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An effective numerical algorithm for solving the nonlinear system of ODE de-
scribing the static distributions of the magnetic flux in /N-stacked Josephson Junctions
(JJs), as well as the corresponding matrix Sturm-Liouville problem for studying their
global stability, is proposed. The developed technique gives a possibility for detailed
investigation of these multiparametric problems. We illustrate its application to an-
alyze the existence, stability, lack of stability and some physical characteristics of
two kinds of magnetic flux distributions in three-layered JJs.
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1. STATEMENT OF THE PROBLEM

In the last decades the propagation of electromagnetic waves in long Joseph-
son Junctions (JJs) has been extensively studied both theoretically and experimen-
tally (see, for example, [1-15]). Stacking the junctions may increase the usability
of these devices especially for storage and transmission of information. Such
structures make it possible to state and study new physical effects [8,13] that do
not occur in single JJs.

In this paper we propose numerical technique for investigatig the properties of
the solutions in the model of stacked JJs, based on inductively coupled layers [7].
The general case which takes into account both inductive and capacitive coupling
is considered in [15].

A simple scheme of N-layered JJ is shown in Fig. 1, where black layers
are barriers (insulators) and white layers are superconductors. In the symmetric
case the electromagnetic interaction between junctions is represented only by a
coupling constant s [7,15].

The simplest generalizable model of stacked JJ is three-layered Josephson
junction because it takes into account the difference in the behavior of the interior
and exterior junctions. The first and the third junctions are coupled only to one
neighboring junction, while the second junction is coupled to its two neighbors
below and above. The numerical results, presented in this paper, are obtained
mainly for the particular case of three-layered JJs, but the method of investigation
and its program realization are developed for the general N-layered case (N > 1).

The existence of Josephson current generates a specific magnetic flux [16].
When the external current is less than some critical value ., the junction layers
are in superconductive regime [16]. The transitions from superconductive to resis-
tive regime are mathematically interpreted as bifurcation of the static distributions
of the magnetic flux under the change of the parameters [17].

The vector of static distributions of the magnetic flux ¢(x) = (p1(x),

©2(),...,on ()T satisfies [7,15] the nonlinear boundary value problem
—¢ze + L(J,+T) =0, (la)
Pa(xl) = H, (1b)
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Fig. 1. N-layered JJ

where J, = (sin¢1,sings,...,sinpy)T is the vector of the Josephson current
density, I' = v (1,1,...,1)7 is the vector of the external current density, H =
he (1,1,...,1)T is the vector of the external magnetic field and 2/ is the length

of the layers (the subscript x means differentiation, the superscript 7' means
transposition). The matrix L is a matrix of the inductive interaction (—0.5 < s <
0 for arbitrary NV):
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2. NUMERICAL METHOD

In order to solve the nonlinear boundary value problem (1), we use an iterative
algorithm, based on the continuous analog of Newton’s method (CAMN) [19].
As initial approximations for the iteration process we take combinations (for the
different layers) of solutions which exist in the one-layered case and h. = 0,
v =0:

— Meissner solutions (denoted further by M) of the form p(z) = km, k =
0,+1,£2,..;

— fluxon (antifluxon) solutions, for which there are exact analytical expres-
sions in the case of infinite junctions (I — oco) [23]. The single fluxon/antifluxon
solution has the well-known form ¢(z) = 4arctan exp {+z} + 2km, k =
0,+1,... Further for n-fluxon distributions we use the simple notation ¢",



n = +£1,42,... For junctions of finite length, objects of type ®" are not fluxons
in a strong sense, but by analogy the same terminology is used.
CANM gives a linearized boundary value problem at each iteration step:

~Vge + LJLv =g — L (J, +T), (2a)
g () = H — (1), (2b)

where ¢ = (p1,p2, ..., @N)T is the approximate solution found at the previous
iteration step, v = (v1,va, ... ,vN)T is the vector of the iteration corrections and
J.(¢) is the matrix diag(cos ¢1,cos pa,...,cospN).

The linear boundary value problems (2) are solved by means of Galerkin finite
element method [18] and quadratic elements. The matrices of the corresponding
linear algebraic problems are nonsymmetric. They are stored and used in sky-line
form [20]. The linear algebraic problems are solved using LU-decomposition.

In order to study the global stability of the possible distributions of the
magnetic flux, a matrix Sturm-Liouville problem [24] is generated:

—Aug, + Q(x)u = Au, (3a)
ug(£l) =0, (3b)

!
/(u,u) dex—1=0. (3¢)

-l

Here the matrix A = L™, and the potential Q(z) = J.(¢(z)). The minimal
eigenvalue A\, of (3) determines the stability of the distribution under consid-
eration.

A minimal eigenvalue A, equal to zero means a bifurcation of this distri-
bution caused by change of some parameter(s). For example, in infinite junction
Meissner solution M is stable, while ®! is quasistable (bifurcation solution with
Amin = 0) [21,22].

The finite element method is used to reduce the above matrix Sturm—Liouville
problem (3) to a matrix algebraic problem, whose few smallest eigenvalues
and the corresponding eigenfunctions are found by the subspace iteration
method [20].

To test the accuracy of all realized methods, we have used the Runge method
by computing the solutions on three embedded meshes. The numerous experi-
ments made show a super-convergence of order four. As an example, in table the
computed orders of convergence o of the smallest eigenvalue, as well as of the
eigenfunction, corresponding to the first component of solution type (®!, M, ®1),
s = —0.3, 2l = 10, are shown.



Order of convergence o (z) of EF, corresponding to solution type ($*, M, ®*), 1st com-

ponent

T; h =0.125 h = 0.0625 h =0.03125 o

=5 | 0.019669254 | 0.019669211 0.019669208 | 3.99
-4 | 0.027395953 0.027395900 | 0.027395896 | 3.99
-3 | 0.057938303 0.057938217 0.057938216 | 3.99
-2 | 0.139892955 0.139892807 0.139892798 | 3.99
-1 | 0.323331077 | 0.323330864 | 0.323330851 | 4.00
0 0.486766104 | 0.486766424 | 0.486766444 | 4.02
1 0.323331077 | 0.323330864 | 0.323330851 | 3.98
2 0.139892955 0.139892807 0.139892798 | 3.98
3 0.057938303 0.057938217 0.057938212 | 3.99
4 0.027395953 0.027395900 | 0.027395896 | 3.99
5 0.019669254 | 0.019669211 0.019669208 | 3.99
A | —0.002815748 | -0.002816608 | —0.002816662 | 4.00

3. NUMERICAL EXPERIMENT

We briefly discuss some numerical results obtained by the developed al-
gorithms. Especially we investigate numerically the static distributions of the
magnetic flux and seek for critical values of the parameters h. and « where these
distributions fail to exist.

3.1. Three-Layered Junctions. Because of a big variety of different triplets of
solutions, in the present paper we explain results for (M, M, M) and (®', M, &)
solutions only.

In Figs.2 and 3 the distributions of the internal magnetic field p,(z) in the
first layer of a three-layered junction are graphically shown. The results are for
three different values of the external magnetic field 4. (0 and the two bifurcation
values) when v =0, l = 5 and s = —0.3. Changing the value of v for given h,
when the geometrical parameters [ and s are fixed, we get the region of existence
of the corresponding solution in the plane P = (h., ). We expected a symmetry
of this region with respect to h. and « for solutions of types (M, M, M) and
(®', M, ®~"), and this was confirmed by the numerical results. In Figs.4 and 5
the regions of existence (he > 0) in the plane P for the same solutions are shown.
Every point on these curves is a bifurcation point and, consequently, satisfies

)\min(’ycrv he) =0.

The main physical characteristics of interest — energy, number of fluxons,
full magnetic flux — are computed as well. The dependence of these characteris-
tics on the geometric parameters of the junction is investigated and new interesting
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Fig. 2. Solution of type (M, M, M)
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Fig. 3. Solution of type (®', M, ")

results are found. Let us denote by Ay the vector of full magnetic flux through
the junction:

Ap = (Apr,.... Dpn)" L Api = gi(l) — i D).

Equations (1) can be considered as necessary conditions for extremum of the
functional of full energy F'[¢] of the junction:

Flol= [ [3 (n A0y + U0)] ao - catr. 80) @
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Fig. 5. Region of existence for (®', M, ®~")

N
where the density U = > U;(p;), Ui = 1 — cos; + ;. Equation (la) is the
i=1
Euler-Lagrange equation for (4) and the boundary conditions (1b) follow from
Weierstrass—Erdmann conditions.
The full energy F' is presented as a sum of the energies Fj, i =1,..., N of
the non-interacting layers and the coupling energy Fin:

N
F =) Fi+Fu.

i=1

For this reason the matrix A is presented as a sum A = I + B, where [ is the



identity matrix. For the full energy this gives

Fly] =/ |:1<90w790z>+%<909:73909:>+U(<,0):| dr—

Then

1
Filp:] = / [5 03, + Uz‘(%‘)} dz — heAp;,

l

1
Fusle = 5 [ (02 Bea)do — (BH, M),
2

A comparison of the dependence F'(v) for solutions of type (M, M,M) (see
curve 1) and (®', M, ®~!) (curve 2) is made in Fig.6. The values of F(v) are
computed by formulae (5). The boundary points B; and By are bifurcation points
for the parameter . The curve I lies under curve 2, which means that for given
he = 1 the distribution (M, M, M) has bigger critical current (by modulus) than
the distribution (<I>1, M, <I>*1).

Let us mention the different behavior of the dependence Fjo3(7y) for the
two distributions (see Fig.7). When |y| increases, the coupling energy Fias(7)
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Fig. 6. Full energy F'(y) for (M, M, M)- and (®', M,®~")-type solutions



for (M, M, M)-distribution monotonically decreases in contrast to Fio3(7y) for
(®*, M, ®~') which monotonically increases.

Finally, in Fig.8 a comparison of the energy Fb(7y) of the middle layer
for (M, M, M) and (®',M,®~') solutions is shown. It is clearly seen that
the changes M — ®' and M — ®~! in the external layers result mainly in
decreasing of the region of existence with respect to external current +.
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Fig. 7. Coupling energy Fias(7) for (M, M, M)- and (®*, M, ®~")-type solutions
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Fig. 8. Partial energies Fz(y) for (M, M, M)- and (®', M, ®~1)-type solutions



3.2. Single Josephson Junction. In the process of investigation some inter-
esting observations were made about the behavior of the solutions depending on
the length of the junction. For their deeper understanding we analyzed the case
of single junction, which corresponds to s = 0.

The numerical experiments have shown that when the length 2/ grows, the
supports of the bifurcation curves for fluxons ®!, ®2, ®3, ... tend consequently to
the support of the bifurcation curve for Meissner solution. This fact is illustrated
in Figs.9 and 10. One can see that the support of the bifurcation curve for
®! (Fig.9, 21 = 14) and for ®', ®2, ®3 (Fig. 10, 2] = 30) coincides within the
plotting resolution with the support of the bifurcation curve for Meissner solution.
And what is more, the maximal critical current in these cases lies on the same
curve.

The numerical observations gave a hint to ask for analytical dependencies.
The following ones are found:

1. Let (a(®*,1), 3(®* 1)) be the interval in h, for v = 0 and fixed halflength
1, for which the solution ®* is stable. Then

a(®* 1)\, 0 when [ — o0, [(®* 1)\, 2 when [— cc.

2. Let (—a(M,1),a(M,1)) be the interval in h, for v = 0 and fixed halflength
[, for which the solution M is stable. Then

a(M,l)\,2 when [ — oo.

Homogeneous JJ: 2/ =14

Critical current

External magnetic field

Fig. 9. Bifurcation curves for 2/ = 14
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Fig. 10. Bifurcation curves for 2/ = 30

3. For arbitrary [ the following inequalities hold:
a(®)1) < a(®?,1) < a(®3,0) < ...,
a(M,1/2) = B@",1) < B(P,1) < B®,1) < ...,
1
o) =a (@8 1) sen = (o8 220 ks

2 Mo
m "m+1

4. If for he < 2, v =0 and fixed [ the solution ®F is stable, then &', &2, .
dk—1 are stable as well.

. ey

Let us denote by
Nldl = 5= [ ola)da ©)

the average value of the bound state ¢(x) on the junction [19]. Functional (6)
depends on all of the parameters of the model. In Fig. 11 the dependence N (h.)
for the bifurcation solutions ®~!, M, ®!, ®2 and &3 is presented in the case of
single JJ of full length 2! = 10. The solid lines correspond to 7., = 0, the dashed
ones — t0 vy < 0. Note that for v., = 0 the values of N|[y] are integer numbers:
N[®"] =n, N[M] = 0. When 7, # 0 the following relations are fulfilled:

N[@7]+ N[®"] = 2n, N[M,]+ N[M_]=0,

where the subscripts £ correspond to the sign of ;.

10
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Fig. 11. The number of fluxons in single JJ

The above-mentioned facts can be considered as conservation laws of the
average magnetic flux. So formula (6) determines the admissible number of
fluxons in the solutions of problem (1), having fixed sign of ¢, (z).

CONCLUSIONS

Effective numerical algorithms are worked out for solving the nonlinear sys-
tem of ODE for finding the static distributions of the magnetic flux in N-stacked
JJs, as well as the corresponding matrix Sturm-Liouville problem for studying
their global stability. The developed technique gives a possibility for detailed
investigation of these multiparametric problems. We illustrate its application to
analyze the existence, stability, lack of stability and some physical characteristics
of two types of magnetic flux distributions in three-layered JJs. In addition, some
new numerical and analytical results for one-layered JJs are found.
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