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An effective numerical algorithm for solving the nonlinear system of ODE de-
scribing the static distributions of the magnetic 	ux in N -stacked Josephson Junctions
(JJs), as well as the corresponding matrix SturmÄLiouville problem for studying their
global stability, is proposed. The developed technique gives a possibility for detailed
investigation of these multiparametric problems. We illustrate its application to an-
alyze the existence, stability, lack of stability and some physical characteristics of
two kinds of magnetic 	ux distributions in three-layered JJs.
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1. STATEMENT OF THE PROBLEM

In the last decades the propagation of electromagnetic waves in long Joseph-
son Junctions (JJs) has been extensively studied both theoretically and experimen-
tally (see, for example, [1Ä15]). Stacking the junctions may increase the usability
of these devices especially for storage and transmission of information. Such
structures make it possible to state and study new physical effects [8, 13] that do
not occur in single JJs.

In this paper we propose numerical technique for investigatig the properties of
the solutions in the model of stacked JJs, based on inductively coupled layers [7].
The general case which takes into account both inductive and capacitive coupling
is considered in [15].

A simple scheme of N -layered JJ is shown in Fig. 1, where black layers
are barriers (insulators) and white layers are superconductors. In the symmetric
case the electromagnetic interaction between junctions is represented only by a
coupling constant s [7, 15].

The simplest generalizable model of stacked JJ is three-layered Josephson
junction because it takes into account the difference in the behavior of the interior
and exterior junctions. The ˇrst and the third junctions are coupled only to one
neighboring junction, while the second junction is coupled to its two neighbors
below and above. The numerical results, presented in this paper, are obtained
mainly for the particular case of three-layered JJs, but the method of investigation
and its program realization are developed for the general N -layered case (N � 1).

The existence of Josephson current generates a speciˇc magnetic 	ux [16].
When the external current is less than some critical value γcr, the junction layers
are in superconductive regime [16]. The transitions from superconductive to resis-
tive regime are mathematically interpreted as bifurcation of the static distributions
of the magnetic 	ux under the change of the parameters [17].

The vector of static distributions of the magnetic 	ux ϕ(x) = (ϕ1(x),
ϕ2(x), . . . , ϕN (x))T satisˇes [7, 15] the nonlinear boundary value problem

−ϕxx + L (Jz + Γ) = 0, (1a)

ϕx(±l) = H, (1b)
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Fig. 1. N-layered JJ

where Jz = (sin ϕ1, sin ϕ2, . . . , sinϕN )T is the vector of the Josephson current
density, Γ = γ (1, 1, . . . , 1)T is the vector of the external current density, H =
he (1, 1, . . . , 1)T is the vector of the external magnetic ˇeld and 2l is the length
of the layers (the subscript x means differentiation, the superscript T means
transposition). The matrix L is a matrix of the inductive interaction (−0.5 < s �
0 for arbitrary N ):

L(N×N) =

⎛
⎜⎜⎜⎜⎝

1 s 0 . . . 0 0
s 1 s . . . 0 0
. . . . . . . .
0 0 0 . . . 1 s
0 0 0 . . . s 1

⎞
⎟⎟⎟⎟⎠ .

2. NUMERICAL METHOD

In order to solve the nonlinear boundary value problem (1), we use an iterative
algorithm, based on the continuous analog of Newton's method (CAMN) [19].
As initial approximations for the iteration process we take combinations (for the
different layers) of solutions which exist in the one-layered case and he = 0,
γ = 0:

Å Meissner solutions (denoted further by M ) of the form ϕ(x) = kπ, k =
0,±1,±2, . . .;

Å 	uxon (anti	uxon) solutions, for which there are exact analytical expres-
sions in the case of inˇnite junctions (l → ∞) [23]. The single 	uxon/anti	uxon
solution has the well-known form ϕ(x) = 4 arctan exp {±x} + 2kπ, k =
0,±1, . . . Further for n-	uxon distributions we use the simple notation Φn,
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n = ±1,±2, . . . For junctions of ˇnite length, objects of type Φn are not 	uxons
in a strong sense, but by analogy the same terminology is used.

CANM gives a linearized boundary value problem at each iteration step:

−vxx + LJ ′
z v = ϕxx − L (Jz + Γ), (2a)

vx(±l) = H − ϕx(±l), (2b)

where ϕ = (ϕ1, ϕ2, . . . , ϕN )T is the approximate solution found at the previous

iteration step, v = (v1, v2, . . . , vN )T is the vector of the iteration corrections and
J ′

z(ϕ) is the matrix diag(cos ϕ1, cosϕ2, . . . , cosϕN ).
The linear boundary value problems (2) are solved by means of Galerkin ˇnite

element method [18] and quadratic elements. The matrices of the corresponding
linear algebraic problems are nonsymmetric. They are stored and used in sky-line
form [20]. The linear algebraic problems are solved using LU -decomposition.

In order to study the global stability of the possible distributions of the
magnetic 	ux, a matrix SturmÄLiouville problem [24] is generated:

−Auxx + Q(x)u = λu, (3a)

ux(±l) = 0, (3b)

l∫
−l

〈u, u〉 dx − 1 = 0. (3c)

Here the matrix A = L−1, and the potential Q(x) ≡ J ′
z(ϕ(x)). The minimal

eigenvalue λmin of (3) determines the stability of the distribution under consid-
eration.

A minimal eigenvalue λmin equal to zero means a bifurcation of this distri-
bution caused by change of some parameter(s). For example, in inˇnite junction
Meissner solution M is stable, while Φ1 is quasistable (bifurcation solution with
λmin = 0) [21,22].

The ˇnite element method is used to reduce the above matrix SturmÄLiouville
problem (3) to a matrix algebraic problem, whose few smallest eigenvalues
and the corresponding eigenfunctions are found by the subspace iteration
method [20].

To test the accuracy of all realized methods, we have used the Runge method
by computing the solutions on three embedded meshes. The numerous experi-
ments made show a super-convergence of order four. As an example, in table the
computed orders of convergence σ of the smallest eigenvalue, as well as of the
eigenfunction, corresponding to the ˇrst component of solution type (Φ1, M, Φ1),
s = −0.3, 2l = 10, are shown.
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Order of convergence σ(x) of EF, corresponding to solution type (Φ1, M, Φ1), 1st com-
ponent

xi h = 0.125 h = 0.0625 h = 0.03125 σ

Ä5 0.019669254 0.019669211 0.019669208 3.99
Ä4 0.027395953 0.027395900 0.027395896 3.99
Ä3 0.057938303 0.057938217 0.057938216 3.99
Ä2 0.139892955 0.139892807 0.139892798 3.99
Ä1 0.323331077 0.323330864 0.323330851 4.00
0 0.486766104 0.486766424 0.486766444 4.02
1 0.323331077 0.323330864 0.323330851 3.98
2 0.139892955 0.139892807 0.139892798 3.98
3 0.057938303 0.057938217 0.057938212 3.99
4 0.027395953 0.027395900 0.027395896 3.99
5 0.019669254 0.019669211 0.019669208 3.99
λ Ä0.002815748 Ä0.002816608 Ä0.002816662 4.00

3. NUMERICAL EXPERIMENT

We brie	y discuss some numerical results obtained by the developed al-
gorithms. Especially we investigate numerically the static distributions of the
magnetic 	ux and seek for critical values of the parameters he and γ where these
distributions fail to exist.

3.1. Three-Layered Junctions. Because of a big variety of different triplets of
solutions, in the present paper we explain results for (M, M, M) and

(
Φ1, M, Φ−1

)
solutions only.

In Figs. 2 and 3 the distributions of the internal magnetic ˇeld ϕx(x) in the
ˇrst layer of a three-layered junction are graphically shown. The results are for
three different values of the external magnetic ˇeld he (0 and the two bifurcation
values) when γ = 0, l = 5 and s = −0.3. Changing the value of γ for given he

when the geometrical parameters l and s are ˇxed, we get the region of existence
of the corresponding solution in the plane P ≡ (he, γ). We expected a symmetry
of this region with respect to he and γ for solutions of types (M, M, M) and(
Φ1, M, Φ−1

)
, and this was conˇrmed by the numerical results. In Figs. 4 and 5

the regions of existence (he � 0) in the plane P for the same solutions are shown.
Every point on these curves is a bifurcation point and, consequently, satisˇes

λmin(γcr, he) = 0.

The main physical characteristics of interest Å energy, number of 	uxons,
full magnetic 	ux Å are computed as well. The dependence of these characteris-
tics on the geometric parameters of the junction is investigated and new interesting
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results are found. Let us denote by Δϕ the vector of full magnetic 	ux through
the junction:

Δϕ = (Δϕ1, . . . , ΔϕN )T , Δϕi = ϕi(l) − ϕi(−l).

Equations (1) can be considered as necessary conditions for extremum of the
functional of full energy F [ϕ] of the junction:

F [ϕ] =

l∫
−l

[
1
2
〈ϕx, Aϕx〉 + U(ϕ)

]
dx − 〈AH, Δϕ〉, (4)
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where the density U =
N∑

i=1

Ui(ϕi), Ui = 1 − cosϕi + γϕi. Equation (1a) is the

EulerÄLagrange equation for (4) and the boundary conditions (1b) follow from
WeierstrassÄErdmann conditions.

The full energy F is presented as a sum of the energies Fi, i = 1, . . . , N of
the non-interacting layers and the coupling energy Fint:

F =
N∑

i=1

Fi + Fint.

For this reason the matrix A is presented as a sum A = I + B, where I is the
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identity matrix. For the full energy this gives

F [ϕ] =

l∫
−l

[
1
2
〈ϕx, ϕx〉 +

1
2
〈ϕx, Bϕx〉 + U(ϕ)

]
dx−

− 〈IH, Δϕ〉 − 〈BH, Δϕ〉. (5)

Then

Fi[ϕi] =

l∫
−l

[
1
2

ϕ2
i,x + Ui(ϕi)

]
dx − heΔϕi,

Fint[ϕ] =
1
2

l∫
−l

〈ϕx, Bϕx〉dx − 〈BH, Δϕ〉.

A comparison of the dependence F (γ) for solutions of type (M, M, M) (see
curve 1) and (Φ1, M, Φ−1) (curve 2) is made in Fig. 6. The values of F (γ) are
computed by formulae (5). The boundary points B1 and B2 are bifurcation points
for the parameter γ. The curve 1 lies under curve 2, which means that for given
he = 1 the distribution (M, M, M) has bigger critical current (by modulus) than
the distribution

(
Φ1, M, Φ−1

)
.

Let us mention the different behavior of the dependence F123(γ) for the
two distributions (see Fig. 7). When |γ| increases, the coupling energy F123(γ)
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for (M, M, M)-distribution monotonically decreases in contrast to F123(γ) for(
Φ1, M, Φ−1

)
which monotonically increases.

Finally, in Fig. 8 a comparison of the energy F2(γ) of the middle layer
for (M, M, M) and

(
Φ1, M, Φ−1

)
solutions is shown. It is clearly seen that

the changes M → Φ1 and M → Φ−1 in the external layers result mainly in
decreasing of the region of existence with respect to external current γ.
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3.2. Single Josephson Junction. In the process of investigation some inter-
esting observations were made about the behavior of the solutions depending on
the length of the junction. For their deeper understanding we analyzed the case
of single junction, which corresponds to s = 0.

The numerical experiments have shown that when the length 2l grows, the
supports of the bifurcation curves for 	uxons Φ1, Φ2, Φ3, ... tend consequently to
the support of the bifurcation curve for Meissner solution. This fact is illustrated
in Figs. 9 and 10. One can see that the support of the bifurcation curve for
Φ1 (Fig. 9, 2l = 14) and for Φ1, Φ2, Φ3 (Fig. 10, 2l = 30) coincides within the
plotting resolution with the support of the bifurcation curve for Meissner solution.
And what is more, the maximal critical current in these cases lies on the same
curve.

The numerical observations gave a hint to ask for analytical dependencies.
The following ones are found:

1. Let (α(Φk, l), β(Φk, l)) be the interval in he for γ = 0 and ˇxed hal	ength
l, for which the solution Φk is stable. Then

α(Φk, l) ↘ 0 when l → ∞, β(Φk, l) ↘ 2 when l → ∞.

2. Let (−α(M, l), α(M, l)) be the interval in he for γ = 0 and ˇxed hal	ength
l, for which the solution M is stable. Then

α(M, l) ↘ 2 when l → ∞.
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Fig. 9. Bifurcation curves for 2l = 14
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3. For arbitrary l the following inequalities hold:

α(Φ1, l) < α(Φ2, l) < α(Φ3, l) < . . . ,

α(M, l/2) = β(Φ1, l) < β(Φ2, l) < β(Φ3, l) < . . . ,

α(Φm, l) = α

(
Φk,

k

m
l

)
, β(Φm, l) = β

(
Φk,

k + 1
m + 1

l

)
, k � m.

4. If for he � 2, γ = 0 and ˇxed l the solution Φk is stable, then Φ1, Φ2, . . .,
Φk−1 are stable as well.

Let us denote by

N [ϕ] =
1

2lπ

l∫
−l

ϕ(x) dx (6)

the average value of the bound state ϕ(x) on the junction [19]. Functional (6)
depends on all of the parameters of the model. In Fig. 11 the dependence N(he)
for the bifurcation solutions Φ−1, M , Φ1, Φ2 and Φ3 is presented in the case of
single JJ of full length 2l = 10. The solid lines correspond to γcr � 0, the dashed
ones Å to γcr � 0. Note that for γcr = 0 the values of N [ϕ] are integer numbers:
N [Φn] = n, N [M ] = 0. When γcr �= 0 the following relations are fulˇlled:

N [Φn
+] + N [Φn

−] = 2n, N [M+] + N [M−] = 0,

where the subscripts ± correspond to the sign of γcr.
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The above-mentioned facts can be considered as conservation laws of the
average magnetic 	ux. So formula (6) determines the admissible number of
	uxons in the solutions of problem (1), having ˇxed sign of ϕx(x).

CONCLUSIONS

Effective numerical algorithms are worked out for solving the nonlinear sys-
tem of ODE for ˇnding the static distributions of the magnetic 	ux in N -stacked
JJs, as well as the corresponding matrix SturmÄLiouville problem for studying
their global stability. The developed technique gives a possibility for detailed
investigation of these multiparametric problems. We illustrate its application to
analyze the existence, stability, lack of stability and some physical characteristics
of two types of magnetic 	ux distributions in three-layered JJs. In addition, some
new numerical and analytical results for one-layered JJs are found.
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