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Numerical Solution of a Class of Boundary Value Problems Arising
in the Physics of Josephson Junctions

In this paper we propose a method of numerical solution of non-linear boundary
value problems for systems of ODEs given on the embedded intervals. The algorithm
is based on the continuous analog of Newton method coupled with spline-collocation
scheme of fourth order of accuracy.

Demonstrative examples of similar problems take place in physics of stacked Jo-
sephson junctions with different layers lengths. As a concrete example we consider
the problem of calculating the possible distributions of magnetic 	ux in a system of
two magnetically coupled long Josephson junctions. The in	uence of length ratio on
the main physical properties of basic bound states is investigated numerically. The
existence of bifurcations by change of the lengths of the layers for some couples of
solutions has been proved.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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1. PROBLEM STATEMENT

Non-linear systems of ordinary differential equations given on embedded
intervals occur in many physical problems and especially in the theory of stacked
Josephson junctions (JJ) [1Ä4].

We consider a model of two-layer JJ [5] with different layer lengths 2L
and 2l correspondingly, where L � l. We suppose that the short layer is situated
symmetrically to the long one. The coordinate origin is in the middle of the stack;
i.e., for the long (ˇrst) layer we have x ∈ [−L, L] and for the short (second) one
x ∈ [−l, l]. We denote by s ∈ (−1, 0] the coupling coefˇcient between the
layers [1].

In order to obtain the model equations for stacked JJ, we consider the full
energy functional F [ϕ] which can be represented as a sum

F = F1[ϕ1] + F2[ϕ2] + F12[ϕ]. (1.1)

Here ϕ(x) = [ϕ1(x), ϕ2(x)]T is the vector of magnetic 	uxes in the layers (the
superscript T means transposition), Fi[ϕi], i = 1, 2, are the partial energies of
the uncoupled layers (s = 0). The functional F12[ϕ] represents the coupling
energy between the layers. In the symmetric overlap case [5] the corresponding
expressions can be represented in the form

F1[ϕ1] =

L∫
−L

(
1
2

ϕ2
1,x + 1 − cosϕ1 − γϕ1

)
dx − heΔϕ1, (1.2a)

F2[ϕ2] =

l∫
−l

[
1
2

ϕ2
2,x + ρ (1 − cosϕ2) − γϕ2

]
dx − heΔϕ2, (1.2b)

F12[ϕ1, ϕ2] =
s

1 − s2

l∫
−l

[s

2
(
ϕ2

1,x + ϕ2
2,x

)
− ϕ1,xϕ2,x

]
dx+

+
s

1 + s
he [ϕ1(l) − ϕ1(−l) + Δϕ2] , (1.2c)
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where he Å the external magnetic ˇeld, γ Å the external current and vector
Γ = γ (1, 1)T . The full magnetic 	uxes across the layers are deˇned by

Δϕ1 = ϕ1(L) − ϕ1(−L), Δϕ2 = ϕ2(l) − ϕ2(−l). (1.3)

From the necessary extremum conditions [12] of the functional (1.1) we
obtain the following non-linear boundary value problem (BVP):

ϕ1,x(−L) = he , (1.4a)

−ϕ1,xx + sin ϕ1 − γ = 0, x ∈ (−L,−l) , (1.4b)

ϕ2,x(−l + 0) − sϕ1,x(−l + 0) = (1 − s)he , (1.4c)

−Aϕxx + Jz(ϕ) + Γ = 0 , x ∈ (−l, l) , (1.4d)

ϕ2,x(l − 0) − sϕ1,x(l − 0) = (1 − s)he , (1.4e)

−ϕ1,xx + sinϕ1 − γ = 0 , x ∈ (l, L) , (1.4f)

ϕ1,x(L) = he . (1.4g)

The square interaction matrix A depends only on coupling coefˇcient [3]:

A(s) =
1

1 − s2

(
1 −s
−s 1

)
.

We denote by Jz = (sin ϕ1, ρ sinϕ2)
T the Josephson currents vector. Physically,

the parameter ρ = L/l � 1 represents the amplitude of Josephson current in
the short layer. All the quantities are in dimensionless form (see, for exam-
ple, [6]).

Equations (1.4a) and (1.4g) are the corresponding boundary conditions for
ϕ1(x) at the boundaries x = ±L, and (1.4c) and (1.4e) are the boundary condi-
tions for ϕ2(x) at x = ±l. On the boundaries x = ±l the standard smoothing
conditions for ϕ1(x) are fulˇlled.

When L = l (ρ = 1) the traditional BVP [7] for two-layer JJ follows
from (1.4).

2. SOLUTION ALGORITHM

The solution of non-linear BVP (1.4) is based on the continuous analog of
Newton method [8]. At each iteration we solve the following linear BVP:
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w1,x(−L) = −ϕ1,x(−L) + he, (2.1a)

−w1,xx + cosϕ1w1 = ϕ1,xx − sinϕ1 + γ, (2.1b)

w2,x (−l + 0) − s w1,x (−l + 0) =
= −ϕ2,x (−l + 0) + sϕ1,x (−l − 0) + (1 − s)he, (2.1c)

−A(s)wxx + Q(x)w = A(s)ϕxx − Jz(ϕ) − Γ, (2.1d)

w2,x(l − 0) − s w1,x(l − 0) =
= −ϕ2,x(l − 0) + sϕ1,x(l − 0) + (1 − s)he, (2.1e)

−w1,xx + cosϕ1w1 = ϕ1,xx − sinϕ1 + γ, (2.1f)

w1,x(L) = −ϕ1,x(L) + he, (2.1g)

where 2-matrix Q(x) is deˇned by Q(x) = diag(cos ϕ1(x), ρ cos ϕ2(x)).
For numerical solution of the problem (2.1) formally we can extend smoothly

the ®short¯ function ϕ2(x) on the interval [−L, L] and then apply usual discretiza-
tion technique to this ®extended¯ BVP. But in this way there will be unduly null
in the matrix of the algebraic linear system which increases its dimension.

In order to solve the linear problem (2.1), in this paper the spline-collocation
scheme [9] is applied.

Let in interval [−L, L] an irregular grid be given

{xi, i = 1, 2, . . . , n, xi+1 = xi + hi, x1 = −L, xk = −l, xr = l, xn = L}

with n nodes and steps hi, 1 � k � r � n. Note that boundary points x = ±l
are included as nodes in the grid. The case k = 1 and r = n corresponds to usual
JJ with equal layers.

In every subinterval [xi, xi+1], the solution is searched as a cube Hermitian
spline [10]

S1(x) = Φ(t)ui + Ψ(t)hi mi + Φ̄(t)ui+1 + Ψ̄(t)hi mi+1, (2.2)

where t = (x − xi)/hi, t ∈ [0, 1] is local coordinate, {ui, mi} Å value of the
spline S1(x) and their derivative m(x) ≡ S1,x(x) in nodes i = 1, 2, . . . , k − 1
and i = r + 1, . . . , n of the grid. Basic functions Φ(t) = (1 − t)2(1 + 2t)
and Ψ(t) = t (1 − t)2 satisfying conditions Φ(0) = 1 and Ψ̇(0) = 1 (super-dot
indicates differentiation with respect to local variable t). Remaining values of
basic functions and their derivatives in nodes are equal to zero. About functions
Φ̄(t) and Ψ̄(t) we have Φ̄(t) = Φ(1 − t), Ψ̄(t) = −Ψ(1 − t).

Similarly, for subintervals in [−l, l] an approximate solution is searched in
the form

S(x) =
(

S1(x)
S2(x)

)
= Φ(t)

(
u1,i

u2,i

)
+ Ψ(t)hi

(
m1,i

m2,i

)
+

3



+ Φ̄(t)
(

u1,i+1

u2,i+1

)
+ Ψ̄(t)hi

(
m1,i+1

m2,i+1

)
.

We choose the collocation dots to be Gaussian nodes tj = (1 ±
√

3/3)/2,
j = 1, 2 in [0, 1]. Simultaneously with smoothing conditions for the unknown
functions and accounting all the boundary conditions, we obtain the following
block-diagonal system of algebraic equations:

WU = P.

Here U Å vector of nodes variables and matrix W has a structure

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e0 0 0 . . . . . . .
A1 B1 0 . . . . . . .
. . . . . . . . . .
. . Ak−1 Bk−1 0 0 . . . .
. . 0 es e0 0 . . . .
. . . . . . . . . .
. . . . As Bs . . . .
. . . . . . . . . .
. . . . . es e0 0 0 .
. . . . . Ar 0 Br 0 .
. . . . . . . . . .
. . . . . . 0 0 An−1 Bn−1

. . . . . . 0 0 0 e0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where 2-vectors e0 = (0, 1), es = (0,−s) = −se0, and remaining elements of W
are 2-matrices with elements

Ai,j1 = − 1
h2

i

Φ̈j + Φjcij , Ai,j2 = − 1
hi

Ψ̈j + Ψjhicij ,

Bi,j1 = − 1
h2

i

¨̄Φj + Φ̄jcij , Bi,j2 = − 1
hi

¨̄Ψjaij + Ψ̄jhicij ,

for i = 1, . . . , k − 1 and i = r, . . . , n− 1, and cij = cosϕ1(xij). Elements W in
i = k, . . . , r − 1, j = 1, 2 are 4-matrices with elements

[Ai,j1]mn = − 1
h2

i

Φ̈jamn + Φjqmn,ij , [Ai,j2]mn = − 1
hi

Ψ̈jamn + Ψjhiqmn,ij ,

[Bi,j1]mn = − 1
h2

i

¨̄Φjamn + Φ̄jqmn,ij , [Bi,j2]mn = − 1
hi

¨̄Ψjamn + Ψ̄jhiqmn,ij .

Values {amn}, m, n = 1, 2 are elements of matrix A and {qmn,ij} are elements
of Q(x) in the relating Gauss nodes.
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The number of the blocks of matrix W is equal to the number n − 1 of
grid's subintervals. The number of the columns in every block is ˇxed (8 in
the case under consideration), the number of rows in blocks depends on the
number of the blocks. In the external intervals x ∈ [−L,−l] and x ∈ [l, L]
every block has two rows except the ˇrst and last blocks. These two blocks
contain additional rows, which take into account the boundary conditions (1.4a)
and (1.4g) in long subjunction. The internal blocks in the intervals x ∈ [−l, l]
have four rows. The blocks corresponding to boundaries x = ±l have three
rows: two rows from discretization (1.4b) and (1.4f), and one row from boundary
conditions (1.4c) and (1.4e) for function ϕ2(x). The number of the node's
variables is 2(k − 1) + 4(r − k + 1) + 2(n − r).

In order to solve this system of algebraic equations, we a use specialized
subprogram CWIDTH, which is described in detail in [10]. This program realizes
Gauss method modiˇed for block-diagonal systems of algebraic equations.

Based on the represented algorithm, a program for investigation of static
distributions of magnetic 	ux in two-layer JJs with different layer lengths is
made.

3. NUMERICAL RESULTS

Further we will discuss some numerical results obtained by means of the
algorithm discussed above.

The solutions of the boundary problem (1.4) depend on the coordinate x, as
well as on the set of parameters p ≡ (L, l, s, he, γ), i.e. ϕi = ϕi(x, p), i = 1, 2.
Further the dependence on p is denoted only if it is necessary.

The basic numerical characteristics of every solution of non-linear BVP (1.4)
are full (1.1), partial (1.2a), (1.2b) and coupling energies (1.2c), the full magnetic
	uxes through the layers (1.3), as well as the average magnetic 	uxes [8]:

N1(p) = N [ϕ1] =
1

2Lπ

L∫
−L

ϕ1(x, p) dx,

N2(p) = N [ϕ2] =
1

2lπ

l∫
−l

ϕ2(x, p) dx.

(3.1)

The calculation of the solutions of BVP (1.4) and their possible bifurcations
at change of the parameters is an important but difˇcult problem. In this paper
we investigate the in	uence of the length of short contact 2l on some typical
bound states in the stack. All numerical results are obtained for ®long enough¯
contact (2L = 10) and ˇxed coupling coefˇcient s = −0.3.
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The 	uxon (vortex) distributions of magnetic 	ux play an important role in
the theory and application of JJs. It is well known that in the ®inˇnity¯ JJ, which
is described by unperturbed sine-Gordon equation, there exists a countable set of
solutions [11].

For physical reasons it is convenient to discriminate unipolar 	uxon solutions,
composed of equally oriented vortices of magnetic ˇeld and heteropolar solutions,
whose internal magnetic ˇeld is a result of non-linear interaction between het-
eropolar vortices. Further we shall consider only simple unipolar solutions of
kind Φ±n, where n = 1, 2, . . .

In case of ˇnite length JJs, the possible solutions become deformed as a result
of interactions with the boundaries, as well as with the applied external magnetic
ˇeld he and external current γ [8]. But thus the values of the average magnetic
ˇelds remain constants

N
[
Φ±n

]
= N

[
Φ±n

∞
]

= ±n.

Here Φ±n
∞ refers to corresponding solutions in the ®inˇnity¯ contact.

A special case in two-layer JJs are vortex solutions of type (Φ±1, Φ±1),
composed of two unipolar 	uxons, on one in each layer. Concrete examples are
presented in Fig. 1 where 2L = 10, 2l = 8, he = 0 and γ = 0 (solid and dashed
lines correspond to the states in the long and short layers). It is obvious that the
length decreasing is compensated by rise of the amplitude of internal magnetic
ˇeld ϕ2,x(x) in the short layer.

The in	uence of half-length l of the short layer on internal magnetic ˇeld
for solutions of type (Φ1, Φ1) is presented in Figs. 1 and 2. The decrease of l
increases the amplitude of the internal magnetic ˇeld ϕ2,x(x) in the short layer. In
turn, the interaction between the layers leads to ϕ2,x(±l) �= 0, so the smoothness
of the ˇeld ϕ1,x(x) in points ±l worsens and the inductive current ϕ1,xx(±l)

Fig. 1. (Φ±1, Φ±1)-distributions of the in-
ternal magnetic ˇeld

Fig. 2. (Φ1, Φ1)-states for he = 0, γ = 0,
and different l
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becomes broken. According to (1.4c) and (1.4e), it follows that the corresponding
jump depends mainly on coupling coefˇcient s. This effect increases when the
parameter l decreases (see Fig. 2). For large enough values of l the graph of
ϕ1,x(x) has an extremum in the middle of contact (see curve 1). The amplitude
of this extremum decreases when half-length l decreases as well. For 2l ∼ 5 ÷ 6
the graph of the magnetic ˇeld ϕ1,x(x) has a plateau (curve 2). At further
decrease of l the graph of ϕ1,x(x) gets a minimum in the middle of JJ (curve 3).

The feature speciˇed above well explains the behaviour of curves F12(l),
which are shown in Figs. 3 and 4. Really, for (Φ1, Φ1)-state and in general, for
every unipolar couple of vortices, the integrand in (1.2c) is always negative. But
because of a negative factor s/(1− s2), the integral remains always positive (see
the dashed line in Fig. 3). Note that when 2l < 1.53 for he = 0 and γ = 0 the
couple (Φ1, Φ1) does not exist. Hence, the value 2lB ≈ 1.53 is a bifurcation
point for this solution at change of l. Physically, this bifurcation means that lB
is the minimal length providing existence of the solution (Φ1, Φ1). In case of
single JJ, this fact is noticed in [13,14].

Fig. 3. Full energy of (Φ1, Φ1)-state Fig. 4. Full energy of (Φ1, Φ−1)-state

For heteropolar states the integrand in (1.2c) can vary Å the ˇrst term is
negative, but the second one is positive. Especially for

(
Φ1, Φ−1

)
the integral

remains always negative as at decrease of l (dashed line in Fig. 4).

A comparison of the dependences of partial energies Fi(l), i = 1, 2, for
solutions (Φ1, Φ1) and

(
Φ1, Φ−1

)
is made in Fig. 5. One can see that the change

of partial energies F1(l) of long layers in all range of l does not exceed several
percent. On the other hand, the graphs of partial energies of short layers F2(l)
practically coincide till lB . Hence, the full energy of

(
Φ1, Φ−1

)
bound state is

less than the full energy of
(
Φ1, Φ1

)
Å the couple (Φ1, Φ−1) is more stable

than (Φ1, Φ1). This means that in the experiment the probability of detection of(
Φ1, Φ1

)
-state is less than the probability of detection of

(
Φ1, Φ−1

)
-state.
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Fig. 5. Comparison of the partial energies
for (Φ1, Φ1)- and (Φ1, Φ−1)-states

Fig. 6. Graphs of (Φ1, Φ1) in critical
values of he

In addition, we shall note that the values of average magnetic 	uxes (3.1) are
N

[
Φ±1

]
= ±1 in all the admissible range of l, so the derivatives ∂Ni(l)/∂l = 0,

i = 1, 2.
Every magnetic 	ux distribution ϕ(x) in JJ has a region of existence by

change of he for ˇxed values of other parameters. This region is limited by
lower hmin and upper hmax values of the external magnetic ˇeld. If γ = 0 the
values hmin and hmax are called critical ˇelds for solution under consideration [6].
For unipolar solutions the points (hmin, 0) and (hmax, 0) on the plane (he, γ)
are bifurcation points at change of he, where the transitions from Josephson to
resistive regimes take place.

In Fig. 6 the distributions of magnetic ˇelds for (Φ1, Φ1)-type solution of (1.4)
for 2l = 3.8, hmax ≈ 2.11 (curves 1) and hmin ≈ −1 (curves 2) are demonstrated.
It can be seen that the external magnetic ˇeld he changes the long layer distri-
bution ϕ1,x(x) mainly in the neighborhood of the boundaries ±L. At the same
time, the deformation of the internal magnetic ˇeld ϕ2,x(x) in the short layer is
considerable along the whole length.

CONCLUSIONS

A spline-collocation scheme for numerical solution of non-linear BVP for
systems of ODEs given on the embedded intervals is worked out. The scheme
realization leads to a system of the block-diagonal system of algebraic equations.
Such a scheme can be easily extended to problems with discontinuous coefˇcients
without violation of the structure of algebraic system.

The developed technique gives possibilities for detailed investigation of many
multiparametric physical problems. Especially, we analyze the existence and
stability of some types of magnetic 	ux distributions in magnetically coupled
2-layer JJs.
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