А. Н. Степанова*, Н. А. Колтовая

ИНДУКЦИЯ УТРАТЫ ФРАГМЕНТОВ ДНК ПОД ДЕЙСТВИЕМ УФ-СВЕТА У ДРОЖЖЕЙ

*SACCHAROMYCES CEREVISIAE

*E-mail: aleksandras@inbox.ru
Степанова А. Н., Колтовая Н. А.
Индуkcия утраты фрагментов ДНК под действием УФ-света у дрожжей Saccharomyces cerevisiae

В работе изучаются закономерности мутагенного действия УФ-света, обусловленного возникновением двунитевых разрывов (ДНР) ДНК. Следствием репарации ДНР являются делеции и перестройки молекулы ДНК. Полученные данные свидетельствуют об эффективной индукции делеций и перестроек в ДНК под воздействием УФ-света. Анализ эффективности различных типов репарации ДНР ДНК показал, что в растущей культуре гаплоидных штаммов гомологичная рекомбинация между повторами происходит более эффективно, чем негомологичное воссоединение разорванных концов.

Работа выполнена в Лаборатории радиационной биологии ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна, 2008

---

Stepanova A. N., Koltovaya N. A.
Induction of DNA Deletions after UV-Light Irradiation in Yeast Saccharomyces cerevisiae

We study mutagenic action of such a damaging agent as UV light, which can lead to DNA double-strand breaks (DSB). DNA deletions and gross rearrangements occur in process of DSB repair. We show that UV light induces deletion and rearrangement very efficiently. Analysis of efficacy of different types of repair shows that cell tries to repair DSBs with a combination of both homologous recombination (HR) and nonhomologous end joining (NHEJ) if available and that DSB repair by HR is more effective than by NHEJ in growing culture of haploid yeast.

The investigation has been performed at the Laboratory of Radiation Biology, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna, 2008
В последние время активно изучается действие УФ-света на живые организмы. Наиболее эффективно УФ-свет индуцирует димеры тимина, возникающие в результате связывания двух соседних оснований одной полинуклеотидной цепи ДНК [1]. УФ-свет также индуцирует, хотя и менее эффективно, разрывы нитей ДНК и сшивки ДНК-белок [2]. Наиболее тяжелые последствия имеют ДНР ДНК [3], репарация которых осуществляется несколькими механизмами, в частности путем гомологичной рекомбинации (homologous recombination — HR) и путем воссоединения негомологичных концов (non-homologous end joining — NHEJ). Последний процесс может сопровождаться утратой фрагментов ДНК [4]. Регуляция выбора механизма репарации слабо изучена.

В данной работе изучаются количественные закономерности возникновения ДНР ДНК под действием УФ-света и эффективность их репарации путем HR и NHEJ. Для этого использовали специальные генетические системы, позволяющие тестировать деления, возникающие в результате различных механизмов репарации ДНР ДНК. Хромосомная генетическая система, имеющая протяженные участки гомологии, позволяет тестировать события репарации путем HR [5]. Она основана на инвертированных повторах, локализованных на II хромосоме, способных индуцировать деления и рекомбинацию. Для характеристики NHEJ использовали плазмидную систему, позволяющую тестировать события репарации ДНР, сопровождающиеся возникновением делений [6]. Плазмиды представляют собой искусственно сконструированную, автономно поддерживающуюся структуру ДНК, в состав которой входят несколько генов. Структура плазмид позволяет осуществлять селекцию делений в плазмидной ДНК и анализ размера утраченного фрагмента в контролируемом участке плазмидной ДНК.

Плазмидная система позволяет осуществлять прямую селекцию деленияционных мутантов. Центромеросодержащая плазмидная YCpL2 [ARS1 CEN3 URA3 TRP1 LEU2 CAN1 CYH2] длиной 13,8 кб была любезно предоставлена нам проф. Х. Икедой (Токийский университет, Япония). Наработку плазмидной ДНК осуществляли в бактериальном штамме E. coli TG1 [7]. В исследовании использовали штаммы дрожжей Saccharomyces cerevisiae R1-1, R1-2 и R2-1 (MAT α ade2-1 URA3-1 trp1-1 his3-11,15 leu2-3,112 can1-100 cyh2). Селекцию делений в плазмидной ДНК проводили согласно методике [6].
В гаплоидные штаммы, несушие мутации устойчивости к антибиотикам, ввели плазмиду с нормальными аллелями этих генов, придающую трансформированным штаммам чувствительность к антибиотикам. Клетки реплицированных штаммов дрожжей трансформировали плазмидой YCpL2 с помощью "линейной" методики [8] и отбирали трансформанты как Ura³⁺-колонии на селективной среде MM₃₀₀-Ura [9]. Трансформанты при высеве клеток на селективную среду с добавлением двух антибиотиков канаванаина и циоксексима ММ₃₀₀ + can + cys не образуют колонии. В случае возникновения на плазмиде делеции, перекрывающей участок генов устойчивости к антибиотикам CAN1 и CYH2, клетки становятся резистентными к обоим антибиотикам. Поэтому селекцию делений осуществляли путем рассева трансформантов на селективную среду с добавлением антибиотиков.

Исследована индукция делений в плазмидной ДНК под действием УФ-света на клетки дрожжей. Для этого ночной культуру, выращенную в 5 мл стандартной среды YPD [9] в условиях интенсивной аэрации при 30°C, после соответствующего разведения в воде рассекали на шами Петри с полной питательной средой BC [9] для определения выживаемости (из расчета 100 выживших клеток на шампу), а также на селективную среду MM₃₀₀ + can + cys для селекции делеционных мутантов (не более 5 · 10⁷ клеток на шамп для образования монослоя на поверхности агаризованной среды). Открытые шампи Петри облучали УФ-светом (лампа ДБ-30, 0,28 Дж/м²-с). Во избежание фотокаталитической облучение проводили в темноте. Затем шампи помещали в металлический пенал и инкубировали в течение 4–5 дней при 30°C.

На рис. 1, а приведена усредненная кривая выживаемости для трех трансформантов (R1-1, R1-2 и R2-1) после УФ-облучения и средние квадратичные ошибки. Кривые выживания имеют симбиондную форму, характерную для гаплоидных штаммов после облучения УФ-светом. При максимальном флюенсе

![Рис. 1. Кривые выживаемости (а) и частота делеционных мутантов (б) после УФ-облучения гаплоидных штаммов R1-1, R1-2 и R2-1.](image)
энергии 201,6 Дж/м² выживаемость снизилась до 0,001 %. Темп возникновения спонтанных делекционных мутаций составлял (5,8 ± 1,1) · 10⁻⁸, что хорошо согласуется с данными литературы [6]. Частота спонтанных мутаций в популяции облученных нами культур составляла (1,2 ± 0,2) · 10⁻⁶. При относительно малых Ψ (до 100 Дж/м²) и выживаемости вплоть до 1 % делекционные мутанты индуцировались УФ-светом с низкой частотой (рис. 1, 6). С последующим увеличением дозы частота делекционных мутантов быстро возрастила и при флюенсе энергии 201,6 Дж/м² и выживаемости 0,002% она увеличивалась до (2,5 ± 0,6) · 10⁻³. Таким образом, УФ-свет эффективно индуцировал делекции в ДНК, и наблюдалась степенная зависимость индукции делекций от дозы воздействия. Как было показано в работе Х. Икеды [6], такие делекции образуются в процессе репарации ДНР ДНК путем NHEJ.

Для изучения внутрихромосомной гомологичной рекомбинации использовали гаплоидные штаммы дрожжей ALE1000 и ALE1001, содержащие два повтора последовательности lys2 во II хромосоме [5]. Штаммы ALE1000 и ALE1001 (MATα ade5-1 his2-3,112 trp1-289 ura3-52 lys2-Δ5’ lys2::HS-D) любезно предоставлены нам д-ром Д. А. Гордиениным (National Institute of Environmental Health Sciences, NC). Последовательность lys2::HS-D содержится в BamHI сайте гена LYS2 клонированную в плазмиде pPD39 вставку прямого повтора двух консенсусных последовательностей Ale длиной 658 п.н. Усеченный по 5'-концу ген lys2-Δ5’ и ген LEU2 интегрированы во II хромосому как прямой повтор с аллелю lys2::HS-D. Интеграция плазмиды в локус LYS2 на II хромосоме создает внутрихромосомные повторы lys2, разделенные геном LEU2. Рекомбинация между повторами lys2 происходит в результате конверсии, которая может сопровождаться кроссинговером. В противном случае образуется делекция, которую идентифицируют по утрате локуса LEU2.

На рис.2 приведены усредненные данные для двух штаммов ALE1000 и ALE1001 (по три повторности для каждого) и средние квадратические ошибки. Кривые выживания имели характерную симметричную форму (рис. 2, a) и совпадали с выживаемостью ранее упомянутых штаммов. Частоту возникновения внутрихромосомной рекомбинации в облученной культуре определяли, расставляя культуры клеток на селективную среду MM300-lys и инкубируя при температуре 30 °C в течение 5 суток. По данным литературы, частота спонтанной внутрихромосомной рекомбинации составляла 1,4 · 10⁻⁵ [5].

УФ-свет эффективно индуцировал гомологичную рекомбинацию: при Ψ = 100 Дж/м² частота рекомбинационных событий достигала 5 · 10⁻², а частота делекционных мутантов — 4 · 10⁻² (рис. 2, b). Для негомологичной рекомбинации при таком же значении флюенса энергии УФ-излучения частота делекционных мутантов находилась на уровне 5,5 · 10⁻⁵. Можно предположить, что эти типы репарации конкурируют за мишень, в данном случае за ДНР ДНК.

Из полученных результатов видно, что в культурах гаплоидных штаммов дрожжей в экспоненциальной фазе роста гомологичная рекомбинация между
Рис. 2. Кривые выживаемости (α) и частота рекомбинантов и делиционных мутантов (β) после УФ-облучения гаплоидных штаммов ALE1000 и ALE1001

пополняя идет с большей эффективностью, чем негомологичное воссоединение концов. Использованная в наших экспериментах культура представляет собой смешанную популяцию клеток в различных фазах клеточного цикла. Известно, что эффективность разных путей репаравции в них различается [10]. В связи с этим осменинный интерес представляет в дальнейшем изучение эффективности индукции делений и функционирования различных путей репаравции в культурах клеток дрожжей, синхронизированных в различных стадиях клеточного цикла. Эти вопросы являются предметом наших дальнейших исследований.

ЛИТЕРАТУРА


Получено 2 июля 2008 г.