
E17-2008-159

N. S. Tonchev∗

FINITE-SIZE SCALING AND STRONG SPACE
ANISOTROPY: O(∞) SPIN MODELS

∗Institute of Solid State Physics, 72 Tzarigradsko Chauss�ee, 1784 Soˇa,
Bulgaria; e-mail: tonchev@issp.bas.bg



’μ´Î¥¢ �.‘. E17-2008-159
Šμ´¥Î´μ-· §³¥·´μ¥ ¶μ¤μ¡¨¥ ¨ ¸¨²Ó´ Ö ¶·μ¸É· ´¸É¢¥´´ Ö
 ´¨§μÉ·μ¶¨Ö: O(∞) ¸¶¨´μ¢Ò¥ ³μ¤¥²¨

�μ²ÊÎ¥´Ò  ´ ²¨É¨Î¥¸±¨¥ ·¥§Ê²ÓÉ ÉÒ ¤²Ö ±μ´¥Î´μ-· §³¥·´μ£μ ¶μ¤μ¡¨Ö ¢ d-³¥·´ÒÌ
O(∞) ¸¶¨´μ¢ÒÌ ³μ¤¥²ÖÌ ¸ ¸¨²Ó´μ° ¶·μ¸É· ´¸É¢¥´´μ°  ´¨§μÉ·μ¶¨¥°, μ¶¨¸Ò¢ ¥³ÒÌ ³μ-
¤¥²Ó´Ò³ £ ³¨²ÓÉμ´¨ ´μ³, ¢ ±μÉμ·μ³ ¢§ ¨³μ¤¥°¸É¢¨¥ ³¥¦¤Ê ¸¶¨´ ³¨ ¢ k-¶·μ¸É· ´¸É¢¥

¨³¥¥É  ¸¨³¶ÉμÉ¨±Ê ¢¨¤ 
l∑

i=0

ai|ki|2σi . ‡¤¥¸Ó ki Å ¢¥±Éμ·Ò ¸ · §³¥·´μ¸ÉÖ³¨ pi É ±¨¥, ÎÉμ

l∑

i=0

pi = d, l > 0, £¤¥ ai � 0 Å ´¥±μÉμ·Ò¥ ±μ´¸É ´ÉÒ ¨ σi Å ¶ · ³¥É·Ò, Ì · ±É¥·¨§ÊÕ-

Ð¨¥ · ¤¨Ê¸ ¢§ ¨³μ¤¥°¸É¢¨Ö. � ¸¸³μÉ·¥´Ò £¥μ³¥É·¨¨ ¸¨¸É¥³ É¨¶  ¡¥¸±μ´¥Î´ÒÌ ¶² ¸É¨´:
Lp0(σ0)×∞p1(σ1)...×∞pl (σl) ¸ ¶¥·¨μ¤¨Î¥¸±¨³¨ £· ´¨Î´Ò³¨ Ê¸²μ¢¨Ö³¨. �μ± § ´μ, ÎÉμ
¸ÊÐ¥¸É¢ÊÕÉ · §³¥·´μ¸É¨ d ³¥¦¤Ê ¢¥·Ì´¥° ¨ ´¨¦´¥° ±·¨É¨Î¥¸±¨³¨ · §³¥·´μ¸ÉÖ³¨, ¤²Ö
±μÉμ·ÒÌ ¨³¥¥É ³¥¸Éμ ±μ´¥Î´μ-· §³¥·´μ¥ ¶μ¤μ¡¨¥, ¶μ¢¥¤¥´¨¥ ±μÉμ·μ£μ μ¤´μ§´ Î´μ μ¶·¥-

¤¥²Ö¥É¸Ö ¶ · ³¥É· ³¨ σ0, P0, γl := 1 −
l∑

i=1

(pi/2σi). ’¨¶¨Î´Ò³¨ ¶·¨³¥· ³¨ Ö¢²ÖÕÉ¸Ö

¸¨¸É¥³Ò ¸ ±·¨É¨Î¥¸±¨³¨ ÉμÎ± ³¨ ‹¨ËÏ¨Í  ¨/¨²¨ ¸ ±¢ ´Éμ¢Ò³¨ ±·¨É¨Î¥¸±¨³¨ ÉμÎ± ³¨.

� ¡μÉ  ¢Ò¶μ²´¥´  ¢ ‹ ¡μ· Éμ·¨¨ É¥μ·¥É¨Î¥¸±μ° Ë¨§¨±¨ ¨³. �. �. �μ£μ²Õ¡μ¢  �ˆŸˆ.

‘μμ¡Ð¥´¨¥ �¡Ñ¥¤¨´¥´´μ£μ ¨´¸É¨ÉÊÉ  Ö¤¥·´ÒÌ ¨¸¸²¥¤μ¢ ´¨°. „Ê¡´ , 2008

Tonchev N. S. E17-2008-159
Finite-Size Scaling and Strong Space Anisotropy: O(∞) Spin Models

We present analytical results for the ˇnite-size scaling behavior of d-dimensional O(∞)
spin systems with strong space anisotropy, described by a model Hamiltonian with interaction

between spins which in the k space has leading terms of the form
l∑

i=0

ai|ki|2σi . Here ki

are pi-dimensional vectors, such that
l∑

i=0

pi = d, l > 0, ai � 0 are some constants and

σi > 0 are parameters controlling the range of interaction. We consider systems conˇned
to a d-dimensional layer with the geometry Lp0(σ0) × ∞p1(σ1)... × ∞pl(σl) and periodic
boundary conditions across the ˇnite p0 dimensions with the characteristic length ®L¯. It
is shown that there are dimensions d between the lower and upper critical dimensions for
which the ˇnite-size scaling behavior of the model is uniquely determined by the parameters

σ0, p0, γl := 1 −
l∑

i=1

(pi/2σi). Prominent examples are systems with the Lifshitz point

critical behavior and/or quantum critical behavior.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics,
JINR.
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1. INTRODUCTION

In the anisotropic systems the critical behavior is described by correlation
functions that depend on the space direction. Although these systems are known
for a long time, their investigation generates one of the most challenging problems
of the physics of critical phenomena. One should distinguish between the weakly
anisotropic and strongly anisotropic systems. In the former case only metric
factors but not critical exponents depend on the direction. Strongly anisotropic
systems are omnipresent in soft matter and solid state physics. Prominent ex-
amples are ferroelectric liquid crystals, block copolymers, uniaxial ferroelectrics,
high-temperature superconductors with columnar defects, dipolar-coupled uniax-
ial magnetic systems, and even some systems near a quantum critical point (see,
e.g., [1Ä5] and references therein).

One of the key concepts of the modern theory of critical phenomena is the
concept of universal ˇnite-size scaling [6, 7]. For the systematic study of ˇnite-
size critical behavior of the weakly anisotropic systems, one can see, e.g., [8,
9] and references therein. Much less is known for the description of ˇnite-
size effects in strongly anisotropic systems. It has been an exciting area of
recent theoretical research [10Ä19]. Unfortunately, interesting ˇnite-size results
for strongly anisotropic systems are rarely accessible to purely analytical analysis.
In Refs. [20,21] we suggested a recipe for studying systems with mixed geometry;
i.e., some sizes of the sample were ˇnite and some were extended to inˇnity.

The goal of the present study is two-fold. First, we show that the method
of calculations [20, 21] may be extended to systems with another type of lattice
anisotropy. Second, we analyze the role of the lattice anisotropy which is a
microscopic characteristic in conjunction with the shape anisotropy, which is a
geometric characteristic of the sample. Since our consideration involves both
anisotropy in space and conˇned geometry, complex ˇnite-size effects may be
expected to occur if a phase transition takes place in the bulk. In view of
this complexity, theoretical work on a simpliˇed model will be a rationalizing
and guiding step towards an ultimate and realistic description of the critical
phenomena in such samples. As we show, the simplest possible consideration is
in the framework of the O(N)-vector model in the N → ∞ limit. Although this
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model is of no direct experimental relevance it is preferred as it appears to be the
main testground for ˇnite-size scaling theories, see [6, 7, 22,23].

2. THE MODEL SYSTEMS

The microscopic interactions between spins in a sample usually enter the
expressions of the theory through their Fourier transforms. Here we will consider
a class of d-dimensional systems whose anisotropic interactions are either of
short-ranged or of long-ranged kind in different lattice directions. To describe
this, let us split the Euclidean space Rd into Rp0 × Rp1 × ... × Rpl , where
the momenta ki in Rpi are pi-dimensional vectors. The nonnegative integers
{pi; i = 0, ..., l; l > 0} that characterize the anisotropy of the interactions are

such that
l∑

i=0

pi = d. We consider the following small-k expansion of the Fourier

transform of the spinÄspin coupling:

J(k) � J(0) +
l∑

i=0

ai|ki|2σi , σi > 0. (2.1)

Here, ai are metric factors and σi > 0 are parameters controlling the range of
interaction. For simplicity, in our analysis we will assume ai = −(1/2)a2σi

(a is the lattice spacing), which is not a principal restriction. We assume a d-
dimensional system with mixed geometry (i.e., p0 ˇnite and n = p1 + ... + pl

inˇnite dimensions) under periodic boundary conditions in the ˇnite dimensions.
Further, for the geometry of the system under consideration, the symbol Lp0(σ0)×
∞p1(σ1)... ×∞pl(σl) will be used.

The question is whether any realistic interaction can lead to expression (2.1)
in the k-space. Obviously it is the case where the rotational symmetry of the
n-dimensional Euclidean space is broken. Prominent examples are related with
the Lifshitz point critical behavior [24]. For example, in [25] a model with
possible anisotropy of the derivative terms of the corresponding GinzburgÄLandau
Hamiltonian has been considered. It is pointed out that the isotropy can be
restored (in the long-wavelength limit) by appropriate rescaling of the axes at
the level of second derivatives; however, there is no such a possibility at higher
orders. For details, see [25] from where one can obtain a model with a concrete
realization of the quite general expression (2.1). Such are models with the so-
called ®n-axial Lifshitz point of character K¯ [26] (or ®n-axial of order K-1
Lifshitz point¯ [27]), see also [25,28]. In this case a possible form of the sample
in conjunction with the anisotropy of the interaction is {p0 = d− l, pi = 1, σ0 =
Q, σi = K; K, Q > 0, i = 1, ..., l = n}.

Expression (2.1) can be adapted to describe some quantum models. In
quantum models, the bosonic Matsubara frequencies in the free propagator may
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be regarded as an additional component (dimension) of the wavevector space
(see, e.g., [29Ä31] and references therein). Furthermore, in quantum systems
one can identify the ˇnite p0 = 1 direction with ®imaginary time¯ and so
|k0| = ωk = 2πTk (k = 1, 2, ...). In particular we have models with σ0 = 1 in
the case of structural phase transitions or σ0 = 1/2 in the case of superconduct-
ing phase transitions [29] and {l = 1, p1 = n, σ1 < 2(= 2)} for the long-range
(short-range) inter-spin interaction. Thus, the long-range interaction in the real
space provides strongly anisotropic behavior [14] and, as a consequence, expres-
sion (2.1) takes place in the theory like an effective highly anisotropic interac-
tion. Another example is the anisotropic quantum Lifshitz point model considered
in [32] with {σ0 = p0 = 1, p1 = m, σ1 = 2, σi = pi = 1, i = m+1, ..., d−1}.

Our aim is to present an approach which allows one to consider analytically
isotropic and a wide class of strongly anisotropic systems with different geome-
tries on an equal footing. That is why we will try to keep the values σi, pi

as general as possible, for the moment, imposing no other restrictions than the
obvious ones: σi > 0 and pi > 0.

3. THE GAP EQUATION

Let (2.1) describe the interaction between classical N -vector spins couple in
an O(N) symmetric fashion. In the large N -limit, the theory is solved in terms
of the gap equation (obtained by a steepest descent calculation, see, e.g., [22]) for
the parameter λV related with the ˇnite-volume correlation length of the system.
Such a type of systems (with l = 1, p1 = n), focusing on the shape dependence
of the ˇnite-size scaling limit, is studied in [18]. In [21] the case l = 1, p1 = n
has been considered where the main interest is focused on the explicit form of
the scaling equation analytically tractable in different regimes. For more details
in this particular case, see [18,21].

For a system with spinÄspin interaction (2.1) and mixed geometry Lp0(σ0)×
∞p1(σ1)... ×∞pl(σl), the gap equation has the form

β =
1

(2π)nLp0

∫
B(n)

∑
k0∈Λp0

dp1k1d
p2k2...d

plkl

|k0|2σ0 +
l∑

i=1

|ki|2σi + λV

, (3.1)

where the inˇnite dimensions n = p1+ ...+pl and β is the appropriately redeˇned
inverse temperature. In the ˇnite directions the corresponding summations are
over the vector k0 = {k01 , ..., k0p0} that takes values in Λp0 deˇned by k0ν =
2πnν/(aN0) and −(N0 − 1)/2 � nν � (N0 − 1)/2, where N0 is an odd integer
and ν = 1, ..., p0. In the inˇnite directions the sums are replaced by normalized

integrals (in accordance with the rule
π

a
→ π

a2σ0
) over the corresponding part of

the ˇrst Brillouin zone B(d).
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The critical point of the inˇnite d-dimensional system is characterized by a
vanishing λ∞, so that the appropriately scaled inverse critical temperature

βc =
1

(2π)d

∫
B(d)

ddk

|k0|2σ0 +
l∑

i=1

|ki|2σi

(3.2)

is ˇnite whenever the effective dimensionality D =
l∑

i=0

pi/σi is greater than 2.

The inˇnite n-dimensional system, with a ˇnite size L in the remaining p0

dimensions, can be found in three qualitatively different states depending on the
value of its effective dimension D:

(i) If 2 <
l∑

i=1

pi

σi
, then the system is above its lower critical dimension and,

therefore, it exhibits true critical behavior. A crossover from n-dimensional to
d-dimensional critical behavior takes place when L → ∞.

(ii) In the borderline case of 2 =
l∑

i=1

pi

σi
, the system is at its lower critical

dimension and may have only a zero-temperature critical point.

(iii) When
l∑

i=1

pi

σi
< 2, the system is below its lower critical dimension

and (d-dimensional) critical behavior appears only in the thermodynamic limit
L → ∞.

We assume that there is no phase transition for ˇnite L, and henceforth in
the present study the following additional principal restriction on the parameters
σi, pi is imposed:

l∑
i=1

pi

2σi
< 1. (3.3)

In the continuous limit, in which a → 0 keeping all other lengths ˇxed, the
gap equation (3.1) may be presented in the form (see appendix A)

K =
1

Lp0

∑
k0∈Λp0

1
(λV + |k0|2σ0)γl

, 0 < γl < 1, l � 1, (3.4)

where K is an effective inverse critical temperature (see Eq. (A.8)), and

γl := 1 −
l∑

i=1

pi

2σi
. (3.5)

Several comments are in order. The above result is an l > 1 generalization
of the gap equation recently studied in [21]. One can relate Eq. (3.4) with a
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ˇctitious p0-dimensional fully ˇnite-size isotropic reference system in which the
memory of the anisotropic characteristics of the initial system is retained only
in the parameter γl. As a result, only three model parameters p0, σ0 and γl are
relevant for describing the model.

Let us note that Eq. (3.4) embodies quite different physics. If {σi = σ, pi =
1, i = 1, ..., l}, then l = n and the result γn coincides with the result γ1

obtained in Ref. [21] for l = 1 and {σ1 = σ, p1 = n} which correspond to
a different symmetry of the lattice. For example, in bulk systems with cubic
spatial anisotropy, one distinguishes [33] between the critical behaviors of the
case {l = n, σi = 2, pi = 1, i = 1, ..., l}

k̃4 ≡
n∑

i=1

k4
i (3.6)

and the usual isotropic case with {l = 1, σ1 = 2, p1 = n}

k4 ≡ (k.k)2, k ∈ Rn. (3.7)

However, this is not the case in the geometry under consideration, having γ1 = γn.
In other words, the anisotropy of the interaction in the subspace Rp1 × ... × Rpl

does not affect the ˇnite-size behavior if the system has a geometry elongated (up
to inˇnity) in the same directions. The shape anisotropy diminishes the effect of
spatial anisotropy of the interaction at least in the spherical limit N → ∞.

4. FINITE-SIZE SCALING

Although Eq. (3.4) seems to be very simple in form, in the presence of γl �= 1
the actual analysis of it is complicated. This complication may be overcome by
the approach presented in Refs. [20,21].

In order to obtain the scaling form of Eq. (3.4), let us ˇrst introduce the
convenient scaling variables:

x = L2σ0(p0/2σ0−γl)(K − Kc
∞), y = λV L2σ0 , (4.1)

where Kc
∞ is the inverse critical temperature of the bulk system. Now the

calculation procedure proceeds as in the l = 1 case with the substitution γ → γl

in the corresponding equations of [21]. The ˇnal result, valid in the large N0

asymptotic regime, is

x ≈ −a(p0; σ0, γl)y(p0/2σ0−γl) + F γl

p0,2σ0
(y) +

1
yγl

. (4.2)
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In Eq. (4.2),

a(p0; σ0, γl) = − 1
(4π)p0/2σ0

Γ
(

p0

2σ0

)
Γ
(

γl −
p0

2σ0

)

Γ
(

p0

2

)
Γ(γl)

(4.3)

and

F γ
α,β(y) =

1
(2π)βγ

∞∫
0

dzz
1
2βγ−1Eγ

β
2 , βγ

2
×

×
(
− z

β
2 y

(2π)β

) [
Aα(z) − 1 −

(π

z

) α
2
]

(4.4)

is a generalization of the so-called universal scaling function, introduced earlier in
the ˇnite-size scaling theory by a number of authors (see, e.g., [7] and references
therein). Here the difference is the appearance of the generalized Mittag-Lef	er
function Eγ

α,β(z) in the integrand (for a deˇnition and some properties of Eγ
α,β(z),

see, e.g., [21,34] and references therein). As usual

A(z) =
+∞∑

n=−∞
e−zn2

. (4.5)

Knowledge of the properties of the generalized Mittag-Lef	er function allows one
to carry out further calculations analytically.

Our consideration is limited to systems with an effective dimension D =
l∑

i=0

pi/σi below the upper critical dimension Du = 4 and above the lower one,

Dl = 2, i.e., for real dimensions d = p0 + n:

2σ0 + n

[
1 − σ0

n

l∑
i=1

pi

σi

]
< d < 4σ0 + n

[
1 − σ0

n

l∑
i=1

pi

σi

]
. (4.6)

The conditions (4.6), together with the conditions for γl, take the form

max
[
0,

p0

2σ0
− 1

]
< γl < min

[
1,

p0

2σ0

]
. (4.7)

In this way we demonstrate that ˇnite-size scaling in its standard form with

scaling variable y1/2σ0 = Lλ
1/2σ0
V ≡ L/ξp0,L takes place for the considered class

of systems regardless of the nature of their anisotropic properties. It is important
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to note that this statement is established under the conditions (4.7) for the model
parameters σ0, p0, γl.

We emphasize that the invariance of the model under a lower symmetry
group leads to minimal mathematical complications in comparison with the case
l = 1. This allows the study of the ˇnite-size scaling and the derivation of the
ˇnite-size corrections to the bulk results of the considered models.

5. CROSSOVER RULES

Since the numbers of the dimensions pi and the parameters σi enter only in

combination
l∑

i=1

pi

σi
in terms of the reference system (up to a renormalization of

the temperature), some speciˇc crossover rules take place. Symbolically, we can
write

Lp0(σ0) ×∞p1(σ1)... ×∞pl(σl) ⇐⇒ Lp0(σ0) ×∞ñ(σ0), (5.1)

where ñ := σ0

l∑
i=1

pi

σi
; i.e., the ˇnite-size behavior of the strongly anisotropic

system (σi �= σ0) with p0 ˇnite and n inˇnite dimensions is equivalent to an
®effective isotropic¯ system (σi = σ0) with p0 ˇnite and ñ inˇnite dimensions,
and vice versa. Likewise, we can write

Lp0(σ0) ×∞p1(σ1)... ×∞pl(σl) ⇐⇒ Lp0(σ0) ×∞p0(σ̃), (5.2)

where σ̃ := p0

l∑
i=1

σi

pi
. Indeed, (5.1) and (5.2) are true under the conditions (4.7)

for the model parameters σ0, p0, γl.
And in the end, let us demonstrate the usefulness of relations (5.1) and (5.2)

in calculations of some critical point amplitudes ȳ ≡ y(p0, σ0, γl) = L/ξp0, L.
i) If p0 = σ0 = 1, we have 0 < γl < 1/2. From the crossover rule (5.1)

it follows that the gap equation for λV , apart from a trivial rescaling of the
temperature and the number of inˇnite dimensions, i.e., 1 < ñ < 2, is independent
of the anisotropy. As a result, it is possible to apply the usual theory for isotropic
systems. For example, the value of the universal scaling amplitude ȳ ≡ y(1, 1, γl)
may be taken directly from the study of the quantum crossover counterpart of
the model (2.1), i.e., the quantum spherical spin model [7, 35, 36] or the O(N)
quantum ϕ4 model in the spherical limit [30]. In the case under consideration,
the universal scaling amplitude ȳ is the solution of the equation (for details,
see [30,35]) ∣∣∣∣Γ

(
1 − ñ

2

)∣∣∣∣ + 4
∞∑

m=1

K(ñ−1)/2(my)
(1
2my)(ñ−1)/2

= 0. (5.3)

Here Kν(x) is the Mac Donald function (second modiˇed Bessel function).
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ii) If p0 = 2, σ0 = 1, we have γl = 1/2. Due to the crossover rule (5.1)
and ®the quantum to classical crossover¯, from the numerical analysis of the two-
dimensional quantum spherical model in the case of block geometry at zero tem-
perature (ñ = 1), one gets for the universal amplitude the result ȳ ≡ y(2, 1, 1/2) =
1.5119... [30,35].

iii) With the help of crossover rule (5.2), one can utilize the result obtained
in the framework of the one-dimensional O(∞) quantum ϕ4 model [30], i.e.,
where p0 = 1, σ0 = 1/2 and σ̃ = 1. For the cases when {pi} and {σi}

obey the conditions 0 <
l∑

i=1

pi/σi < 2 and
l∑

i=1

σi/pi = 1, one gets the result

ȳ ≡ y(1, 1/2, γl) = 0.6247... [30].

6. DISCUSSION

A list of some systems exhibiting ˇnite-size scaling governed by the corre-
sponding parameters σ0, p0, γl is systematized in Table.

Notice that, due to the conditions (4.7), the interval in d when ˇnite-size
scaling is established, not always coincides with the lower and upper critical di-
mensions. Illustrative in this sense is the considered simplest case of isotropic
short-range interaction. It is well known that in this case the ˇnite-size scaling
takes place between 2 < d < 4, for both slab and cylinder geometries (see,
e.g., [7]). Apparently in the former case our consideration is not complete since
it discards the interval 3 � d < 4 (see the last column of Table). More gener-
ally, ®windows¯ appear in the values of d between the lower and upper critical
dimensions where our approach works. Formally, a sufˇcient condition to avoid
this problem is p0 = 2σ0. For such systems standard ˇnite-size scaling between
its lower and upper critical dimensions can be established.

Acknowledgments. The author thanks J. Brankov, H. Chamati and
D.Danchev for helpful discussions. This work was supported by Grant
No. BYX-308/2007.

APPENDIX A: DERIVATION OF EQ. (3.4)

Under the conditions (3.3) and λV → 0, due to the convergence of the
integrals in (3.1) over {ki; i = 1, ..., l}, one can extend the integration over all
Rn in consistence with the underlying continuum ˇeld theory. Let us recall that
a ˇnite linear dimension L = N0a in the continuous limit means that the lattice
spacing a → 0 and simultaneously N0 → ∞.

Following Refs. [20,21], let us ˇrst integrate over the inˇnite dimensions in
Eq. (3.1) that reduces the system to a ˇctitious fully ˇnite-size one. Our assertion
is that in the case of anisotropic systems this approach has some advantages
allowing analytical treatment of the problem.
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Doing the angular integrations in Eq. (3.1), the corresponding n-dimensional
integral can be presented as

Sp1 ...Spl

(2π)nLp0

∞∫
0

...

∞∫
0

∑
k0∈Λp0

xp1−1
1 ...xpl−1

l dx1...dxl

|k0|2σ0 +
l∑

i=1

x2σi

i + λV

, (A.1)

where Spi = 2(π)pi/2/Γ(pi/2) is the surface of the pi-dimensional unit sphere.
Now, the l-dimensional integral (A.1) is easily performed with the help of the

Some examples of real systems with anisotropic spinÄspin interactions and mixed geom-
etry. In the last column the dimensional windows in which the considered standard
ˇnite-size scaling takes place are presented

J(k) − J(0)
Lp0(σ0)× p0, σ0, γl d

×∞p1(σ1)... ×∞pl

i) k2
0 + k2

1 ... +
k2

d−1

k0 ∈ Λ1,
1, 1,

3 − d

2
2 < d < 3

ki ∈ R1, l = d − 1

|k0|
2 + k2

1
k0 ∈ Λd−1,

d − 1, 1,
1

2
2 < d < 4

k1 ∈ R1, l = 1

ii)
k2σ
0 + k2σ

1 ... k0 ∈ Λ1, 1, σ, 1 − d − 1

2σ

2σ < d < 2σ + 1,

+k2σ
d−1 ki ∈ R1, l = d − 1 σ >

1

2

1 < d < 4σ, σ � 1

2

|k0|2σ + |k1|2σ k0 ∈ Λd−n,
d−n, σ, 1− n

2σ
2σ < d < 4σ,

k1 ∈ Rn, l = 1 n < 2σ

iii) |k0|2 + |k1|4
k0 ∈ Λd−n,

d− n, 1, 1− n

4
2 + n < d < 4 +

n

2
,

k1 ∈ Rn, l = 1 n < 4

|k0|4 + |k1|2 k0 ∈ Λd−n,
d− n, 2, 1− n

2
4 − n < d < 8 − n,

k1 ∈ Rn, l = 1 n < 2

iv) k2Q
0 + k2K

1 ... k0 ∈ Λ1,
1, Q, 1− d − 1

2K

2K − K

Q
< d − 1 < 2K,

+k2K
d−1 ki ∈ R1, l = d − 1 Q >

1

2

1 < d < 1 + 4K − K

Q
,

Q � 1

2

v) k2
0 + |k1|4 +

|k2|2
k0 ∈ Z, k1 ∈ Rm,

1, 1, 1+
m

4
− d

2

1 +
m

2
< d < 2 +

m

2
k2 ∈ Rd−m, l = 2
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identity:
∞∫
0

...

∞∫
0

xp1−1
1 ...xpl−1

l dx1...dxl

|k0|2σ0 +
l∑

i=1

x2σi

i + λV

=
a({pi}, {σi}; l)

(|k0|2σ0 + λV )γl
, (A.2)

where

a({pi}, {σi}; l) :=
Γ( p1

2σ1
)...Γ( pl

2σl
)

2lσ1...σl
Γ(γl), (A.3)

and

γl := 1 −
l∑

i=1

pi

2σi
. (A.4)

From σi > 0, pi > 0 and inequality (3.3) immediately follow the conditions

0 < γl < 1. (A.5)

So for Eq. (A.1) we end up with the result

A({pi}, {σi}; l)
Lp0

∑
q⊥∈Λp0

1
(λV + |k0|2σ0)γl

, (A.6)

where

A({pi}, {σi}; l) :=
Sp1 ...Spl

(2π)n
a({pi}, {σi}; l). (A.7)

If we absorb A({pi}, {σi}; l) in the temperature and introduce the notation

K := K({σi}, {pi}; l) ≡ β/A({pi}, {σi}; l), (A.8)

from (A.6) and (A.8) one obtains the gap equation (3.4).
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