (D>

Note also that one can change this variational principle by the following one:

J = inf J
(UZ) 13 u»’:‘ga(SrTIﬂl?%7 m>l (U)’

where the infimum is taken over all odd homeomorphisms ¢ of the unit sphere
Sm=1l ={z € R™ : |z| = 1} into N. Note that y(S™"!) = m. In fact, this
variational principle is a variant of that by P. H. Rabinowitz [14, 15]; the latter is
used in a number of articles (see, for example, [12, 13]). It is important for us
that the variational characterization above of solutions u; can be interpreted as a
«nonlinear deformation» of the well-known minimax principle for eigenfunctions
of linear self-adjoint eigenvalue second-order elliptic problems.

The second our remark concerns the radially symmetric case when Q2 = {x €
RY :|z| < 1} and ¢ = k = 1 in Q. In this case, under the same assumptions as
earlier, the problem has a positive radially symmetric solution %, and an infinite
sequence of solutions u;, | = 1,2,3, ..., radially symmetric in £ and such that
each [th solution, regarded as a function of r = |z|, has precisely ! zeros in (0,1)
(for the proof, see, for example, [25]). So, in the radially symmetric case, this
property of solutions is again quite similar to those of eigenfunctions of linear
Sturm-Liouville operators. Note in addition that the problem above is not very
simple, even in the radially symmetric case, because even the uniqueness of a
solution with a given nonzero number [ of zeros currently is unknown.

Finishing our brief consideration of results for the model problem above, we
want to note that in fact there are the essentially wider classes of nonlinear elliptic
second-order problems (both containing a spectral parameter or not so), solutions
of which have properties similar to those of eigenfunctions of linear self-adjoint
second-order elliptic problems. So, the author of the present work believes that
this similarity should lead to the natural question about basis properties of systems
of solutions of these nonlinear problems.

In the early 1990s, the author had the pleasure to meet with Profes-
sor S.I. Pohozaev at the Steklov Mathematical Institute in Moscow and to discuss
with him related problems. Professor S.I.Pohozaev raised the question about
basis properties of eigenfunctions of nonlinear problems first. The author replied
that these basis properties should hold in a nonlinear sense, we do not even know
in what sense, because the problems are nonlinear. And Professor Pohozaev



answered: «I do not know». Indeed, the results we consider in what follows
concern basis properties of solutions of semilinear problems in the usual, linear,
sense (these solutions form usual bases). However, the author thinks that only
in the case the field will be developed an answer on the question: «Do these
solutions form bases and in what sense, usual linear or «nonlinear»?» could be
found.

Now, we shall make a general observation of results in the field our paper is
devoted to. First of all, we should note that the problem seems to be difficult, and
generally speaking, the methods and approaches for its treatment are almost not
created yet. Therefore, the results obtained till now concern simpler problems of
the classes mentioned above. Mainly, they are obtained in the spatial dimension 1,
i.e., when differential equations are ordinary and of Sturm—Liouville type.

The list of publications on this subject is not long, too. Probably, the
historically first related publication was due to K.J. Brown [3]. After that, mainly
A.P.Makhmudov in [8] and in his monographs [9,10] and also, A.S.Makin
and H.B. Thompson in [11], developed and generalized this result. Below we
reestablish the pioneering theorem by K.J. Brown because of its larger clearness.
We do not present it in its abstract operator form, but we restrict our attention to
its formulation for differential equations. So, consider two equations

—(pu') + q(x)u = X (u + Z cl(x)ukb> (1.1a)
i=1
and .
—(pu') + q(x)u + Z ci(z)uk = I, (1.1b)

each of which is supplied with the boundary conditions
a1u(0) + agu’(0) = 0 = byu(l) + bo/(1); a2 +a3 #0, b3 +b3#0. (1.2)

Here g,¢; : [0,1] — R are continuous, k; > 1 are integer and p(x) is positive
and continuously differentiable in [0, 1] (in fact, in [3] K. J. Brown considered this
problem in an arbitrary finite interval (a, ), but this difference is not important).
The result is the following.

Theorem 1.1 (K.J. Brown [3]). Under the above assumptions there exists a
sequence of eigenfunctions {u,} of each of these two problems (1.1a), (1.2) and
(1.1b), (1.2) which is a basis in L2(0,1).

We shall prove this result in Sec. 3. Here we remark that in this theorem
the eigenfunctions of the basis, by construction in the proof, approach zero in
the limit n — oo uniformly in z. So, this is a result on small perturbations of a
linear self-adjoint problem in a sense because k; > 1 and therefore, the nonlinear
terms in each equation are o(u,,) as n — oo uniformly in z.



Note that K.J.Brown in [3] considered in addition a similar problem in the
half-line (0, 00), when the spectrum {\,,} of the corresponding linear problem is
discrete and simple and A, — 400 as n — oo. His main idea in this case is the
same as in theorem 1.1: eigenfunctions of the nonlinear problem that approach
zero in the limit n — oo form a basis in L.

Now, we observe our recent results on the subject. Everywhere, if otherwise
is not stated, we assume the following about the nonlinearity in the differential
equation.

(f) Let f = f(u) : R — R be an odd continuously differentiable function and
let f(u)/u be a nondecreasing function of u > 0.

First, consider the following autonomous second-order ordinary differential
equation:

—u" + f(u) =M, u=u(z), z€(0,1), (1.3)

where A\ € R is a spectral parameter. Supply equation (1.3) with the boundary
conditions
u(0) =u(l) =0 (1.4)

and with the following normalization condition:

/uQ(x)dx =1 (1.5)
0

We shall discuss below the reasons why we included the normalization condi-
tion (1.5) in the statement of the problem. In our paper [16], the following result
is established.

Theorem 1.2. Under assumption (f)

(a) for any integer n > 0 there exists a pair (\n,uy) consisting of an
eigenvalue )\, and the corresponding eigenfunction u, of problem (1.3)—(1.5)
such that w,, possesses precisely n zeros in (0,1);

(b) for any integer n > 0 the eigenfunction w,, that possesses precisely n
zeros in (0, 1) is unique up to the coefficient +1;

(c) the sequence of all eigenfunctions {un}n:(),l’g,___ is a Bari basis in
Ly(0,1).

By definition, a Bari basis in Lo(0, 1) is a basis in this space and there exists
an orthonormal basis {e, }n=01,2,... in L2(0,1) such that

S tn — eall3y 00y < oo (L6)

n=0

Note that in view of condition (1.5) the eigenfunctions u,, do not go to 0 uniformly
in z as n — oo. Here, it is important for us that a Bari basis is in particular a basis.



In view of this theorem, our problem (1.3)-(1.5) is «good» (or «well posed») in
a sense. Note also that if one changes the normalization condition (1.5) by

1
/u2(x)dx = A,
0

where A > 0 is arbitrary, then our result still holds with the only change of
the term «Bari basis» by «Riesz basis» in the claim (c). Therefore, if one
considers problem (1.3)—(1.4) (i.e., the above problem without the normalization
condition (1.5)), then by this argument the set of all eigenfunctions becomes too
wide (in this case this set will contain «many» bases). At least in this sense, it
seems to be quite appropriate to include a normalization condition as (1.5) in the
statement of the problem.

In the present paper, we shall not prove theorem 1.2; we only make some
comments to it. Claims (a) and (b) of this result are proved in [16] and later
reestablished in monograph [25]. As for the principal claim (c), we have to
note that its proof in [16] contains the essential errors which fortunately can be
corrected; these corrections are published in [18]. In addition, another proof of
theorem 1.2(c) without these errors is established in [17]. A complete proof of
theorem 1.2 is contained in [25] and therefore, we shall not establish it here.

Results similar to theorem 1.2 occur if we supply equations (1.3) and (1.4)
with the normalization condition »'(0) = 1: for any integer n > O this new
problem has a unique eigenfunction u,, with precisely n zeros in (0, 1) and the
sequence {un/|[tnllz,00,1)}n=0,1,2,... is a Bari basis in L(0,1). Quite similar
results still take place for equation (1.3) taken with the boundary conditions

or
' (0)=u'(1)=0

and with the normalization condition u(1) = 1 (for the proofs of all these results,
see [19,20]). Methods of the analysis of these three problems are quite similar
to each other, and we shall illustrate them in Sec. 3 with an example. We also
mention paper [23] where an integrodifferential equation is studied.

In Sec. 4, we shall consider two problems. The first one is a problem without
a spectral parameter:

u' + f(u)=0, u=u(z), € (0,1), u(0) =u(l) =0. (1.7)

In this case, we assume in addition to hypothesis (f) that f(u)/u — 400 as
u — oo and that f'(0) < 0. Again, for each integer n > 0 this problem has
a solution u,, unique up to the coefficient =1 that possesses precisely n zeros



in (0,1). One of the difficulties related to the analysis of this problem is that,
unlike it takes place in the case of each previous problem, it seems to be difficult
(or even impossible) to find a linear self-adjoint problem whose eigenfunctions
en, satisfy (1.6). However, the following result takes place.

Theorem 1.3. Let the above assumptions be valid. Then, for any integer
n > 0 problem (1.7) has a solution w,, with precisely n zeros in (0,1). For each
integer n > 0 such a solution with precisely n zeros in (0, 1) is unique up to the
coefficient +1. The sequence {un}n=01,2,... of all solutions is a basis and the
sequence {n/||tn 1,001y} n=0,1,2,... is a Riesz basis in L2(0,1).

This result is proved in [21]. We shall consider this proof in Sec. 4.

Second, in Sec. 4, we shall consider briefly our result for equation (1.3) on
the half-line z > 0. We supply our equation with the boundary conditions

u'(0) =0, u(0) =p >0, sup |u(z)| < oo,
x>0

where p is a fixed parameter. In this case, the «spectrum» of the problem fills a
half-line (note that we even have no common in use definition of the spectrum
for this problem). We establish a result on a possibility of a unique expansion of
an «arbitrary function» into an integral over the eigenfunctions of this problem
analogous to the Fourier transform. Readers may find our proof of this result
in [24]. This proof is sufficiently complicated and therefore, we do not establish
it in detail in the present paper. We only outline its main idea.

A large part of proofs of the results in the present work is based on a classical
result of N.K. Bari, the so-called Bari theorem. In addition, we shall apply our
result giving sufficient conditions for a sequence of functions to be a Riesz basis
in Lo. The proof of the latter is also based on ideas from the proof of the Bari
theorem.

Finishing our introduction, we want to make some remarks. First, of course,
equations (1.3) and (1.7) can be solved by quadratures. However, it seems
to be not clear so far how one can analyze basis properties of systems of their
eigenfunctions using such representations by quadratures for these eigenfunctions.
Second, we want to discuss the normalization condition as (1.5). As the reader
could already see, roughly speaking, the author has the following point of view:
if a nonlinearity obeys assumption (f) and if its sign in the differential equation
is such that the problem without a spectral parameter has an infinite sequence of
solutions as it takes place in the case of problem (1.7), then one does not need
to impose a normalization condition and he should look for basis properties of
the family of solutions of the problem without a spectral parameter. While when
the sign at the nonlinearity in the differential equation is opposite as in (1.3), a
normalization condition should be imposed.

Observe the following. In the case of a linear self-adjoint Sturm-Liouville
problem usually one does not include a normalization condition in the statement



of the problem because if w is an eigenfunction of this linear problem, then for
any o # 0 aw is still its eigenfunction. On the other hand, in view of this reason,
one may include a normalization condition, such as (1.5) or, say, u/(0) = 1,
in the statement of his linear self-adjoint problem explicitly. Another situation
occurs in the nonlinear case. Above we tried to show that it seems to be natural
to consider sometimes a nonlinear problem with a normalization condition to
make this problem «good» in a sense. It is another question what normalization
condition should be imposed. The author believes that this question may be
solved only in the future if and when the field will become more developed.
This choice may depend, for example, on the nature of a physical phenomenon
leading to the corresponding mathematical problem. In this connection, the author
wants to note the following. In the publications by A.P.Makhmudov [8-10]
and by A.S.Makin and H.B. Thompson [11], problems in the essentially more
general form than (1.3)-(1.5) or (1.7) are considered, in particular, with boundary
conditions (1.2) and with nonlinearities of a more general kind than ours. A
typical result in these papers is the existence of a (Riesz or Bari) eigenfunction
basis for Lo. However, the author of the present work believes that, in view of
this generality and because these authors do not impose a normalization condition,
they do not prove a uniqueness of their bases; in fact, for their problems, there
exist «a lot of» (in fact, continuum) eigenfunction bases.

As for possible applications of results on basis properties of solutions of
nonlinear problems, the author thinks that if the field will continue to develop,
then in the future these results may find applications. The author thinks that
the results of this type can be applied in particular in the Fourier and Galerkin
methods for solving differential equations.

For the convenience of readers, the author tried to include in the paper all the
information from the general theory of non-orthogonal expansions in a Hilbert
space necessary to read it independently of other literature. In particular, in the
following we shall establish the Bari theorem. We hold a little-known and nice
approach presented by Professor N.K.Bari in her pioneering papers [1,2]. We
shall establish a simple and short proof of this result. In fact, this proof is a
variant of that one in [2]. With this, we shorten and simplify the proof of this
result established in [25], and we remove a gap in the proof occurred in [25].

The author uses this occasion to thank his colleagues for useful discussions
on the subject the work is devoted to. He wants to thank especially Profes-
sor S. 1. Pohozaev who contributed much for enlarging the author’s interest in the
field.

2. AUXILIARY RESULTS

First, we introduce some very simple notation. Let Lo(a,b), where
0 < a < b< 4oo, be the standard Lebesgue space of real-valued and square



integrable functions g, h, ... : (a,b) — R; this space is equipped with the scalar
b

product (g,h)r,(a,p) = /g(m)h(x)dx and the corresponding norm ||g||z,(a,5) =

1/2
(g’g)L/g(a,b)‘ Denote Ly = LQ(Oa 1)’ (7) = ('a ')LQ(O,I) and | : ‘2 = || : HLz(O,l)'

We also introduce the space lo = {a = (ag, a1, ..., n, ...) : ||lalli, < oo}, where

o 1/2
an € R and ||al;, = {Z ai} . In addition, we equip this space with the
n=0

scalar product (a, b);, = Z anby, making it a Hilbert space.

n=0

2.1. Basic Definitions. A Counterexample. The Bari Theorem. Now,
we recall some basic definitions, partly known, we need in the following. Let
H be a separable Hilbert space over the field of real numbers in which, the
scalar product and the corresponding norm are denoted, respectively, (-,-)g and
-z = (, )}1/2 Let {hp}n=01,2,. be a sequence of elements of H. Then,
we call this sequence a Schauder basis in H (or simply a basis in H) if for
any h € H there exists a unique sequence {a,} of real numbers a, such that

h = Z anhy, in H. We call the sequence {h,} linearly independent in H if the
n=0

equality Z anhn, = 0 with real coefficients a,, holds in H when and only when
n=0

0=ap=a; =..=a, = .. The system {h,} is said to be complete in H

if for any h € H and € > 0 there exist real coefficients a,,, n = 0,1,..., N, so

that |h — apho + ... + anhn||g < e. We call a system which is not complete

an incomplete system. A basis {hy}n=01,2, .. in H is called a Riesz basis in H

if the series Zanhn with real coefficients a,, converges in H if and only if
n=0

a = (ag, a1, ..., Gy, ...) € la. Two sequences {h,} C H and {g,} C H are called

quadratically close to each other in H (or the system {h,,} is called quadratically

close to {gn} in H)if Y _||gn — hn||} < co. A basis in H is called a Bari basis

in H if it is quadratically close to an orthonormal basis in H. Note that, as it
follows from the Bari theorem (see below), a Bari basis in H is a Riesz basis
in H.

Remark 2.1. Sometimes a sequence linearly independent in H is called an
w-linearly independent system (in particular, this terminology is used in mono-
graph [6]). In the following, we shall use the terminology we just introduced for
brevity. Defining the notion of a Riesz basis, we followed the pioneering articles



by N.K.Bari [1,2]. In [6], another, equivalent definition is introduced. We also
mention the wonderful fact that the estimates

2
Z anhn

with positive constants 0 < ¢ < C independent of coefficients a € lo that
sometimes are used to define Riesz bases follow from our definition of these
objects; we shall see this in what follows.

Now, we want to note the following. Sometimes, a mistake occurs that the
completeness and linear independence of a system {h,,} C H together imply that
this system is a basis in H. The following counterexample shows that, generally
speaking, this is not so.

Example 2.2. Let {e,}n=0,1,2.. C H be an orthonormal basis in H, and
consider the sequence hg = eg, h, = e, +eg for n = 1,2,3,.... It is easily
seen that the system {h, }n=0,1,2,.. is complete and linearly independent in H.

o0

< Cllall,
H

cllal?, <

Let us prove that this system is not a basis in H. Take an h = Z cpen € H,

n=0
oo
where ¢ = (co, 1, ..., Cpn, ...) € lg is such that the series E ¢y, 18 nonconvergent,
n=0

and suppose that h = Z anhy, in H. Then, since the basis {e,} is orthonormal,
n=0
we find step by step multiplying the last relation by e,,n = 1,2,3,..., in H:

a1 = c1, A2 = Ca,...,0n = Cn, ... and hence, it must be ag = ¢y — ch, which
n=1
is a contradiction. Therefore, {h,,}rn=0,1,2,... is not a basis in H. O

One of the tools we use in the present paper is the Bari theorem. It was
established for the first time by Professor N. K. Bari in [1, 2] and later reestablished
in a number of publications (see, for example, [6,25]).

Theorem 2.3 (Bari theorem). Let H be a separable Hilbert space over
the field of real numbers, the scalar product and norm in which are denoted,
respectively, (-, )g and || - ||lg = (-, )}1/2 A sequence of elements of this space
linearly independent and quadratically close to a Riesz basis in this space is a
Riesz basis in H.

Proof. Here, we follow the pioneering article by N.K.Bari [2]. Let a
sequence {hn}n:071727___ be linearly independent and quadratically close to a Riesz
basis {en }n=01,2,... in H. Then, for a = (ag, a1, ..., an, ...) € l2, we have

IEEE RN

2

m+p m+p m4p
Z an(en_hn) < Z G’EL Z ||e7l_h7l||31_>0
n=m-+1 H n=m-+1 n=m-+1




as m — oo uniformly with respect to p > 0. Hence, the series Z an(€n — hy)

n=0
converges in H.
o0
We associate the element h = Z anen € H toeacha = (ag, a1, ..., an,...) €
n=0

ly. Clearly, the map a — h is a linear one-to-one correspondence of Iy onto H.
In addition, it follows from Banach’s general theory of bases in the Banach
spaces that the coefficients a,, which are obviously linear functionals depending
on h € H are in addition continuous functionals (a simple and short proof of
this claim is presented, for example, in [7]). Below we do not prove this fact
referring the reader to other literature, for example, to book [7], for its proof.
For h € H, denote Ay :H — Iy so that Ayh=a" =(ag, a1, ...,an,0,0,..) €
lo. Then, Ay are linear continuous operators from H into l5. Since for each
h € H one has > a2 < oo, for each h € H the sequence {Anh}N=123,. .

is bounded in [o, therefore, by the Banach—Steinhaus theorem, the sequence of
bounded linear operators { Ay} n=1,2,3,... from H into l5 is bounded uniformly in
N. Thus, the linear operator A that maps h € H into a = (ag, a1, ..., Gn, -..) € la
is bounded. So, there exists M > 0 such that ||Ah||;, < M||h| g for any h € H.

Let F' = Z an(en — , and denote F' = Uh, where h = Z anen. Then,

the operator U H — H is linear and it is well-defined onto the whole space
H. Let us prove that this operator U is completely continuous in H. Denote
Br =Bgr(0)={g € H: |g|ly < R} and let h € Br. Take an arbitrary € > 0.

There exists a number N > 0 such that Z llen — hall% < €, therefore

n=N+1
N 2 S 2
- Z an(en - hn) = Z an(en - hn) <
n=0 H n=N+1 H
0o 0o
dSoaks Y llen —hall < MPR%.
n=N-+1 n=N+1

Hence, in view of the arbitrariness of € > 0, the set U(Bp) is relatively compact
in H and thus, the complete continuity of the operator U in H is proved.

Denote ¢ = h — F and B = Id — U, where Id is the identity. Then,
= Z anhy, Bis a bounded linear operator in H and ¢ = Bh. But the equation

n=0
Bh = 0 has in H only the trivial solution i = 0 because the system{ %, }n=0,12,...
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is linearly independent in H. Therefore, the operator B has a bounded inverse
B! in H; in addition, clearly Be,, = h,,.

Let w € H and v = B~ lu = Zanen, where a = (ag,a1,...,an,...) € lo.

n=0
Then, u = Bv = ZanBen = Zanhn in H. Conversely, if u = Z anhy,,
n=0 n=0 n=0

oo

then B~ 1y = Z anéey so that a = (ag, a1, ..., ap, ...) € la. Our proof of the Bari
n=0

theorem is complete. O

Remark 2.4. It immediately follows from our proof of the Bari theorem that
if {hn}n=0,1,2,.. is a Riesz basis in H, then there exist 0 < ¢ < C' such that

o0
E anhy
n=0 H

for any a = (ag, a1, ..., an, ...) € lo. Indeed, the left-hand side estimate is already
proved, and the right-hand side one follows the Banach theorem because as it is
proved, the correspondence h — a as a map from H into [y is linear, bounded
and one-to-one, hence the inverse mapping is linear and bounded, too. O
Corollary 2.5. Let again H be a separable Hilbert space over the field
of real numbers, {en}n:071727,,, be an orthonormal basis in H and a system

2

cllall?, < < Cllallz,

{hn}tn=01,2,.. C H be such that Z llen — hnH% =a < 1. Then, {hp}n=012,..
n=0
is a Bari basis in H.

Proof. In view of the Bari theorem 2.3 we need only to prove the linear

independence of the system {h,, }n=0,1,2,... in H. Suppose that Z cphy, =0in H

n=0
N
for some real coefficients ¢,,. For any integer N > 0, we have Z cn(en —hn)+
n=0
N
Ton = che” in H, where |lay||g — 0 as N — oo. Hence,
n=0

N 1/2 N 1/2
a'’? (Z Ci) + lloan|[a = (Z Ci)
=0 N =0 1/2 N 1/2
(Z len — hnll%) + llanlle = (Z Ci)

n=0

for any NV, which is possible if and only if 0 =cp=c1 = ... = ¢, = .... O

11



Remark 2.6. Riesz and Bari bases being compared with arbitrary bases
possess a number of additions important properties. In particular, a Riesz basis
after an arbitrary permutation of its elements remains the property to be a Riesz
basis. For us, these additional properties of Riesz and Bari bases are less important
because we only try to answer the principal question whether eigenfunctions
of nonlinear problems form bases in some cases; we refer readers to the Bari
article [2] and to monograph [6] for an information about these properties of
Riesz and Bari bases.

2.2. Sufficient Conditions for a System of Functions to Be a Riesz Basis in
Ls. A Counterexample. In this subsection, first, we shall reestablish a result on
the subject indicated in the title published in [21].

Theorem 2.7. Let {h,}n=0.1,2,.. be a sequence of real-valued, three times
continuously differentiable functions in R. Assume that for each integer n > 0
the following holds:

(1) hp(z+1/(n+1)) = —hy(x) and hy,(1/2(n+1)+2x) = hy(1/2(n+1)—x)
for any x € R;

(2) hi(x) >0, hl'(xz) <0 and bl (x) <0 for any z € (0,1/2(n+1));

(3) there exist 0 < ¢ < C such that ¢ < h,(1/2(n+1)) < C for all n. Then,
the system {hp}n=01,2,... is a Riesz basis in Lo.

Corollary 2.8. Let {hy,}n=01,2,.. be a sequence of real-valued, three times
continuously differentiable functions in R satisfying assumptions (1) and (2) of
the previous theorem. Then, {hp}n=012,. is a basis and {h,/h,(1/2(n +
1)) }n=0,1.2,... is a Riesz basis in L.

Corollary 2.9. Let h be a real-valued, three times continuously differentiable
function in R, such that h(x +1) = —h(z), h(1/2+x) = h(1/2—z), I/ (z) > 0,
h'(x) < 0and h"'(xz) < 0in (0,1/2). Then, the functions hy(z) = h((n + 1)x),
where n = 0,1,2, ..., form a Riesz basis in Ls.

Proof of theorem 2.7. Denote e, (z) = v/2sinm(n + 1)z, n =0,1,2, ..., so
that {e, }n=0,1,2,... is an orthonormal basis in Lo. In addition, note that h,,(0) = 0
for each integer n > 0 by conditions (1) and (2) of the theorem.

Lemma 2.10. Let for some integer n > 0 a function h,, = g satisfy assump-
tion (1) of theorem 2.9 and g(0) = 0. Then,

g(-) = Z Cmem(+) in Lo,
m=0

where real coefficients c,, are such that co = c1 = ... = cp—1 = 0. If in addition
g(z) >0 for x € (0,1/(n+ 1)), then c,, > 0.

Proof. The sequence {e(,41)(1+1)—1}1=0,1,2,... iS an orthogonal basis in
L2(0,1/(n + 1)). Hence, the expansion above holds in the latter space with
em =0if m # (n+1)(I+1) — 1 for all integer [ > 0 (so that in particular
o =c¢1 = ... = ¢p—1 = 0). In addition, ¢, > 0 if g(x) > 0 in (0,1/(n + 1))

12



because in this case two functions e,, and g are of the same sign everywhere in
(0,1/(n+1)). In view of the oddness of functions g and €(,11)(+1)—1 With

respect to their zeros HLH, k=0,+£1,%2, ..., the expansion still holds in L,. O

So, for the system {hn}n:071727___, we have the following sequence of expan-
sions in Lo:

hn = ay em, (2.1)
where
ay=al =..=ap_1 =0, ay, =0if m #
#m+1)({+1)—1foralll=0,1,2,... and a;, > 0. (2.2)

Denote A = (al,)n,m=0,12,....
Lemma 2.11. Under the assumptions of theorem 2.7, one has:

(aﬁ)_l\a?nﬂ)(mﬂ)fl\ < g(m +1)72 from each integer m > 1. In addition,
a?n+1)(m+1)_1 =0 if m = 20l + 1 for some integer [ > 0.

Proof. The second claim is obvious because the functions e(,41)(2i42)—1
are odd with respect to the middles of the intervals (0,1/(n + 1)), (1/(n + 1),

2/(n + 1)),...,(n/(n + 1),1) and h, is even so that a1
= (e(n+1)@112)-1,hn) = 0.

Let us prove the first claim. Let m = 2[. Due to the properties of periodicity,
oddness and evenness of h, and e(,41)(2i4+1)—1, We have

m+1)—1

1
{hn(x) sinw(n+1)(m + 1)z dx

(ag)il|a?n+1)(m+1)—1| = 1 =
J hn(z)sinm(n + 1)z dx
0

1/2(n+1)
hnp(z)sinm(n+ 1)(m + 1)z do
0
1/2(n+1)
hn(z)sinm(n + 1)z dx

0
1/2(n+1)
[ Rl (z)cosm(n+1)(m+ 1)z dz
_ -1 0 _
=(m+1) 1/2(n+1) B
| R (z)cosm(n+ 1)z dx
0

[ R (2/2(n + 1)) cos TADT gy
0

| ’

=(m+1)7!

- 2.3)

J R (z/2(n+ 1)) cos T da
0

13



By our assumptions, k!, (/2(n+ 1)) is a positive nonincreasing concave function
n (0,1). Hence,

w2 "

1
4
/h%(m/Q(n +1)) cos 7;—xdx > h (0 / (1 —z)cos —dx = —h,(0). (2.4)
0

By analogy, as one can easily see on the graph of A/,

1
1
/h;(x/Q(n%-l))cos de <
0
1/(m+1) ( N )
+ 1)x
< / Jmim e D)x R . 2.
1.(0) / cos T | = 2t 0). 29
0
2k +1
(Indeed, denoting xp = —+, k=0,1,.., %, and representing the latter

integral as a sum of the intgérals between 0 and g, x¢ and 1, etc., one sees that
the absolute value of the first integral in this sum is not smaller than the one half
of the absolute value of the second one, the absolute value of the second integral
is not smaller than the absolute value of the third one, and so on, which yields
our estimate.)

Estimates (2.3)—(2.5) imply

(m+1)72,

|y

(a2)71|a’?n+1)(m+1)—1| <

and lemma 2.11 is proved. O
Lemma 2.12. Under the assumptions of our theorem the system {hn}n:()’l’z’___
is linearly independent in L.

Proof. On the contrary, suppose that Z dphy, =0 in H for some d, € R.

n=0
Take the scalar product of the left- and right-hand sides of this equality with eg in
Ly. Then, it follows from (2.1) that dy = 0. By analogy, multiplying this equality

by e1,es,... in Lo we deduce, step by step, that 0 =dy; =de = ... =d,, = .... O
For each integer m > 0, denote by B,, the linear operator in Ly mapping
e, into b?n+1)(m+1)—1e(n+1)(m+1)—1» n = 0,1,2,..., where b7, = (a”)"ta?,.

Then, for each m, B,, is a bounded linear operator from Ly into Lo, || B|| <

sup|b(n+1) (m+1)—1| = bm and Bo = Id. By lemma 2.11,
> T i T
m <= (20+1 = [ (2z+1)Pde=—.
Sy @< [orn =]
m=1 =1 1/2
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Hence, || B|| < § < 1, where B = Z B,,. Therefore, the operator A = (Id+B)

m=1

has a bounded inverse A~! = Id+Z(—1)"B". Note also that Ae,, = h,,, where

n=1

oo
Take an arbitrary v € Lo and set u = Ay = chen, where ¢, € R.

n=0
oo o0
Then, Z ci < ocandv = Au = Z cpAe, = Z ¢phy,, where the infinite sums
n n=0 n=0

converge in Ly. Therefore, in view of lemma 2.12, the system {h, }n—0.12,.. i8

o0
a basis in Lo, and, if E ci < 00, then the series E cnbhn converges in Lo.
n

n=0

o0
Conversely, let a series u = E cnhy converges in Lo. Then, A1y =
n=0

E Cn€n, hence E ci < o0o. Thus, {En}n:071727___ is a Riesz basis in Ly. Since

n n

under the assumptions of the theorem we easily have 0 < ¢ < a)) < C < 400
for some constants 0 < ¢ < C independent of n, our proof of theorem 2.7 is
complete. O

Remark 2.13. In the following, theorem 2.7 will be applied to prove
theorem 1.3. So, one can see that the set of all Riesz (or Bari) bases in Lo
is essentially wider than the the set of systems of solutions of our nonlinear
problems. However, the same remark still concerns linear problems: the set of
all bases in L is essentially wider than the set of sequences of eigenfunctions of
linear problems.

In our proof of theorem 2.7, we essentially used the fact that the matrix A
in the expansions (2.1)—(2.2) is upper triangular and all elements of its principal
diagonal are strictly positive. So, one may think that in view of these properties of
the matrix A, the sequence {hy, }n=0,1,2,... is always a basis in Ly. The following
counterexample taken from our paper [24] shows that this is not so and, generally
speaking, the system {h, }n=01,2,... can be even incomplete.

Example 2.14. Let {en}n:071727___ be an orthonormal basis in the space H
introduced earlier, and the system {hy}n=0,1,2,.. C H is defined by formu-

las (2.1)-(2.2) where, for each n, a); = a, aj,; = —V'1—a?, a € (0,1) does
not depend on n, and a;,, = 0 for all other values of n and m. Fix a so small that
A =+/1-a?/a > 3 and let us show that the system {hy, },=0,1,2,... is incomplete
in H (note that according to lemma 2.12 this system is linearly independent in
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H). For this aim, let us prove that there exists a constant ¢ > 0 so that
lcoho + c1hy + ...+ cnhn — eollm > ¢

for any real coefficients ¢,, and any number N. On the contrary, suppose that
this is not so and there exist sequences of numbers N,, and of real coefficients
ety -y, so that [ ||g — 0 as m — oo, where iy, = ci*ho + c*h1 +
..t C%thm — €0.
Denote Yy, = (um, €, ) m. Then, it is easy to derive that
' =a'(1+ym0) and "= A" +a Y, n > 1. (2.6)

n

Since «,, — 0 in H, we have

nymn — 0 as m — oo. (2.7)

n

Hence, ¢' — a~! > 1 as m — oo, and applying induction in n to (2.6) and the
facts that A > 3 and, by (2.7), that |v,, | < a for all n and all sufficiently large
m, we obtain: ¢’ > 1 for all sufficiently large m and for all n = 0,1, ..., Np,.
But then, [lam,[|F = (¢f, )*(1 —a®) > 1 —a® > 0 for all sufficiently large m,
and we arrive at a contradiction, which completes our proof. O

In the next sections, we need in the following technical result.

Proposition 2.15. Consider the problem

w' =g(w), w=w), zeR, (2.8)

where g is a continuously differentiable function of its argument. Let w(x) be a
solution of (2.8). Then

(a) if W' (xo) =0 for some xg € R, then the solution w is even with respect
to xg, that is, w(xzg + x) = w(zg — ) for any x;

(b) if in addition the function g is odd and if w(xo) = 0 at some xy € R, then
this solution w is odd with respect to this point, that is, w(zo+x) = —w(zo — )
for any x.

Proof is elementary. Let us prove, for example, claim (a) (claim (b) can
be proved by the complete analogy). Let w’(xg) = 0 and introduce the function
wi (z) equal to w(x) for x < xo and equal to w(xg — (x — xp)) if © > xp.
Then, the direct verification shows that this new function w; is continuous
everywhere and that it satisfies the differential equation in (2.8) in the domains
z < zog and z > xy. Thus, by the uniqueness theorem for (2.8) with the initial
data wy(zg) = w(zo), wi(zo) = 0, one has w = w, and proposition 2.15 is
proved. O
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3. SEMILINEAR EIGENVALUE PROBLEMS IN A FINITE INTERVAL

In this section, we shall consider nonlinear problems containing a spectral
parameter.

3.1. A Proof of Brown’s Result. In this subsection, we shall analyze only
problem (1.1a)—(1.2) because problem (1.1b)—(1.2) can be studied by the complete
analogy. Consider the linear eigenvalue problem

—(pe’) +q(x)e = Xe, e=ce(x), z€(0,1), (3.1)

a1e(0) + aze’(0) = 0 = bye(1) + bae’(1). (3.2)

It has an infinite sequence of eigenvalues { A }r=0,1,2,... with corresponding eigen-
functions ey, k£ = 0,1,2,..., normalized to 1 in Ly so that {ex}n=0,12, .. is an
orthonormal basis in Ly. In addition, to each integer k£ > 0 the eigenfunction ey
possesses precisely & zeros in (0, 1).

Lemma 3.1. Take an arbitrary integer k > 0. There exists an interval
I, 0 such that for each o € Iy, o # 0, there exists an eigenfunction uy of
problem (1.1a), (1.2) which possesses precisely k zeros in the interval (0,1) and
satisfies the estimate |up, — aeg|s = ayg(a), where () — 0 as o — 0. The
corresponding eigenvalue goes to \, as « goes to 0.

Remark 3.2. In fact, in [3] the author applies a stronger result, the Crandall-
Rabinowitz bifurcation theorem, taken from [5]. However, these two approaches,
our one and the approach in [3], in the context of our problem lead us to the same
goal. Below we shall use the fact that we deal only with ordinary second-order
differential equations, and our methods are quite elementary.

Proof of lemma 3.1. Consider the Cauchy problem

—(pw") + q(z)w = A (w + ch(x)wk> z € (0,1), (3.3)

a1w(0) + azw’(0) = 0, azw(0) — a;w’(0) = A. (3.4)

By (3.4), the values w(0) and w’(0) are uniquely determined and one has: c|A| <
|w(0)| + |w'(0)] < C|A4]| for all A : |A] < 1, where positive constants 0 <
¢ < C do not depend on A. Hence, by the continuous dependence theorem,

m[ax] |w(xz)] — 0 as A — 0 for any fixed A\. Furthermore, since the absolute
z€[0,1

values of the nonlinear terms in (3.3) can be estimated from above by Cy|w|1+#
for constants C; > 0 and x > 0 independent of sufficiently small A # 0, we
obtain from (3.3) applying Gronwell’s lemma:

max |w(x)| < CalA] (3.5)
z€[0,1]

for all sufficiently small A # 0 and a constant Cy > 0 independent of A.
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By the oscillation theorem (see, for example, [4]), for each integer n > 0
there exist two strictly positive functions @ = «(A) and 5 = [B(A) of the
argument A # 0 going to 0 as A — 0, such that for any sufficiently small A # 0
each of two solutions w, and wg of problem (3.3)—(3.4) taken respectively with
A = A + a(A) and with A = A\, — B(A) has precisely k zeros in (0,1) and
sign(b1wa (1) + bawy (1)) - (sign(brwg (1) + bawj(1)) < 0.

For each sufficiently small A # 0, take for \x(A) the largest lower bound
of those values of A € [\ — B(A4), A + a(A)] for each of which the corre-
sponding solution w(z) of problem (3.3)—(3.4) has precisely k zeros in (0, 1)
and sign(byw(1) + bow' (1)) = sign(bywe (1) 4+ bowl,(1)). Then, this is a simple
corollary of the oscillation and continuous dependence theorems that the solution
w(z, A) of problem (3.3)-(3.4) taken with A = )\ (A) has precisely k zeros in
(0,1) and byw(1, A) + bow) (1, A) = 0. So, we have proved that there exists
a function m = m(A) of sufficiently small values of A going to 0 as A — 0
and such that the solution wy, of problem (3.3)—(3.4) taken with A = Ay, + m(A)
satisfies problem (1.1a), (1.2).

Denote by ¢, = ¢,(A4) € R\ {0} a constant such that €, = ey, satisfies
a2e,(0) — a1€},(0) = A. Then, by the arguments above and Gronwell’s lemma,
there exists C3 > 0 such that for any sufficiently small A # 0 one has

max [W(z) —r(z)| < C3AM". (3.6)
z€[0,1]

Lemma 3.1 is proved. O

Proof of the Brown theorem 1.1. We apply lemma 3.1. For each integer
k>0 take a = ay € Iy, oy # 0, so small that 77 (ag) < 92—, Consequently
o Vg () — ex(2)|3 = 72(ax) < 27" . Hence,

N | =

o0
Z g, "Wy — ex)3 <
k=0

and thus, by corollary 2.5, {axWk}x=0,1,2,... is a Bari basis in L,. Theorem 1.1
is proved. O

Remark 3.3. In fact, with theorem 1.1 we have proved the existence of a Bari
basis consisting of normalized eigenfunctions of problem (1.1a), (1.2). In addition,
we mention here the paper by Makin and Thompson [11] in which the authors
present a stronger result on the property of being a basis for eigenfunctions of a
similar problem. In their theorem, the eigenfunctions wu,, do not go to 0 uniformly
in x as n goes to oo, but these eigenfunctions are sufficiently small in a sense
uniformly in n.

3.2. On the Existence and Uniqueness of Eigenfunctions. In this section,
we shall prove a result on the existence and uniqueness of eigenfunctions of a
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nonlinear problem we need in the following. Consider the following problem:

du

—o H W) =, u=u(2), z € (0,1), (3.7)
u(0) =p >0, (3.8)
u'(0) = u(1) =0, (3.9)

where A € R is a spectral parameter and p > 0 is an arbitrary fixed parameter.
Our result is as follows.

Theorem 3.4. Let assumption (f) be valid. Then, for any integer
n = 0 problem (3.7)—(3.9) has a unique eigenfunction u, = u,(x) that pos-
sesses precisely n zeros in the interval (0,1).

Proof. Of course, equation (3.7) can be solved by quadratures. However,
below we establish its qualitative analysis which is more simple visually and
applicable to wider classes of problems. In addition to problem (3.7)-(3.9),
consider the Cauchy problem

dPu

—o H W) =, u=u(@), z € (0,1), (3.10)

u(0) = p, v/ (0) = 0. (3.11)

It is easy to see that if u(x) is a solution of problem (3.10)—(3.11), then it satisfies
the identity

Sl @) + S[u?(z) = p*] + Fp) — F(u(z)) =0, (3.12)

where F'(u) = / f(s)ds. To obtain this relation, it suffices to multiply equa-
0

tion (3.10) by v’(x) and integrate the result from O to z. In view of this identity,
it is easily seen that if a solution u(z) of problem (3.10)—(3.11) is bounded in a
bounded interval [0,a), then it can be continued onto a right half-neighborhood
of the point = a.

Lemma 3.5. For any A € R, denote by [0, a) the maximal interval on which
the corresponding solution of problem (3.10)—~(3.11) can be continued. Then, if
u’(0) > 0, the solution u satisfies u(x) = p for all x € [0,a), and if v"(0) < 0,
then |u(zx)| < p for any x € [0, a).

Proof. Let «”(0) > 0. Then, u(x) > p in a right half-neighborhood of the
point = 0. Suppose that u(Z) = p for some T € [0,a). By (3.12) and (3.10),
it follows that w/(Z) = 0 and «”(Z) > 0. But then, u(z) > p for all x # T
sufficiently close to T.
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Now, suppose that ”/(0) < 0. If v”(0) = 0, then u(z) = p for all x by the
uniqueness theorem. Let u”(0) < 0. Then, u(x) < p in a right half-neighborhood
of the point = 0. Suppose that u(Z) = p for some T € (0,a). Then, as in the
case u”/(0) > 0, it can be proved that u(z) < p for all = # T sufficiently close to
. This completes our proof. O

Take an arbitrary integer n > 0 and denote by A,, the set of all values of A€ R
such that for each of them the corresponding solution u(z) of problem (3.10)-
(3.11) has at least (n + 1) zeros in the interval (0,b), where b = min{1;a}. By
the arguments above, each of these solutions is global, that is each of them can
be continued on the entire real line € R. By the oscillation theorem, for any
sufficiently large A > 0 the corresponding solution u(z) has no less than (n + 1)
zeros in (0,1) so that A,, # (. In addition, by lemma 3.5, the set A,, is bounded
from below.

Denote \,, = inf A,, and consider the corresponding solution u,,(x) of prob-
lem (3.10)—(3.11) taken with A = \,,. Clearly, |u,(z)| < p for all = so that u,,
is a global solution. Let us prove that u, has no less than n zeros in (0,1) and
that u,(1) = 0 (so that u, is an eigenfunction of problem (3.7)-(3.9)). Take
a sequence {\*} C A,, k = 1,2,3, ..., such that \¥ \_ )\, as k — oco. De-
note by u*(x) the corresponding solutions of problem (3.10)—(3.11) taken with
A = A*. Then, each solution u* can be continued onto the whole interval [0, 1]
and it has at least (n + 1) zeros in (0,1). Observe that u) (z) # 0 if u,(z) =0
because otherwise u,(z) = 0 by the uniqueness theorem. Therefore, zeros of
un(z) are isolated and hence, u, has a finite number of zeros in [0,1). Let
0 <z1 < ...< Ty < 1 be these zeros. As is indicated above, u/, (z;) # 0 for any
l =1,2,...,m. This immediately yields that m < n because otherwise, by the
continuous dependence theorem, there exists A < A, belonging to A,, which is a
contradiction. By analogy, if it would be m < n, then for any A sufficiently close
to A, the corresponding solution of problem (3.10)—(3.11) would have at most
(m + 1) < n zeros in the interval (0,1) which contradicts our definition of the
set A,,. Hence, m > n and thus, m = n. By the complete analogy, u,(1) = 0.
So, we have proved, for any integer n > 0, the existence of an eigenfunction u.,
of problem (3.7)—(3.9) that possesses precisely n zeros in the interval [0, 1).

Finally, let us prove, for each integer n > 0, the uniqueness of the eigen-
function w,, of problem (3.7)—(3.9) that has precisely n zeros in the interval
[0,1). On the contrary, suppose that there exists two values of A, say A\ < Ao,
such that each of the corresponding two solutions u; and wg of the Cauchy
problem (3.10)—(3.11) has precisely n zeros in [0,1) and w;(1) = 0, i = 1,2.
Then, by identity (3.12), |uf(x1)| < |uh(z2)| for any z1,x2 € [0,1] such that
ug(z1) = ua(z2) # £p. In addition, it is a simple corollary of proposition 2.15
that the zeros and the points of extremum of each solution u; and g in [0, 1]

k+l and 2 2k respectively, where
T = 5 1> )
2n + 1 ET oy P y

are precisely the points x =
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k =0,1,...,n. But on the other hand, it follows from the arguments above that
the first zero of w; in (0, 1) is strictly larger than the first zero of ug in the same
interval. This contradiction completes our proof of theorem 3.4. O

Remark 3.6. Let u,, be the nth eigenfunction of problem (3.7)—(3.9) given by

theorem 3.4. Then, as is proved above, the zeros and the points of extremum of
E+1 2k

. . . . n_ 2 o
uy, in the interval [0, 1] are precisely the points 2} = anyq MR =g
respectively, where k = 0, 1, ..., n. In addition, |u,(x)| < p for all z and n.

3.3. A Result on Basis Properties of Eigenfunctions. In this section, we shall
consider basis properties of eigenfunctions of problem (3.7)—(3.9). Our result is
the following.

Theorem 3.7.  Under assumption (f) the sequence of eigenfunctions
{un}n:(),l,g,___ of problem (3.7)—(3.9) given by theorem 3.4 is a Riesz basis and
the sequence {u,, /|un|2}n=0,1,2,. . is a Bari basis in the space L.

Proof. In view of proposition 2.15 and remark 3.6 by the complete analogy
with lemma 2.10, we have the following sequence of expansions:

oo

Up(+) = Zaﬁek(-) in Lo, n=0,1,2,...,
k=0

2 1
where e, (z) = v/2cos m@2n+ Lz
in Ly, af are real coefficients, aj; = 0 for any k¥ = 0,1,...,n — 1 and a;; > 0.
Therefore, by the complete analogy with lemma 2.12, the system {uy }n=012,...

is linearly independent in Lo.
m(2n + 1)x

,n=20,1,2,..., form an orthonormal basis

Denote €, (z) = pcos . Clearly, {€,}n=0,1,2,.... is an orthogonal
basis and a Riesz basis in Ly. To apply the Bari theorem, let us prove that the
sequences {un n=01,2,.. and {€,}n=0,12, .. are quadratically close to each other

in Ly. The functions €,, are the eigenfunctions of the linear problem

S

€y = [inn, €n =en(z), z €(0,1),

€.(0) = p, ,(0) =2a(1) =0,

2 1
where p, = w , n=20,1,2,.... In addition, since by remark 3.6
one has |u,(z)| < p for all  and n and by the comparison theorem
A — pin] <C1, n=0,1,2,..., (3.13)
where C7 = sup M .
ue(0,p] | U
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Set w,, = u,, — €,. By (3.13) and the estimate |u,(z)| < p,

where Uy, (x) = f(un(z)) + (A — pin)un(x) so that |Uy,(z)| < Cs for a constant
C5 > 0 independent of = and n. In addition, by identity (3.12),

wy (1)) < C3 (3.16)

for a constant C's > 0 independent of n (for the functions €, an identity analogous
to (3.12) takes place).

Multiply equation (3.14) by 2zw!, (x) and integrate the result over the interval
[0,1]. Then, after an integration by parts, using (3.15), we obtain:

1 1 1
2 = — zw' (x 2)de — [ [w! (2)1%dx + (v 2,
uno/wn<x>dx— 20/ ! (&) Un(2)d 0/[ ! (@)]2da + [w! (1)

Thus, since 2|zw), (z)U, (z)| < [w),(z)]* + [Un(z)]* and by (3.16), we obtain
|wy,|3 < Cy4(n+1)~2 so that indeed the systems {uy, }n—0.1,2,.. and {€,}n=0.1,2,..
are quadratically close to each other in the space Ls. Since this is still so for the
systems {un/|tn|2}n=01,2,.. and {e, }n=0,1,2,... and in view of the Bari theorem,
theorem 3.7 is completely proved. O

Remark 3.8. The above proof of theorem 3.7 is taken from our pa-
pers [19,20]. In addition, in [20], a direct proof of this result, not based on
the Bari theorem, is established.

Remark 3.9. As is noted in Introduction, a result similar to theorem 3.7 takes
place if we supply equation (3.7) with one of the following two sets of boundary
conditions:

w(0)=u(1)=0, 4 (0)=p>0

or
' (0)=4/(1)=0, u(0)=p>0,

where in both cases p > 0 is a fixed parameter. These claims are proved in [20];
their proofs are completely analogous to the above proof of theorem 3.7. In fact,
the sequence of all eigenfunctions {un}n:(),m,,,, of equation (3.7) taken with the
second set of boundary conditions is a Riesz basis in Lo, while the sequence
of all eigenfunctions of the same equations taken with the first set of boundary
conditions is a basis (but not a Riesz basis) in this space. However, in each
case the sequence {uy/|tn|2}n=01,2,.. is a Bari basis in L. In the case of the
boundary conditions of the first kind, the sequence of eigenfunctions is not a
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Riesz basis in Lo because in this case the eigenfunctions approach zero uniformly

in x as n — oo, therefore, since the system {u,/|tn|2}n=01,2,.. is a Bari basis
oo

in Lo, the series E anu, converges in Lo not only when (ag, a1, ..., an, ...) € la.

Remark 3.18. %s for theorem 1.2 in Introduction, the proof of its principal
claim (c) in [17,25] is completely analogous to the above proof of theorem 3.7.
Claims (a) and (b) of this theorem are proved, for example, in [16,25]; these are
technical results, their proofs are sufficiently cumbersome and therefore, we do
not consider them here.

4. FURTHER RESULTS

In this section, we shall consider two results on the subject the paper is de-
voted to. First, we shall prove theorem 1.3. As was already noted in Introduction,
one of the main difficulties arising in this case consists in the fact that a linear
self-adjoint problem whose eigenfunctions would be arbitrary close to the solu-
tions of problem (1.7) for n sufficiently large is unknown. We shall overcome
this difficulty by applying theorem 2.7 and, then, the Bari theorem 2.3. With this
approach, we follow our article [21] in which in fact a bit more general result
is obtained. Second, we shall discuss briefly a result published in [24] on the
expansions over eigenfunctions of an equation of the type of (1.3) in the half-line
[0, +00). In this case the spectrum of the problem fills a half-line [\, +-00) and an
analog of the Fourier transform occurs: «an arbitrary function» can be uniquely
expanded in an improper integral over eigenfunctions of the nonlinear problem
similar to the representation of this function by its Fourier transform. In the
present paper, we shall not establish a complete proof of this result, but we only
shall sketch main idea of this proof. We refer the reader to our paper [24] for
the complete proofs.

4.1. A Problem without a Spectral Parameter: Proof of Theorem 1.3. In
this subsection, we shall prove theorem 1.3. For the convenience of readers, we
repeat the statement of the problem:

—u" = f(u), w=u(z), ze€(0,1), (4.1)
u(0) = u(l) =0, (4.2)

where the nonlinearity f satisfies the assumptions of theorem 1.3. The first part
of this theorem, the existence of a sequence of solutions {u,}n=01,2,... so that
each nth solution has precisely n zeros in the interval (0, 1) is a standard and
well-known result (see, for instance, [25]). Let us prove, for each integer n > 0,
that a solution w,, that possesses precisely n zeros in the interval (0,1) is unique
up to the coefficient +1.
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Again, as in Sec. 3, the following identity takes place for solutions of equa-
tion (4.1):

W (x) — ' (0)°] + [F(u(z)) — F(u(0)] =0, =z€[0,1],  (4.3)

where F(u) = /f(s)ds. Consequently, since f(u)/u — +oo as |u| — oo,
0

for any solution u(z) of equation (4.1) the quantity |u’(z)| 4 |u(z)| is bounded
in an arbitrary interval on which this solution is continuable. Therefore, an
arbitrary solution of equation (4.1) is global, that is, it can uniquely continued
onto the entire real line x € R. In addition, by proposition 2.15, for each integer
n > 0, the zeros and the points of extremum in [0, 1] of an arbitrary solution of

problem (4.1)—(4.2) that has precisely n zeros in the interval (0, 1) are precisely
the points z}} = nLH’ where k¥ = 0,1,...,n+ 1 and y; = 2k2—7§1, where
k=0,1,...,n — 1, respectively.

Now, suppose that for some integer n > 0 there exist two different solutions
u' and u? of problem (4.1)—(4.2) each of which has precisely n zeros in the
interval (0,1). Let for definiteness u2 (0) > u!’(0) > 0. Then, it easily follows
from identity (4.3) that u2(z5) > u!(x) for any xy,25 € (0,y7) such that
u'(x1) = u?(w2). But then u?(z) > u'(x) everywhere in (0,27) and by the
standard comparison theorem applied to equation (4.1) in this interval it follows
that the first positive point of maximum of the solution u? must be smaller
than that of the solution u' (because f(u?(x))/u?(x) > f(u'(x))/u'(z) for any
x € [0,y7] and there exists a point = in this interval at which this inequality
is strict). This contradiction proves our claim. Thus, it is proved that for any
integer n > 0 the solution of our problem that possesses precisely n zeros in the
interval (0, 1) is unique up to the coefficient 1.

Now, we turn to proving that the sequence {uy,/|un|2}0,1,2,... is a Riesz basis
in the space Lo. By lemmas 2.10 and 2.12, this sequence is linearly independent
in this space. So, to apply the Bari theorem, it suffices to construct a sequence
of functions {h,}n=0,1,2,. that satisfies the conditions of theorem 2.7 and is
quadratically close to our sequence {uy/|tn|2}n=01,2,.. in the space Lo.

Observe that, since f(u)/u is a nondecreasing function of « > 0 and since
it goes to 400 as |u| — oo, we have f'(u) > f(u)/u for all v > 0, and
therefore, there exists a constant @ > 0 such that f'(z) > f'(u), f(@w) > f(u),
F(@) > F(u) for any 0 < v < @ and, in addition, f’(w) > 0. We fix this choice
of the constant w.

Without the loss of generality, we accept that u/,(0) > 0. By the comparison
theorem, wu,(yy) — 400 as n — oo. For each n sufficiently large, denote by
zn, € (0,y7) the point such that u,,(z,) = @. Then, u, (y])—u = u’, (pn) (Y} —2n)
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for some p,, € (z,,y}). Hence, since by equation (4.1) one has u! (z) < 0 in
[2n, ¥7], we obtain:

() 2 () > 5 (4 ()

for all sufficiently large n. In addition, since sup H[léiX | |ull(x)] < 400, we have
n x€(0,2n

u

e n -1 .
T Duny) <Y 44

0< 2z, <

for all sufficiently large n.

For each sufficiently large n, we define the function h,(z) to be equal to
un(z) for any = € [z, y}]. To define this function in the interval [0, z,), we
introduce two functions g1 (z) and go(z); we require that each of them is three
times continuously differentiable in the interval [0,y}] and identically equal to
Un(x) I [2n,y}]. In the interval [0, z,), we define these functions as follows.
For sufficiently small 6; € (0,z,), we set g/ (z) = 6, (x — zn + 01)u” (2,)
in [z, — d1,2y) and ¢g1(x) = 0 in [0, z, — d1). Further, for a sufficiently small
d2 € (0,2y,), take a continuous non-positive function w(z) equal to «!’(z) in
[2n, ¥7], to 0 in [0, z,, — 2] and such that w(x)dr = ul!(z,) (we use here

Zn—02
the fact that u)/(z,) < 0 which follows from equation (4.1)). In the interval
[0, z,), we define g2(x) as a function three times continuously differentiable in
[0,47] and such that g5’ () = w(x) in [0, z,,). By construction, the functions g;
and go exist and are unique.

Let us prove that if we take constants §; and J, sufficiently small, then
91(0) < 0 and g2(0) > 0. For this aim, first, observe that if §; > 0 is sufficiently
small, then ¢ (0) is arbitrary close to

2

The latter expression is negative by construction if §; > 0 is sufficiently small
because, by our choice of w and equation (4.1), it is smaller than

0 = un(0) = un(2n) — 2nul, (2n) + /dm/u',;(t)dt.
0 T

Further, for 62 > 0 sufficiently small g2(0) is arbitrary close to @ — zpu, (2n).
By (4.3) and our choice of @, u,(z,) < ul,(x) for any x € [0, z,,), therefore, we
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have for d5 > 0 sufficiently small:

Zn

u= /u;(x)dx > zpul (2n)
0

so that indeed g2(0) > 0 if J2 > 0 is sufficiently small.

Fix now a choice §; > 0 and d3 > 0 such that g;(0) < 0 and g2(0) > 0.
Then, og1(0) 4+ (1 —0)g2(0) = 0 for some o € (0,1). We set h,(x) = og1(x) +
(1 —o0)g2(x) for all z € [0,y}]. Note that h,(z) = un(x) in [2,,y}]. For all
x € R, we continue the function h,(z) be the rules:

hn(yp =) = hn(yy +2) and by (af +2) = —hy (2] — x).

So, we have constructed a sequence of functions {hn}n> N, where N > 0
is a sufficiently large integer number. For n = 0,1,..., N — 1, we take for h,,
arbitrary functions satisfying the assumptions of corollary 2.8. Then, the sequence

hn (Y1)
basis in the space Lo.
Let us prove that the sequences {h, }rn=0,1,2,... and {uy }n=0,1,2,... are quadrat-
ically close to each other in Ls. By construction, we have for n > N:

h . .. .. .
{ o } satisfies the conditions of theorem 2.7, hence, it is a Riesz
n=0,1,2,...

max |ul(z)] = max |f(u)] < C; < +o0
2€[0,25] u€e[0,7]
and
max [ ()| = Ry (20)] = |up (20)] < Ch.
z€[0,2n
Therefore,

[un () = hn(2)] < Ca2y

for any z € [0, z,,], where the constant C; > 0 does not depend on n and z.

Denote a,, = hy,(y}). Then, a,, — +00 as n — oo and, since each function
hy, is concave in [0, y}], there exist 0 < ¢ < C' so that cay, < |hp|2 < Cay, for
all n. Using in addition (4.4), we obtain for all n sufficiently large:

o (un = )3 < C3(n +1)7°

for a constant C3 > 0 independent of m so that indeed the sequences
-1 -1 :

{a; "untn=01,2,.. and {a;, 'hp}n=0102,. . are quadratically close to each other

in the space L. Thus, by the Bari theorem, the system {u,/ay}n=0,1.2,...

is a Riesz basis in the space Ls. In view of the almost obvious estimate

Clun |2 < ay < Cluy|2 with constants 0 < € < C independent of n, our proof of

theorem 1.3 is complete. O
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Remark 4.1. Note that if f/(0) = 0, then, under the assumptions of theo-
rem 1.3, it follows from equation (4.1) that, for each integer n > 0, one has
ul () >0, ull(z) <0 and u!”(z) < 0 everywhere in [0, y}) so that in this case
theorem 1.3 immediately follows from corollary 2.8.

4.2. An Analog of the Fourier Transform Associated with a Nonlinear
Problem. In this subsection, we shall consider a problem for equation (1.3) in an
unbounded interval. In fact, we consider the problem

—u" + f(u) =M, u=u(z), z € (0,00), (4.5)
u(0) =p >0, (4.6)
u'(0) =0, sup lu(z)| < +o0, (4.7)

where p > 0 is an arbitrary fixed parameter and A € R is a spectral parameter.
First of all, we discuss the notions of the eigenvalue and the corresponding
eigenfunction for this problem. In our paper [24], it is accepted for simplicity
that if a pair (X, u) consisting of a A € R and a real-valued function u(x) twice
continuously differentiable in [0, +00) satisfies problem (4.5)—(4.7), then X is an
eigenvalue and u(x) the corresponding eigenfunction of this problem. However,
the problem is nonlinear, and the equation is considered in an unbounded interval;
in addition, in [24], it is found that the set of all its eigenvalues understood in the
sense above (that we call the spectrum of the problem) fills a half-line [), +00).
Therefore, for this problem, even common in use approaches for defining the
notions of the eigenvalue and eigenfunction are not created yet. Here, we want
only to mention one of such approaches that seems to be reasonable. Given a
pair (\,u) that satisfies equations (4.5) and (4.6) and the condition u'(0) = 0,
one can consider the following linear eigenvalue problem:

f(w)

—w” + WS, w= w(z), z € (0,00), w'(0) =0,

fw)

is a spectral paramete?. Then, it can be said that if ¢ = A and w(z) = u(x) are
an eigenvalue and the corresponding eigenfunction of the latter linear problem,
then they are an eigenvalue and the corresponding eigenfunction of the nonlinear
problem (4.5)—(4.7), respectively. However, in the following we use definitions

of these notions introduced in [24].
Let A be the spectrum of problem (4.5)-(4.7). Denote by S the Schwartz
space of functions ¢ in R infinitely differentiable and such that for any integer
d"g

dzm

where the function is defined by continuity at the point v = 0 and u € R

< 4o0. Let S, and S, be the subspaces of the

n,m > 0 one has: sup [x™
xr

space S consisting respectively of even and odd functions from S. Below we
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denote by u(\, z) the eigenfunctions of problem (4.5)—(4.7) to indicate explicitly
their dependence on A. Our result for this problem is as follows.

Theorem 4.2. Let assumption (f) be valid and let in addition [ be a ten-time
continuously differentiable function in R. Then

(a) A =[f(p)/p, +00) (we denote X = f(p)/p);

(b) for each \ € (\,+00) there exists a minimal positive zero k() of u(\, x)

regarded as a function of x > 0. The correspondence k : (\, +00) — (0,+00) is

continuously differentiable, k'(\) < 0 for any X € (A, +o0), lim k(\) = +o0
A—A+0
and /\hrf kE(A) = 0. By A = A(k) we denote the function defined in (0, 00)

inverse to k(\);

(c) luM\z)| <pforall z >0 and X\ € A;

(d) for any g(-) € S, there exists a function g(-) continuous in (0,400) that
satisfies the following two conditions:

(dl) there exist C > 0 and v € (0,1) such that

lg(k)| < CET 1+ k)~

for any k > 0;
(d2) g(z) = [g(k)u(A(k),z)dk for any x > 0, where the integral in the
0

right-hand side is understood as an improper one;

(e) a continuous function g(-) that satisfies properties (d1) and (d2) is unique.

Remark 4.3. Clearly, the expansion of g(z) in claim (d2) is an analog of
the representation of an «arbitrary function» by its Fourier transform. The author
believes that the assumption that the nonlinearity f is ten times continuously
differentiable is technical and not necessary, and that it suffices to assume ().
However, when proving theorem 4.2 in [24], he met large technical difficulties
that led him to the necessity of this additional assumption.

Now, we establish the main idea of the proof of theorem 4.2. In this result,
claims (a)—(c) are technical, and they are partly proved with theorem 3.4. We

T

focus our attention on the principal claim (d2). Denote e(k,z) = pcos 37 and,

for g(-) € Se, by g(-) the renormalized Fourier transform of this function so that

g(x) g(k)e(k™", z)dk.
/

Then, according to theorem 3.7, we can uniquely expand e(k,x), regarded as a
function of z, into the series

e(k,x)zidn(k)u< i ) (4.8)

mr1 "
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with real coefficients d, (k); this series converges at least in the space Ls(0, k)
(we can do this because, as is proved in [24] (and as it is easily seen), the nth
eigenfunction u,,(-) of the problem similar to (3.7)—(3.9) but considered in the
k
interval (0, k) coincides with the eigenfunction u (m, x) of problem (4.5)—
n
(4.7) regarded as a function of the second argument). Due to the properties of

periodicity of e(k,z) and u ( x) in x following from proposition 2.15,

2n 41’
the expansions (4.8) still hold in the spaces La(a,b) for arbitrary 0 < a < b <
+00, i.e., «almost» in the entire half-line (0,00). Therefore, we have, quite
formally, of course:

g(x) = /ook_2 (=1 i dpn (k)u (%,x) dk =
0

o

= i 7k2§(k1)dn(k)u (%x) dk =
0

n=0
o X 1 n .
-2 / g<k(27§2+ B;ﬁ L, (20 + Dkyulh, )k =
n:OO

_ = g(k~t(2n+1)71h
where g(k) = nz::O IR
ities are completely formal so that it is not seen from them at once even that
the function g(k) is well-defined. What we did in paper [24] is a justification
of this sequence of formal relations. The arguments in this paper are sufficiently
complicated and cumbersome and therefore, we do not establish them here; we
refer the reader to the paper [24] for the complete proof of theorem 4.2.

Remark 4.4. A result analogous to theorem 4.2 occurs if one considers
equation (4.5) with the boundary conditions

dn((2n + 1)k). Of course, all these equal-

uw(0) =0, v/ (0) =p >0, sup|u(r)| < +o0.
x>0

In this case, a unique expansion similar to that in theorem 4.2 (d2) of an «arbitrary
function» g(-) € S, occurs.

29



10.

11.

12.

13.

14.

15.

REFERENCES

Bari N. K. On Bases in Hilbert Space // Dokl. Akad. Nauk SSSR. 1946. V.54, No.S5.
P.383-386 (in Russian).

Bari N. K. Biorthogonal Systems and Bases in Hilbert Space // Ucenye Zapiski MGU.
Matematika, 1951. V. 148, No. 4. P.69-107 (in Russian).

. Brown K.J. A Completeness Theorem for a Nonlinear Problem // Proc. Edinbourgh

Math. Soc. 1974. V.19, No.2. P. 169-172.

Coddington E. A., Levinson N. Theory of Ordinary Differential Equations. // N. Y.;
Toronto; London: McGraw-Hill Book Company, Inc., 1955.

Crandall M. G., Rabinowitz P.H. Bifurcation from Simple Eigenvalues // J. Func.
Anal. 1971. V.8. P.321-340.

Gohberg L. Ts., Krein M. G. Introduction to the Theory of Linear Nonselfadjoint Op-
erators. Providence, RI: AMS, 1969 (English translation).

Ljusternik L. A., Sobolev V. 1. Elements of Functional Analysis. M.: Nauka, 1965 (in
Russian).

Makhmudov A. P. On the Completeness of Eigenelements of Some Nonlinear Operator
Equations // Dokl. Akad. Nauk SSSR. 1982. V.263, No. 1. P.23-27 (in Russian).

Makhmudov A. P. Basics of Nonlinear Spectral Analysis. Baku: Azerbaijan State
Univ., 1984 (in Russian).

Makhmudov A. P. Nonlinear Eigenvalue Problems and Bifurcation Theory. Baku:
ALM Publ., 1996 (in Russian).

Makin A. S., Thompson H. B. Convergence of Eigenfunction Expansions Corresponding
to Nonlinear Sturm-Liouville Operators // Electron. J. Diff. Eqns. 2004. V.2004,
No. 87. P.1-10.

Pohozaev S.1. On an Approach to Nonlinear Equations // Dokl. Akad. Nauk SSSR.
1979. V.247, No. 6. P. 1327-1331 (in Russian).

Pohozaev S.1. A Method of Fibering for Solving Nonlinear Boundary-Value Prob-
lems // Trudy Steklov Math. Inst. 1990. V.192. P.146-163 (in Russian).

Rabinowitz P. H. Variational Methods for Nonlinear Elliptic Eigenvalue Problems //
Indiana Univ. Math. J. 1974. V.23, No. 8. P.729-754.

Rabinowitz P. H. Minimax Methods in Critical Point Theory and Applications to

Differential Equations // CBMS Regional Conf. Ser. Math. No. 65. Providence: AMS,
1986.

30



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Zhidkov P. E. Completeness of Systems of Eigenfunctions for the Sturm-Liouville
Operator with Potential Depending on the Spectral Parameter and for One Nonlinear
Problem // Sbornik: Mathematics. 1997. V. 188, No.7. P.1071-1084.

Zhidkov P. E. Eigenfunction Expansions Associated with a Nonlinear Schrodinger
Equation. JINR Commun. E5-98-61. Dubna, 1998.

Zhidkov P.E. Eigenfunction Expansions Associated with a Nonlinear Schrédinger
Equation on a Half-Line. JINR Preprint E5-99-144. Dubna, 1999.

Zhidkov P. E. Riesz Basis Property of the System of Eigenfunctions for a Nonlinear
Problem of Sturm-Liouville Type // Sbornik: Mathematics. 2000. V.191, No.3.
P.359-368.

Zhidkov P. E. Basis Properties of Eigenfunctions of Nonlinear Sturm-Liouville Prob-
lems // Electron. J. Diff. Eqns. 2000. V.2000, No.28. P. 1-13.

Zhidkov P. E. Sufficient Conditions for Functions to Form Riesz Bases in Lo and
Applications to Nonlinear Boundary-Value Problems // Electron. J. Diff. Eqns. 2001.
V.2001, No.74. P. 1-10.

Zhidkov P. E. On the Property of Being a Basis for a Denumerable Set of Solutions of
a Nonlinear Schrodinger-Type Boundary-Value Problem // Nonlinear Anal.: Theory,
Meth. & Appl. 2001. V.43, No. 4. P.471-483.

Zhidkov P. E. On the Property of Being a Bari Basis for System of Eigenfunctions
of a Nonlinear Integrodifferential Equation // Differentsial. Uravneniya. 2002. V. 38,
No.9. P.1183-1189 (in Russian).

Zhidkov P. E. An Analog of the Fourier Transform Associated with a Nonlinear One-
Dimensional Schrodinger Equation // Nonlinear Anal.: Theory, Methods & Appl.
2003. V.52, No.3. P.737-754.

Zhidkov P. E. Korteweg—de Vries and Nonlinear Schrodinger Equations: Qualitative
Theory. Lecture Notes in Math. V. 1756. Heidelberg: Springer-Verlag, 2001.

Received on March 31, 2008.



Koppexrop T. E. Iloneko

Ionnuc Ho B meu 16 21.04.2008.
®Dopm 1 60 X 90/16. Bym r odcern 4. Ileu b odceTH 4.
Yen. neu. n. 2,18, Yu.-uzn. a. 3,08, Tup x 315 ax3. 3 x 3 Ne 56149.

W3n tenbckuii otaen OOGbeIMHEHHOTO HHCTUTYT SIICPHBIX HCCIICHOB HUit
141980, r. dy6n , Mockosck s 06:1., yi1. 2Konmo-Kropu, 6.
E-mail: publish@jinr.ru
www.jinr.ru/publish/



