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3D Finite Elements with Harmonic Basis Functions for Approximations of High Order

As is known, most wide-spread ˇnite elements are deˇned as a cell with basis functions.
In the present paper for such cells as tetrahedron, cube, rectangular prism, etc., the methods of
production of harmonic basis functions with approximation of high order have been developed.
In particular, the recursion relations for calculation of the basis functions and the algorithm of
their production are presented. The conditions on transformations of coordinates keeping the
harmonicity property of the basis functions are also considered. The distinctive peculiarities
of obtained ˇnite elements are absence of inner nodes and possibility of adaptive condensation
of nodes on a cell boundary. For tetrahedrons and rectangular prisms the constructed basis
functions exactly approximate the harmonic polynomials of the second, third, fourth and
ˇfth orders.

The proposed ˇnite elements may be used for problems of interpolation and integration
of harmonic functions and also for solving the boundary value problems with Laplace and
Poisson equations in scalar and vector cases by means of projective numerical methods. The
examples of hp-interpolation of dipole magnetic ˇelds with high accuracy are given. The
approximations obtained as a result of the interpolation satisfy the vector Laplacian with
computer accuracy. In order to construct the approximations a smaller number of nodes is
required in comparison with the usual Lagrange ˇnite elements.

The investigation has been performed at the Laboratory of Information Technologies,
JINR.
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INTRODUCTION

It is known that ˇnite elements may be used for interpolation and integration
of functions [1Ä5] and also for solving the boundary value problems by projective
grid methods [4]. In particular, for construction of approximate solutions of the
two-dimensional boundary value problems, in [6Ä8] it was suggested to apply
harmonic functions. Mention the paper [9], in which approximate solutions of
the two-dimensional boundary value problems were also constructed in the form
of special harmonic functions. At present, spherical and radial harmonic basis
functions are used in applied geophysics, medicine, computer graphics, physics
of electronic signals, etc., but the accuracy of these functions is not high.

In the present paper the ˇnite-element harmonic basis functions are proposed
for construction of approximations of high accuracy in the three-dimensional case.
Their peculiarities are absence of inner nodes in a cell and possibility of adaptive
condensation of nodes on the cell boundary. The harmonic basis functions have
been constructed for tetrahedrons and rectangular prisms with 5 and 6 faces and
they exactly approximate the harmonic polynomials of 2, 3, 4 and 5 orders.
The algorithm of production of the basis functions, the recursion relations for
their calculations are presented and on numerical examples the comparison of
convergence rate for the constructed interpolations and the standard Lagrange
ones is also given. The example of using the hp-interpolation of high accuracy
for a 3D dipole magnetic ˇeld with developed ˇnite elements illustrates their
efˇciency in comparison with the standard Lagrange elements.

A ˇnite element in Rn (n = 2, 3) can be deˇned [5, 10] as a triple (ω, P, Φ),
where ω ∈ Rn is a closed subset with the Lipschitzian boundary ∂ω and with
a nonempty set ω̃ of inner points (i.e., a cell, often named as ˇnite element);
P is the m-dimensional space of functions deˇned on ω (usually this is the
space of polynomials); Φ is the set ω of linearly independent linear functionals
Fi : P → R, i = 1, . . . , m. In the most wide-spread ˇnite elements Fi(v)
is the value of a function v in the node xi ∈ ω. If for the set of functions
{Nj}j=1,...,m ∈ P for every j the system

Fi(Nj) = δij , i = 1, . . . , m (1)

is solvable, then any function v ∈ P can be represented in the form

v(x) =
m∑

i=1

Fi(v)Ni(x). (2)
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In this case Ni are called basis functions. The construction of the functions is
connected with construction of interpolational polynomials [3, 10Ä13] or, in more
general case, with using the method of undeˇned coefˇcients [1]. In particular, for
consctuction of the interpolational polynomial the set of nodes {xi}i=1,...,m ∈ ω
and the set of linearly independent functions {fi}i=1,...,m must be given, by
which the basis functions are deˇned

Nj =
m∑

i=1

b
(j)
i fi, j = 1, . . . , m. (3)

Here the coefˇcients b
(j)
i are found from the system (1) for every j. Further,

the approximate value is deˇned by formula (2). Note that usually the polynomi-
als, which are the cofactors for partial derivatives in the Taylor series expansion
of a function under approximation, are used as the functions fi and have the form

fi(x) = xk1,i
1 xk2,i

2 xk3,i
3 , k1,i + k2,i + k3,i � 0.

In view of the fact that the Lagrange interpolational polynomials consist of func-
tions in the same form, the basis functions deˇned in (3) by fi are said to be the
Lagrange functions. An examples of the Lagrange basis functions are given in
[5, 10, 12, 13]. The general theorem about solvability of the system (1) for a set
of functions {fi}i=1,...,m and for a set of nodes {xi}i=1,...,m ∈ ω is presented
in [3].

Because the Taylor series for the functions, satisfying a homogeneous lin-
ear differential equation, can have a special form, then it is natural to take into
account this peculiarity when forming the approximation to a such function. In
particular, for the construction of ˇnite-element nodal basis functions of high
order approximation, satisfying the equation, the following approach has been de-
veloped. Suppose that the analytical solution of the ˇrst boundary value problem
is known {

Λ(u) = 0, x ∈ ω̃;
u = g, x ∈ ∂ω

for a linear differential operator Λ in a special region ω̃. At the nontrivial
boundary condition, as a rule, it has the form

u(x) =
∞∑

i=1

Ai(g)fi(x),

where Ai(g) denotes coefˇcients and fi are functions, for which

Λ(fi) = 0, x ∈ ω̃.
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The functions fi(i � 1) are linearly independent, therefore, if the stable to round-
off errors effective formulas for their calculations are known, then one can use
the functions for construction of ˇnite-element basis functions.

Usually basis functions are constructed for ®standard¯ cells, such as
n-dimensional cube [−1, 1]n, simplex with unit edges in [0, 1]n, etc. Further,
in order to get basis functions for a real cell, the transformation of the ®standard¯
coordinate system to the real one is used. It is natural to apply the transforma-
tions, which do not make worse the accuracy of approximation. Some theorems
about this subject are regarded in [5, 10].

Thus, using the different known sets of linearly independent functions for
unknown approximation and the methods for construction of interpolational poly-
nomials, in speciˇc cases one can form the different ˇnite elements ensuring more
fast convergence to the exact value than usual Lagrange interpolation.

1. GENERAL PROPERTIES OF FINITE ELEMENTS
WITH HARMONIC BASIS FUNCTIONS

For more detailed description we shall characterize the harmonic ˇnite ele-
ments by a cell ω having the same properties as in the case of Lagrange elements,
by a set of nodes {xi}i=1,2,...,m ∈ ω, by a set Ph = {fi}i=1,...,m for construction

of basis functions, by an algorithm of obtaining the coefˇcients b
(j)
i in equality (3)

and by maximal degree of the harmonic polynomial, on which the basis functions
are exact. As a cell for proposing ˇnite elements it is natural to use the same
cells as for usual Lagrange elements. In view of the fact that harmonic functions
have maximal and minimal values on the boundary of domain, for harmonic ˇnite
elements it should be used only nodes of the boundary. The maximal degree of
harmonic polynomial, on which the basis functions are exact, is deˇned by the
algorithm of obtaining the coefˇcients. Therefore, the main questions of new
elements construction are to choose the set Ph and the algorithm of ˇnding the

coefˇcients b
(j)
i .

Before turning to choice of the set Ph for standard cells, it should be men-
tioned the peculiarity of transformation of ®standard¯ coordinate system to a real
one. The transformations must keep their harmonicity. Let us give sufˇcient
conditions. Deˇne

xk = xk(ξ1, ξ2, ξ3), k = 1, 2, 3,

then for the function q = q(x1(ξ), x2(ξ), x3(ξ)) we get

∂q

∂ξi
=

3∑
k=1

∂q

∂xk

∂xk

∂ξi
,

∂2q

∂ξ2
i

=
3∑

k=1

(
∂q

∂xk

∂2xk

∂ξ2
i

+
∂xk

∂ξi

3∑
j=1

∂2q

∂xj∂xk

∂xj

∂ξi

)
,

i = 1, 2, 3.
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Therefore,

Δξq =
3∑

k=1

(
∂q

∂xk

3∑
i=1

∂2xk

∂ξ2
i

+
3∑

j=1

∂2q

∂xj∂xk

3∑
i=1

∂xk

∂ξi

∂xj

∂ξi

)
.

From this the sufˇcient conditions for realization of Δξq = 0 are the following:
1) Δξxk = 0, k = 1, 2, 3;

2)
3∑

i=1

(∂xk/∂ξi)2 =
3∑

i=1

(∂xj/∂ξi)2, k �= j, k, j = 1, 2, 3;

3)
3∑

i=1

(∂xk/∂ξi)(∂xj/∂ξi) =
3∑

i=1

(∂xi/∂ξi)(∂xl/∂ξi), k �= j, i �= l, k, j, i, l =

1, 2, 3.
The similarity transformation satisˇes all these conditions⎛⎝ x1

x2

x3

⎞⎠ = c · Θ(α, β, γ)

⎛⎝ ξ1 − y1

ξ2 − y2

ξ3 − y3

⎞⎠ ,

where c = const, c �= 0, y = (y1, y2, y3) is the center of cell, Θ(α, β, γ) = Θ1(α)
Θ2(β) Θ3(γ) is the matrix describing the rotation. Here

Θ1(α) =

⎛⎝ cosα − sinα 0
sin α cosα 0

0 0 1

⎞⎠ , Θ2(β) =

⎛⎝ cosβ 0 sin β
0 1 0

− sinβ 0 cosβ

⎞⎠ ,

Θ3(γ) =

⎛⎝ 1 0 0
0 cos γ − sinγ
0 sinγ cos γ

⎞⎠ ,

α, β, γ are the Euler angles [14]. Precisely this transformation will be used
later on.

The set of functions Ph for standard cells on plane or in space can be obtained
using the representation of the Dirichlet solution in the same special regions as
rectangle, circle, parallelepiped, cylinder or sphere. For simplicity, consider the
cases of square and circle. According to [15], the solution of the Dirichlet problem
in the square [−1, 1]× [−1, 1] has the following form:

u(x)=
4∑

i=1

uiN
(0)
i (x)+

4∑
k=1

∞∑
n=1

ũ(k)
n

sh(πn(1 + xm,kxm)/2)
shπn

sin(πn(1+x3−m)/2),

(4)
for x ∈ ω, where

N
(0)
i (x) = (1 + x1,ix1)(1 + x2,ix2)/4, ũ(k)

n =

1∫
−1

ũ(k) sin(πn(1 + xm)/2)dxm,
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here m = 1, when k = 1, 3 and m = 2, when k = 2, 4. We denoted the

function u −
4∑

i=1

uiN
(0)
i deˇned on side of the square with number k by ũ(k).

The numbering of nodes and sides is shown in Fig. 1. Formula (4) can be written
in the form:

u(x) =
4∑

i=1

Aifi(x)+
∞∑

n=1

(A4n+1f4n+1(x)+A4n+2f4n+2(x)+A4n+3f4n+3(x)+

+ A4n+4f4n+4(x)), (5)

where Ai are coefˇcients and the harmonic functions fi are elements of the
following sequence:

1; x1; x2; x1x2; sin(kπ(1 + x1)/2)sh(kπ(1 + x2)/2);

sin(kπ(1 + x1)/2)sh(kπ(1 − x2)/2); sh(kπ(1 + x1)/2) sin(kπ(1 + x2)/2);

sh(kπ(1 − x1)/2) sin(kπ(1 + x2)/2); k = 1, 2, . . .

One more set of linearly independent harmonic functions can be constructed
from the representation of the Dirichlet problem inside a circle of radius a. In
accordance with [15] in polar coordinate system x = (r, ϕ) the solution of the
problem has the form

u(x) = C1f1 + C2f2 + C3f3 +
∞∑

k=2

(C2kf2k + C2k+1f2k+1), (6)

where

f1 = 1/2, f2k = (r/a)k cos((k + 1)ϕ), f2k+1 = (r/a)k sin((k + 1)ϕ),

C2k = (1/π)

2π∫
0

u(ϕ) cos((k+1)ϕ)dϕ, C2k+1 = (1/π)

2π∫
0

u(ϕ) sin((k+1)ϕ)dϕ.

Taking into account that x1 = r cosϕ, x2 = r sin ϕ and using the formulas
of representation for trigonometrical functions for sum of angles, we get the
following recursion relations for calculation of functions f2k, f2k+1:

f2k = f2k−2(x1/a) − f2k−1(x2/a),
f2k+1 = f2k−2(x2/a) + f2k−1(x1/a), k = 2, 3, . . . , (7)

where f1 = 1, f2 = x1/a, f3 = x2/a. Notice that for calculation of a harmonic
function by means of formula (5), the recursion relations can be also applied.
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Using the linearly independent harmonic functions from (5) and (6), the
ˇnite-element basis functions can be consructed by different methods. For ex-
ample, in the case of square, presupposing that a function on the cell boundary
is approximated by interpolational Lagrange polynomials of deˇned degree, from
formula (4) we get the corresponding set of harmonic basis functions [17]. One
can get basis functions by ˇnding the coefˇcients in (3) as a solution of the system
(1) or by constructing the mean square approximations to approximations of a
function by interpolational Lagrange polynomials on the cell boundary. In Figs. 2,
3 the sets of nodes for usual Lagrange elements and for harmonic elements of
different approximation orders are shown.

Fig. 1. Numbering of nodes
and sides of the standard
square

Fig. 2. The nodes of the
Lagrange elements: • Å
linear element, •, ◦ Å 9-
noded element, •, ◦, ∗ Å
25-noded element

Fig. 3. The nodes of the
harmonic elements: • Å
linear element, •, ◦ Å 8-
noded element, •, ◦, ∗ Å
16-noded element

Let us regard an example of solving the problem of interpolation with high
accuracy for a harmonic function using different sets of basis functions. No-
tice that the problems of interpolation are important for estimating the solutions
accuracy of the boundary value problems by means of projective grid methods
too, because according to the lemma Cea [10] and to the main theorems about
convergence of projective grid methods [4], the estimate of convergence of ap-
proximate solutions of the boundary value problems is proportional, as a rule, to
the convergence rate of interpolations of the exact solutions by means of basis
functions.

For example, we shall interpolate the following function:

u∗(x) = BS
1 (x) + BS

2 (x), �BS(x) =
1
4π

∫
ΩS

�J × grad
1

|x − y|dΩy.

Here |x − y| is the distance between points x and y. When calculating we
presupposed that the region ΩS has inˇnity extension along 0x3 axis and in the
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plane x3 = 0 it has the section D in the form

D = {53. � sign(x1)x1 � 100., 60. � sign(x2)x2 � 85.}.

The vector �J = sign(x1)π(116.348)�i3, x ∈ D.
Note that usually for accelerators and spectrometers symmetric ˇelds of dipole

magnets without iron yoke are calculated by the above-mentioned formula for �BS .
For the considering case analytical formulas for calculations of �BS is contained,
for example, in [16]. In Fig. 4 the partition of the interpolation region by 4
elements ω1, . . . , ω4 is shown. The behavior of u∗ in the region is given in
Fig. 5.

Fig. 4. The partition of interpolation region by elements and the symmetrical part of the
region D

In Table 1 the results are presented characterizing the convergence of approx-
imations obtained by different methods for the cell ω2 with strong variation of
the function and for the prolonged cell ω4 with smooth behavior of the function.
Here the following notations are used:

σ
(k)
i = max

x∈ω̂i

|u(k) − u∗|/u0, k = 1, 2, 3, i = 2, 4,

where u0 = 0.2163557E + 04, ω̂i is the grid of nodes obtained by dividing the
cell ωi along every direction of the Cartesian coordinate system into 10 parts.
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Fig. 5. The behavior of the function under interpolation

Table 1

Element ω2 = {50. � x1 � 100.; 0. � x2 � 50.}
Number of interpolation 8 16 24 32 40

nodes

σ
(1)
2 0.5766E-01 0.1338E-01 0.9945E-03 0.1056E-03 0.3832E-05

σ
(3)
2 0.8761E-01 0.2176E-01 0.6797E-02 0.1641E-02 0.1841E-04

Number of interpolation 9 16 25 36 49
nodes

σ
(2)
2 0.7912E-01 0.2082E-01 0.1372E-01 0.4066E-02 0.8893E-03

Number of interpolation 9 25 49
nodes

σ
(4)
2 0.7912E-01 0.2432E-01 0.9918E-02

Element ω4 = {150. � x1 � 370.; 0. � x2 � 50.}
Number of interpolation 8 16 24 32 40

nodes

σ
(1)
4 0.3147E-01 0.6029E-02 0.3925E-03 0.4002E-04 0.3406E-06

σ
(3)
4 0.4029E-01 0.3168E-01 0.3116E-01 0.3108E-01 0.3105E-01

Number of interpolation 9 16 25 36 49
nodes

σ
(2)
4 0.3605E-01 0.1743E-01 0.7247E-02 0.2549E-02 0.7626E-03

Number of interpolation 9 25 49
nodes

σ
(4)
4 0.3605E-01 0.1521E-01 0.7475E-02
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The value u(1) is calculated for every cell with the basis functions constructed
by formulas (3) and (7). When calculating u(2), the Lagrange interpolation of
approximation orders 2, 3, 4, 5, 6 was used. For u(3) the basis functions were
calculated by formula (3) and fi was the same as in representation (5). At last,
the result of 9-point Lagrange interpolation (the order of approximation equals 2)
is denoted as u(4).

In Fig. 6 the dependence of convergence of approximations on general number
of nodes N is shown in logarithmic scale. The approximations have been con-
structed by different methods. Here σ(k) = max

i
σk

i , k = 1, 2, 3, i = 1, 2, . . . , 4.
When the constructing 9-point nodal Lagrange interpolation, for dividing every
element ω1, . . . , ω4 the sequence 1 × 1, 2 × 2 and 3 × 3 was used.

As it follows from Table 1 and Fig. 6, most fast convergence is observed
when using the basis functions formed by means of the set of functions (7). The
set of functions (5) also gives the better result of interpolation than the Lagrange

Fig. 6. The convergence of interpolations (from the left to the right and from top to
bottom): ∗ Å 9-noded Lagrange; ◦ Å 9, 17, 25, 36, 49-noded Lagrange; • Å 8, 16, 24,
32, 40-noded harmonic

one, approximately at the same number of nodes, with exception of the cell in
the form of prolonged rectangle. Probably in this case a special condensation of
nodes is required.

Other examples of using harmonic basis functions for interpolation in R2, in
particular, for triangular elements are presented in [17].

9



Let us notice one more distinctive peculiarity of harmonic basis functions
construction in the proposed approach. The property can essencially simplify the
formation of adaptive interpolations and the solving the boundary value problems
with deˇned accuracy by means of them, because it does not require creation
of a special structure of data [18Ä20]. The question is possibility of adaptive
condensation of nodes on boundaries of cells. Present the example of adaptive
interpolation on an ®irregular¯ element ω0 shown in Fig. 7. As a function under
interpolation the function u∗ was taken. For elements with chosen 8, 16, 24 and

Fig. 7. ®Irregular¯ quadrangular element, coordinates of angular points and number-
ing of sides

32 nodes the values of relative errors max
x∈ω̂0

|u(1) − u∗|/u0, where ω̂0 is the grid

of nodes obtained by dividing the cell into 1600 similar cells, equal 0.1792E-02,
0.1265E-04, 0.1453E-06, 0.9400E-08, respectively. In addition, according to the
numbering of sides shown in Fig. 7, on every side the following number of nodes
is uniformly distributed: 2,0,0,2; 5,1,1,5; 9,1,2,8; 11,2,3,12 Å for every element,
respectively.

Let us enumerate general properties of the proposed ˇnite elements with
harmonic basis functions as a result of the section:

1) they approximate harmonic polynomials of corresponding order exactly;
2) there is a general form of coordinate transformation, keeping the har-

monicity property;
3) basis functions are formed by linearly independent sets of harmonic func-

tions, by means of which the solutions of the Dirichlet problems are represented
in special regions;

4) there are recursion relations for construction of basis functions;
5) they ensure the absence of inner nodes and the possibility of adaptive

choice of nodes on the boundary of a cell.
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2. FINITE ELEMENTS IN R3

Let us regard two algorithms of obtaining the harmonic basis functions for
cells in R3. Both of them are based on using the representation of solution of
the Dirichlet problem in a sphere of radius a. According to [15], in the spherical
coordinate system x = (r, θ, ϕ) the solution of the problem has the form

u(x) =
∞∑

n=0

(
r

a
)n

n∑
k=0

(Ank cos(kϕ) + Bnk sin(kϕ))P k
n (cos θ),

where P k
n (cos θ) are the Legendre joined functions of argument cos θ and

A00 =
1
4π

2π∫
0

π∫
0

u(θ, ϕ) sin θdθdϕ,

also for n > 0

Ank =
(2n + 1)(n − k)!

2π(n + k)!

2π∫
0

π∫
0

u(θ, ϕ)P k
n (cosθ) cos(kϕ) sin θdθdϕ,

Bnk =
(2n + 1)(n − k)!

2π(n + k)!

2π∫
0

π∫
0

u(θ, ϕ)P k
n (cosθ) sin(kϕ) sin θdθdϕ.

As fj we choose the following functions for construction of harmonic basis
functions:

an+1,k+1 =
(2n + 1)(n − k)!

(n + k)!
(
r

a
)n cos(kϕ)P k

n (cosθ), (8)

bn+1,k+1 =
(2n + 1)(n − k)!

(n + k)!
(
r

a
)n sin(kϕ)P k

n (cosθ).

First, we shall prove the recursion relations for calculation of an,k and bn,k

and further give the algorithm of production of basis functions and the results
obtained by the algorithm for cells in the form of tetrahedrons, rectangular prisms
of 5 and 6 faces.

Lemma
For calculation of function an,k and bn,k the following recursion formulas

are valid:

an+1,1 =
2n + 1

n

(
x̃3an,1−r̃2 n − 1

2n − 3
an−1,1

)
, n = 1, 2, . . . , a1,1 = 1, a2,1 = 3x̃3;

(9)
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an+1,n+1 =
2n + 1

(2n − 1)2n
(x̃1an,n − x̃2bn,n), n = 1, 2, . . . , a1,1 = 1, b1,1 = 0.;

(10)

bn+1,n+1 =
2n + 1

(2n − 1)2n
(x̃2an,n + x̃1bn,n), n = 1, 2, . . . , a1,1 = 1, b1,1 = 0.;

(11)

an+1,k+1 =
2n + 1
n + k

(
1

2n − 1
(x̃1an,k−x̃2bn,k)+

n − k

2n− 1
x̃3an,k+1

)
, n = 1, 2, . . . ,

(12)

bn+1,k+1 =
2n + 1
n + k

(
1

2n − 1
(x̃2an,k +x̃1bn,k)+

n − k

2n − 1
x̃3bn,k+1

)
, n = 1, 2, . . . ,

(13)
where x̃i = xi/a, i = 1, 2, 3 and r̃ = r/a.
Proof. Let us prove formula (9) using the recursion formulas [14] for the

Legendre polynomials Pn = P 0
n . From deˇnition (8) we have

an+1,1 = (2n+1)r̃nPn(cos θ) = (2n+1)r̃n(
2n − 1

n
cos θPn−1−

n − 1
n

Pn−2) =

=
2n + 1

n
(r̃ cos θ(r̃n−1(2n − 1)Pn−1) − (r̃2 n − 1

2n − 3
r̃n−2(2n − 3)Pn−2)).

Therefore, (9) holds. For the proof of formula (10) we shall use the explicit form
of Pn

n [14] and usual trigonometrical formulas. We have

an+1,n+1 =
2n + 1
(2n)!

r̃n cos(nϕ)Pn
n =

2n + 1
(2n)!

r̃n(cos((n − 1)ϕ) cosϕ−

− sin((n − 1)ϕ) sin ϕ)
n∏

l=1

(2l − 1) sinn θ.

From this formula (10) follows. Formula (11) can be proved analogously. For
the proof of (12) and (13) we reduce the following recursion formula for the
Legendre joined functions:

P k
n (cos θ) = (n + k − 1) sin θP k−1

n−1 + cos θP k
n−1. (14)

Let us use the two known recursion formulas from [14]

Pm
j (t) − Pm

j−1(t) − (2j + 1)(1 − t2)1/2Pm−1
j (t) = 0,

(2j + 1)tPm
j (t) − (j − m + 1)Pm

j+1(t) − (j + m)Pm
j−1(t) = 0,

Here t = cos θ, |t| < 1 and 0 � m � j − 1.
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Multiplying the ˇrst formula on j + m and subtracting the obtained result
from the second one, after reduction of similar terms we get

Pm
j+1(t) = (j + m)(1 − t2)1/2Pm−1

j (t) + tPm
j (t).

From this the representation (14) follows at j + 1 = n and m = k.
Let us prove formula (12). We have

an+1,k+1 =
(2n + 1)(n − k)!

(n + k)!
r̃n cos(kϕ)P k

n =
(2n + 1)(n − k)!

(n + k)!
r̃n(cos((k−1)ϕ)

cosϕ − sin((k − 1)ϕ) sin ϕ)((n + k − 1) sin θP k−1
n−1 + cos θP k

n−1) =

=
2n + 1

(2n − 1)(n + k)
r̃ cosϕ sin θ(

(2n − 1)(n − k)!
(n + k − 2)!

r̃n−1 cos((k − 1)ϕ)P k−1
n−1 )−

− 2n + 1
(2n − 1)(n + k)

r̃ sin ϕ sin θ(
(2n − 1)(n − k)!

(n + k − 2)!
r̃n−1 sin((k − 1)ϕ)P k−1

n−1 )+

+
(2n + 1)(n − k)
(2n − 1)(n + k)

r̃ cos θ(
(2n − 1)(n − k − 1)!

(n + k − 1)!
r̃n−1 cos(kϕ)P k

n−1).

Therefore, (12) holds. Formula (13) is proved analogously.
Go to the algorithm of production of basis functions. For its formulation we

introduce the functions gj , j � 1, which are elements of the following sequence:

1; a2,1; a2,2; b2,2; a3,1; a3,2; b3,2; a3,3; b3,3; a4,1; a4,2; b4,2; a4,3; b4,3; a4,4; b4,4; . . .

As initial values of nodes and functions fj in the algorithm the known
linear ˇnite elements are used [10, 12, 21]. The standard cells and nodes of
the elements are shown in Figs. 8Ä10. For construction of basis functions the
following sets are used: for the standard simplex Å {g1, g2, g3, g4}; for the
standard right ˇve-faced prism - {g1, g2, g3, g4, g6, g7}; for the standard cube Å
{g1, g2, g3, g4, g6, g7, g9, g14}.

Let us formulate the algorithm of production of a ˇnite element with n nodes
and n basis functions.

1) Let a linear ˇnite element is deˇned by a standard cell with n1 nodes and
functions f1, f2, . . . , fn1, between which functions g1, g2, . . . , gn2, n2 � n1 have
sequential numbering. Set k = n1 + 1 and j = n2 + 1.

2) Add the node with number k to the existing set of nodes.
3) Add the function gj to the existing set of functions. Obviously that it must

not be contained in the existing set.
4) Form system (1) and check its solvability for every j = 1, 2, . . . , k.
5) If the system is solvable and k = n, then the set of nodes and the set of

functions are formed, fk = gj and the problem of production has been solved. If
k < n, then we set fk = gj , k = k + 1,j = j + 1 and go to step 2.
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6) If the system is not solvable, then we set j = j + 1 and go to step 3 at
j + 1 � (M)2, where M is enough great deˇned number. In the case when the
last inequality is not valid, we conclude that it is impossible to construct an inter-
polational polynomial at the given sets of nodes and functions g1, g2, . . . , g(M)2 .

The algorithm was used for production of harmonic basis functions for the
cells shown in Figs. 8Ä10. In Table 2 the description of obtained ˇnite elements
is given. For check of the basis function accuracy on harmonic polynimials of
different degrees, the algorithm of their construction from [22] was used. The
total number of linearly independent harmonic polynomials of degree, not higher
than nh, equals (nh + 1)2. The Table contains only such basis functions that
have enough nice approximating properties even at relatively large dimensions
of cells. Most full series of ˇnite elements with harmonic basis functions was
obtained for cells in the form of simplex. In order to construct elements of
higher approximation order, recursion formulas, more stable to round-off error
than (9)Ä(13), are required.

Fig. 8. The standard simplex:
• Å nodes of linear element,
•, ◦ Å nodes of 10-noded ele-
ment, •, ◦, ∗ Å nodes of 34-noded
element

Fig. 9. Five-faced right prism: • Å
nodes of linear element, •, ◦ Å nodes
of 18-noded element, •, ◦, ∗ Å nodes of
66-noded element

Let us regard one more way of obtaining the harmonic functions based
on construction of mean square approximations for the Lagrange basis functions
deˇned on the boundary of cell. We interpolate a function f , that is approximated
with high accuracy on the cell boundary by means of the Lagrange basis functions
Lj , j = 1, 2, . . . , m:

f(x) =
m∑

j=1

Fj(f)Lj(x), x ∈ ∂ω.
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Fig. 10. Parallelepiped: • Å nodes of linear element, •, ◦ Å nodes of 26-noded element,
•, ◦, ∗ Å nodes of 98-noded element

Table 2

Standard simplex = {xi � 0, i = 1, 2, 3; x1 + x2 + x3 � 1}
Number Exact for
of nodes harmonic Set Ph

polynomial of order
10 2 g1, . . . , g10

20 3 g1, . . . , g19, g21

34 4 g1, . . . , g33, g37

52 5 g1, . . . , g47, g49, . . . , g52, g54

Five-faced right prism = {x1, x2 � 0; x1 + x2 � 1;−1 � x3 � 1}
Number Exact for
of nodes harmonic Set Ph

polynomial of order
18 2 g1, . . . , g15, g17, g20, g21

38 4 g1, . . . , g34, g38, g39, g42, g43

Standard cube = [−1, 1]3

Number Exact for
of nodes harmonic Set Ph

polynomial of order
26 3 g1, . . . , g21, g24, g26, . . . , g28, g37

56 5 g1, . . . , g39, g41, . . . , g43, g45, . . . , g47,
g49, . . . , g52, g54, g58, g62, g66, g67, g69, g86

98 7 g1, . . . , g69, g71, . . . , g74, g76, . . . g80,
g82, . . . , g84, g86, . . . g88, g93, g95, . . . , g97,
g101, . . . , g105, g116, g122, . . . , g124, g145
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Construct the approximation for every Lj in the form

Lj ≈
m∑

i=1

b
(j)
i gi.

We ˇnd the coefˇcients b
(j)
i , 1 � i � m from algebraic system of equations

arising at differentiation of the functional

Φj = (1/2)
∫
∂ω

(Lj −
m∑

i=1

b
(j)
i gi)2dS.

We have

∂Φj

∂b
(j)
k

=
m∑

i=1

b
(j)
i

∫
∂ω

gkgidS −
∫
∂ω

gkLjdS = 0, k = 1, 2, . . .m. (15)

Table 3

Standard simplex = {xi � 0, i = 1, 2, 3; x1 + x2 + x3 � 1}
Number Exact for
of nodes harmonic Set Ph

polynomial of order
10 2 g1, . . . , g10

20 3 g1, . . . , g20

34 4 g1, . . . , g34

52 5 g1, . . . , g52

Five-faced right prism = {x1, x2 � 0; x1 + x2 � 1;−1 � x3 � 1}
Number Exact for
of nodes harmonic Set Ph

polynomial of order
18 2 g1, . . . , g18

38 4 g1, . . . , g38

Standard cube = [−1, 1]3

Number Exact for
of nodes harmonic Set Ph

polynomial of order
26 2 g1, . . . , g26

56 3 g1, . . . , g56

98 4 g1, . . . , g98
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For calculation of integrals of the system the iterated quadrature formulas
with preassigned nodes from [11, 13] were used. Notice the peculiarity of using
such formulas at integration over standard simplex S1 ∈ R2. Let T be a triangle
in R3 and v be an enough smooth function, then we have∫

T

v(x)dS =
∫
S1

v(ξ)|�r1 × �r2|dξ = (1/2)
∫

[0,1]2

v̂(ξ)dξ =

=
∑

0�ξ1,i+ξ2,i<1

piv̂(ξi) + (1/2)
∑

ξ1,i+ξ2,i=1

piv̂(ξi).

Here �rj =
3∑

k=1

�ik(∂xk/∂ξj), j = 1, 2 [14, 23] and v̂ is the symmetric extension on

the square [0, 1]2 of the function v(ξ)|�r1×�r2| relatively to the diagonal ξ1+ξ2 = 1,
pi are weights and ξi are nodes of the quadrature formula for [0, 1]2.

In the algorithm of production of basis functions the step 3 must be changed.
Now instead of forming and testing the system (1), it is necessary to form and
solve the systems (15) for j = 1, 2, . . . , m. Further, the approximate value to
the function is used in the form (2). It is obvious that an accuracy of such
approximations depends on the accuracy of approximation of the function on
the cell boundary by means of the Lagrange basis functions {Lj}j=1,2,...,m. In
Table 3 the results obtained by the algorithm are presented.

3. AN EXAMPLE OF THE PROBLEM OF 3D DIPOLE MAGNETIC
FIELD INTERPOLATION

It is known that for magnetic ˇeld �B in the working region of a dipole
magnet the equations div �B = 0 and rot �B = 0 hold, therefore

∇2 �B = grad(div �B) − rot(rot �B) = 0,

i.e, the ˇeld components are harmonic functions.
In physical experiments with magnetic spectrometers (for example, [24]) for

reconstruction of tracks of charged particles it is necessary to restore momenta of
the particles using the knowledge of magnetic ˇeld in every point of the magnet
working region. If it is a parallelepiped, then the measurements on a rectangular
grid are carried out and further the interpolational formulas are used. In this
case the problem of interpolation can be examined as a particular boundary value
problem with special boundary conditions [25] and with conditions inside the
region, when the function is deˇned on a grid of measurements and must satisfy
the differential operator.
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There are other approaches to solving the interpolation problem for dipole
magnetic ˇelds. For example, in the paper [26] the particular attention is given
to continuity of ˇeld gradient in the points of common boundary between two
adjoining ˇnite elements. Notice that in this case the difference of gradients,
calculated in adjoining ˇnite elements in the common boundary points, is used as
a criterion of estimate of calculations. It was applied in [27] for linear elements.
Evidently, that if a region of interpolation Ω is devided by cells and in the every
cell a function is the polynomial of order p, then such a function belongs to the
space of functions, for which the integral of square of all partial derivatives of
order p over the region Ω is limited, i.e., the function belongs to the Sobolev
space W p

2 (Ω). In according to the general embedding theorems for the spaces
[28, 10, 7] the partial derivatives of ˇrst order of the functions are continuous on
boundaries of adjoining elements at p � 3. In the example, given below, the
partial derivatives calculated in adjoining elements in the common points of the
boundary, coincide not less than in two signes already at p = 2 and not less than
in four signes at p = 4. Some characteristics, making possible to estimate results
of the Lagrange interpolation and to conclude about the accuracy of measurments
of magnetic ˇeld for cells in the form of parallelepiped, are presented in [29].
More general characteristics were used in [30] for calculated ˇeld of a dipole
magnet including the iron yoke.

Let us give an example of using the new harmonic ˇnite elements for
hp-interpolation of two coaxial coils magnetic ˇeld (the paper [31] and the book
[13] can serve as a good introduction in the main ideas of the hp-ˇnite element
method). In Fig. 11 the coils, forming the magnetic ˇeld, are shown. And the
interpolation region, devided by cells, is given in Fig. 12.

The partition of interpolation region by cells and coaxial coils (the view along
the direction of axis Ox3).

We interpolate a function in the form

u∗(x) = BS
1 (x) + BS

2 (x) + BS
3 (x), �BS(x) =

1
4π

∫
ΩS

�J × grad
1

|x − y|dΩy.

As a rule, |x − y| is the distance between points x and y. The region ΩS is
deˇned by the following set:

ΩS = {x = (r, ϕ, z) : 53. � r � 100.; 0 � ϕ � 2π; 60. � sign(x3)z � 85.},

and the vector �J(x) = π(116.348)�iϕ, x ∈ ΩS . The formulas of double analytical

integration for calculation of �BS in the considered case are contained in [16].
The behavior of the function at z = 50 is shown in Fig. 13.
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Fig. 11. The partition of interpolation re-
gion by cells and coaxial coils forming
the magnetic ˇeld (the section by plane
x1 = 0)

Fig. 12. The partition of interpolation re-
gion by cells and coaxial coils (the view
along the direction of axis Ox3)

Fig. 13. The behavior of the function under interpolation at z = 50

In Tables 4 and 5 the results are presented characterizing the convergence of
approximations obtained by different methods for cells with different diameters
and strong variation of the function. Here the following notations are used:

δ(k) = max
x∈ω̂

|u(k) − u∗|/u0, k = 1, 2, 3,
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Table 4

Tetrahedron = {xi � 0, i = 1, 2, 3; x1 + x2 + x3 � 25}
Number of nodes 10 20 35 56

δ(1) 0.8704E-03 0.1788E-03 0.3059E-04 0.2926E-05
Number of nodes 10 20 34 52

δ(2) 0.1026E-02 0.7903E-04 0.2683E-04 0.2100E-06
δ(3) 0.1026E-02 0.1193E-03 0.2870E-04 0.2692E-05

Tetrahedron = {xi � 0, i = 1, 2, 3; x1 + x2 + x3 � 50}
Number of nodes 10 20 35 56

δ(1) 0.2374E-01 0.4959E-02 0.2132E-02 0.3672E-03
Number of nodes 10 20 34 52

δ(2) 0.2629E-01 0.4855E-02 0.9584E-03 0.2320E-03

δ(3) 0.2305E-01 0.5537E-02 0.2004E-02 0.4154E-03
Tetrahedron = {x1, x2 � 50, x3 � 0, (x1 − 50) + (x2 − 50) + x3 � 50}
Number of nodes 10 20 35 56

δ(1) 0.3847E-01 0.1036E-01 0.2378E-02 0.7144E-03
Number of nodes 10 20 34 52

δ(2) 0.3616E-01 0.9045E-02 0.2056E-02 0.7314E-03

δ(3) 0.3909E-01 0.1051E-01 0.2095E-02 0.7892E-03

Table 5

Cube = [0, 25]3

Number of nodes 27 64 125

δ(1) 0.1113E-02 0.1221E-03 0.1830E-04
Number of nodes 26 56 98

δ(2) 0.1534E-03 0.2671E-05 0.3064E-06

δ(3) 0.9778E-03 0.1572E-03 0.1762E-04
Cube = [0, 50]3

Number of nodes 27 64 125

δ(1) 0.6275E-01 0.2996E-01 0.6936E-02
Number of nodes 26 56 98

δ(2) 0.5156E-01 0.4600E-01 0.2268E-01
δ(3) 0.6158E-01 0.2717E-01 0.7454E-02

Cube = {50 � x1 � 100, 50x2 � 100, 0x3 � 50}
Number of nodes 27 64 125

δ(1) 0.6336E-01 0.3938E-01 0.1921E-01
Number of nodes 26 56 98

δ(2) 0.1510E-00 0.6194E-01 0.4724E-01

δ(3) 0.9928E-01 0.3440E-01 0.1712E-01
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where u0 = 0.2909375E + 04, ω̂ is the grid of nodes obtained by dividing the
cell ω into 10 parts along every direction in the Cartesian coordinate system.
The value u(1) is calculated by means of the usual Lagrange interpolation with
orders of approximation 2, 3, 4 and, in addition, with order 5 for tetrahedrons.
For calculation of u(2) and u(3) the elements, similar to elements from Table 2
and Table 3, are used, respectively. As is obvious from Tables 4 and 5, the
convergence of approximations, which is observed in Table 1 and in Fig. 6, is
characterized for the regions with smooth behavior of the function.

For construction of interpolational function of high accuracy, the following
algorithm is used:

1) Calculation of detailed volume map of gradient of the function.
2) Dividing the interpolation region by cells, depending on the gradient

distribution (nodes of the partitions can be not conforming)
3) Using the p-interpolation on the chosen partition, i.e., the order of approx-

imation increases until the required accurary is reached.
For illustration of the algorithm the distribution of |grad(u∗)| at z = 50

is presented in Fig. 14. As is obvious from Fig. 15, the module of gradient is
maximal precisely on the plane. In Figs. 11, 12 the partitions by cells in the plane
x1 = 0 and in the plane z = 50 are given, respectively.

Fig. 14. The distribution of |grad(u∗)|
at z = 50

Fig. 15. The distribution of |grad(u∗)| at
x1 = x2 (ϕ = 45o)

In view of symmetry of the problem the 1/2 part of the grid is used for
interpolation. Figures 16, 17 show the result of convergence of different inter-
polations, depending on total nodes N , for cubes and tetrahedrons, respectively
(every cube is devided by 5 tetrahedrons).
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Fig. 16. The convergence of interpola-
tions for tetrahedrons (from the left to
the right, from top to bottom): ◦ Å
10, 20, 35, 56-noded Lagrange; • Å
10, 20, 34, 52-noded harmonic (the ˇrst
method), ∗ Å 10, 20, 34, 52-noded har-
monic (the second method)

Fig. 17. The convergence of interpola-
tions for hexahedrons (from the left to
the right, from top to bottom): ◦ Å 27,
64, 125-noded Lagrange; • Å 26, 56,
98-noded harmonic (the ˇrst method)

For tetrahedrons the best accuracy is reached when using as 42176 points and
56-noded Lagrange elements as 35116 points 52-noded harmonic elements. For
hexahedrons the convergence to the exact solution is better than for tetrahedrons,
and the best accuracy is reached on smaller number of points at using the harmonic
elements. The comparison of interpolations with the Lagrange and harmonic
hexahedrons shows that the best accuracy ≈ 0.1 · 10−4 is reached on 98-noded
harmonic elements at the total number of points 16358, that is lesser on 9531
points than for interpolation by 125-noded Lagrange elements.
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