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Mathematical Modeling of a Steady Glass Fiber Drawing Process

A spline differential numerical method is developed for studying the non-
isothermal glass ˇber drawing process. The method is based on the one-dimensional
version of the equations of motion coupled by the heat transfer equation. The effects
of the temperature-dependent viscosity, gravity, surface tension and air drag, as well
as those of axial heat conduction, heat convection and radiative heat transfer are taken
into account. Numerical results for the ˇber radius, axial velocity and temperature
are schown, illustrating the cooling effects of Stanton and radiation numbers.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2008



1. INTRODUCTION

The drawing of glass ˇbers is known (Kase & Matsuo [1], Glicksman [2],
Shah & Pearson [3]) as non-isothermal process. In real conditions, due to different
external and internal sources of disturbances (e.g., draw velocity and temperature
�uctuations, take-up velocity and air-drag variations, etc.), the drawing process
appears as unsteady. The undesirable effect of the disturbances manifests itself
in variations of the ˇber diameter. What is more, at very high extension ratios
the diameter variations become (Gupta et al. [4]) self-sustained and are referred
to as draw resonance.

In a series of papers Onofri et al. [5, 6] developed optical techniques for on-
line measuring of the diameter of small glass ˇbers. The interferometric method
was extended by Onofri et al. [7] for on-line measuring of the drawing tension.
Using these methods, Onofri et al. [8] studied experimentally the weekly unsteady
ˇber drawing regime.

It will be interesting to develop a numerical method for predicting the di-
ameter and tension variations in conditions similar to the drawing experiments in
the above-mentioned papers. Simultaneously, we want to develop a tool for iden-
tifying the origin of the ˇber �uctuations. To do this, we consider the drawing
process as a superposition of a steady state drawing disturbed by small amplitude
perturbations, originated from different external and internal sources.

As a ˇrst step, in the present paper we restrict ourselves to the case of steady
drawing conditions. A spline differential method is proposed for calculating
the radius, velocity and temperature proˇles along the ˇber. The method is
based on one-dimensional equations of motion of the ˇber (Gupta [9]) in which
the effects of the temperature-dependent viscosity, gravity, surface tension and
air drag are taken into account. These equations are coupled by heat transfer
equation for the temperature proˇle in the ˇber, accounting for the effects of
the axial heat conduction, heat convection and radiative heat transfer. Selected
numerical results are shown to demonstrate the role of cooling effects based on
Stanton and radiation numbers.

2. STATEMENT OF THE PROBLEM

Geometrical conˇguration of the ˇber forming process and the correspond-
ing cylindrical coordinate system Orz are shown in Fig. 1. The ˇber �uid is
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Fig. 1. Geometrical conˇguration of the ˇber (sketch)

considered as Newtonian, incompressible and non-isothermal with variable non-
dimensional temperature T and viscosity η(T ). For describing the ˇber dynamics
including the motion of the glass melt jet, one-dimensional equations in the form
adopted by Gupta [9] are used. The latter are written as a system of coupled
one-dimensional continuity, momentum and heat transfer equations, namely:

(AV )′ = 0, (1a)

−AV V ′ +
3
Re

(ηAV ′)′ +
1
Fr

A +
1

We

(√
A

)′
− 2D∗

R
V 2

√
A = 0, (1b)

−AV T ′ +
1
Pe

(AT ′)′ − 2
√

A
[
St∗(T − Ta) + H

(
T 4 − T 4

a

)]
= 0, (1c)

where superscript prime denotes the derivative in respect to the axial coordinate z,
while A(z), V (z) and T (z) Å the cross-section, axial velocity and temperature,
respectively, assumed unknown functions of z. The above equations are written
in non-dimensional form, based on the following characteristic scales: length L in
axial and radius a0 in radial direction, velocity V0, temperature T0 and viscosity
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η0 as deˇned in Table 1 at the end of the paper. Note that the momentum Eq. (1b)
takes into account the effects of axial viscous stress (proportional to 1/Re), gravity
(1/Fr) and surface tension (1/We), where non-dimensional parameters

Re =
ρLV0

η0
, Fr =

V 2
0

gL
, We =

ρa0V
2
0

σ
,

stand for Reynolds, Froude and Weber number, respectively. Also, the last term
in Eq. (1b) accounts for the effect of air drag assumed proportional to the local
drag coefˇcient Cf as follows:

D∗
R = Cf

Lρa

2a0ρ
. (2)

Similarly in heat transfer Eq. (1c) the cooling effects of heat convection, controlled
by local Stanton number St∗ and heat radiation, proportional to the radiation
number H , are included together with the axial heat transfer (proportional to
inverse Peclet number Pe):

St∗ =
hL

ρcpa0V0
, H =

εσSBLT 3
0

ρcpa0V0
, Pr =

cpη0

κ
, Pe = PrRe,

where h denotes the convective heat transfer coefˇcient, Pr is Prandtl number,
while the remaining quantities are given in table. In Eq. (1c) the non-dimensional
temperature of the surrounding air is denoted as Ta = T̂a/T0.

Dimensional parameters of the problem

Input Physico-chemical
properties of the melt

Physico-chemical proper-
ties of the surrounding air

a0 Tip (nozzle) radius cp Speciˇc heat capacity g Gravity acceleration

L Forming zone length k̂ Viscosity exponential κa Thermal conductivity
coefˇcient

T0 Mean temperature ε Hemispherical total μa Viscosity
of the melt emissivity

T̂a Temperature η̂0 Melt viscosity νa Kinematics viscosity
of the ambient air

V0 Mean velocity of the melt κ Thermal conductivity ρa Density
VL Take-up velocity ρ Density

σ Surface tension coefˇcient
σSB StefanÄBoltzmann constant

Following Kase & Matsuo [1], the local Stanton number is expressed as a
function of the local air Reynolds number (Rel = ReaA1/2V ) and as a result is
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related to the local cross-section (radius) and axial velocity in the form

St∗ = StAm−1/2V m,

where

St = 0.2
κaLV0

ρcpν2
a

Rem−2
a

is the ˇxed Stanton number, Rea = a0V0/νa Å air Reynolds number related to
the local nozzle conditions, while typically m = 1/3.

In a similar way the local drag coefˇcient is chosen proportional to local air
Reynolds number in the form proposed by Glicksman [10]

Cf = 0.4
(
Rea

√
AV

)m−1

. (3)

Substituting Eq. (3) into (2), we obtain D∗
R = DR

(√
AV

)m−1

, where

DR = 0.2 (Rea)m−1 Lρa

2a0ρ

is treated as one of the non-dimensional parameters of the problem and referred
to as drag number.

For completing the statement of the problem, the corresponding boundary
conditions should be added. The ˇrst group of the latter follows from the deˇni-
tion of the characteristic scales:

A(0) = 1, V (0) = 1, T (0) = 1. (4)

The second group describes the drawing process at take-up conditions:

V (1) = E, T ′(1) = −2
√

A(1)
{
St∗ [T (1)− Ta] + H

[
T 4(1) − T 4

a

]}
, (5)

where E denotes the extension ratio. Note that the temperature condition in
Eq. (5) is obtained from Eq. (1c) after neglecting the effect of the axial heat
transfer in the take-up zone.

The temperature dependence of the ˇber viscosity in Eq. (1b) is given in
exponential form

η(T ) = exp {−k(T − 1)} ,

where k = k̂T0 is referred to as non-dimensional viscosity exponential coefˇcient.
Finally, the full set of non-dimensional parameters of the problem consists

of E, Re, Fr, We, Pe, St, DR, k, Ta.
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3. NUMERICAL RESULTS AND DISCUSSION

In order to solve non-linear boundary-value problem (1), (4), (5), an algorithm
based on Continuous analog of Newton method (Puzynin et al. [11]) is used. This
method has some important advantages in comparison with the classical one, and
in particular a wider range of convergence. At each iteration the resulting linear
boundary-value problems are solved numerically by means of spline-collocation
scheme of higher order of accuracy (Boyadjiev [12]).

As far as the ˇber drawing process is multi-parametric, it is not realistic to
illustrate the effect of each parameter. Instead, in what follows we concentrate on
the cooling effects due to the heat convection and radiative heat transfer. It should
be noted that the non-dimensional parameters in our calculations are derived from
the Test M1 of Glicksman [2] and read as follows:

Re = 9.03 × 10−2, Fr = 9.89 × 10−7, We = 6.21 × 10−5, St = 0.55,

DR = 0.396, Pe = 7890, H = 3.20, k = 21.7, Ta = 2.04 × 10−2.

Where applicable they correspond to a take-up position located at L ≈ 1 m.
In Fig. 2 the effect of cooling is illustrated by the temperature at take-up

section. As expected, the higher the Stanton number, the closer the take-up
temperature to the surrounding air temperature Ta. Practically for St � 0.8 the
take-up temperature reaches its ˇnal value and then remains unchanged.
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Fig. 2. Take-up temperature versus Stanton number

The full temperature proˇles for selected values of the Stanton number,
arranged in descending order, are shown in Fig. 3. The latter shows that decreasing
Stanton number reduces the temperature gradient because of the decrease of
convective cooling.
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Fig. 3. Fiber temperature proˇles versus axial coordinate for selected values of Stanton
number

For the same Stanton numbers the corresponding axial velocity proˇles are
shown in Fig. 4. At high Stanton numbers (curves 1 and 2 in Fig. 4) the ˇber
forming zone ends far before the take-up point, resulting in constant velocity
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Fig. 4. Fiber velocity proˇles versus axial coordinate for the same Stanton numbers as in
Fig. 3. All curves are calculated for extension ratio E = 157 (like in Figs. 2 and 3)

(resp. in constant radius Å see Fig. 5) out of the forming zone. Further decrease
of the cooling (curve 3) extends the length of the forming zone and the ˇnal
ˇber radius (see Fig. 5) is achieved close to the take-up point. However, an
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Fig. 5. Evolution of ˇber radius versus axial coordinate

additional reduction of the Stanton number changes signiˇcantly the behavior of
curve 4. This is due to the fact that the last portion of the forming zone is
viscous dominated, resulting in an exponential variation of the velocity of the
form V (z) ∼ Ez.

In order to conˇrm the above conclusion, the velocity proˇles in Fig. 6 are
calculated for the same Stanton number (St = 0.08) and extension ratio (E = 157)
but different viscosity exponential coefˇcients. Increasing the latter reduces the
length both of the viscous dominated zone and of the forming zone.

Fig. 6. Effect of the viscous exponential coefˇcient on the forming zone lengths

Another cooling factor acting on the forming zone is the radiation number
H . The effect of the latter on the ˇber radius is demonstrated in Fig. 7. It should
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Fig. 7. Effect of the radiation number on the ˇber radius

be mentioned that the cooling effect of radiation number is less important than
the effect of Stanton number.

4. CONCLUSION

A spline differential numerical method is developed for studying the non-
isothermal glass ˇber drawing process. The method is based on one-dimensional
version of the equations of motion coupled by the heat transfer equation. The
effects of the temperature-dependent viscosity, gravity, surface tension and air
drag, as well as those of axial heat conduction, heat convection and radiative
heat transfer, are taken into account. Numerical results for the ˇber radius, axial
velocity and temperature are shown, illustrating the cooling effects of Stanton and
radiation numbers.

Acknowledgments. This work is partially supported by the National Science
Fund of Bulgaria under Grant No.VU-MI-02/2005 and Soˇa University Scientiˇc
Foundation under Grant No. 135/2008.

The authors are grateful to Prof. I. V. Puzynin (JINR, Dubna, Russia) for
helpful comments.

REFERENCES

1. Kase S., Matsuo T. J., Studies on melt spinning: I. Fundamental equations and the
dynamics of melt spinning // J. Polymer. Sci. 1965. Vol. 18. pp. 3279Ä3304.

2. Glicksman L.R., The dynamics of heated free jet of variable viscosity liquid at low
Reynolds numbers // Trans. ASME, J. Basic. Eng. 1968. Vol. 90. pp. 343Ä359.

8



3. Shah Y. T., Pearson J. R. A., On the stability of non-isothermal ˇbre spinning // Ind.
Eng. Chem. Fundam. 1972. Vol. 11. pp. 145Ä149.

4. Gupta G. K., Schultz W.W., Arruda E.M., Lu X., Non-isothermal model of glass ˇber
drawing stability // Rheol. Acta. 1996. Vol. 35. pp. 584Ä596.

5. Onofri F., Lenoble A., Radev S., Bultynk H., Guering P.H., Marsault N., Interfer-
ometric sizing of single-axis birefringent glass ˇbres // Part. Part. System. Charact.
2003. Vol. 20. pp. 171Ä182.

6. Onofri F., Lenoble A., Bultynk H., Guering P. H., High-resolution laser diffractometry
for the on-line sizing of small transparent ˇbres // Opt. Commun. 2004. Vol. 234.
pp. 183Ä191.

7. Onofri F., Lenoble A., Radev S., Guering P.H., Optical measurement of the drawing
tension of small glass ˇbres // Meas. Sci. Technol. 2004. Vol. 15. pp. 1279Ä1284.

8. Onofri F., Lenoble A., Radev S., Guering P.H., High resolution monitoring of un-
steady glass ˇbre drawing process // Exp. Fluids. 2007. Vol. 42. pp. 601Ä610.

9. Gupta P.K. Glass ˇbers for composite materials // Fiber reinforcements for composite
materials (ed. Bunsell A. R.), New York: Elsevier, 1988. pp. 19Ä71.

10. Glicksman L. R., The cooling of glass ˇbres // Glass Techn. 1968. Vol. 9. No. 5.
pp. 131Ä138.

11. Puzynin I. V. et al., Methods of computational physics for investigation of models of
complex physical systems // Phys. Part. Nucl. 2007. Vol. 38. No. 1. p. 70116.

12. Boyadjiev T. L., Spline-collocation scheme of high order of accuracy. JINR Comm.
P11-2002-101. Dubna, 2002.

Received on November 17, 2008.



�¥¤ ±Éμ· …. ˆ.Š· ¢Î¥´±μ

�μ¤¶¨¸ ´μ ¢ ¶¥Î ÉÓ 24.12.2008.
”μ·³ É 60× 90/16. �Ê³ £  μË¸¥É´ Ö. �¥Î ÉÓ μË¸¥É´ Ö.

“¸². ¶¥Î. ². 0,75. “Î.-¨§¤. ². 1,0. ’¨· ¦ 310 Ô±§. ‡ ± § º 56458.

ˆ§¤ É¥²Ó¸±¨° μÉ¤¥² �¡Ñ¥¤¨´¥´´μ£μ ¨´¸É¨ÉÊÉ  Ö¤¥·´ÒÌ ¨¸¸²¥¤μ¢ ´¨°
141980, £. „Ê¡´ , Œμ¸±μ¢¸± Ö μ¡²., Ê².†μ²¨μ-ŠÕ·¨, 6.

E-mail: publish@jinr.ru
www.jinr.ru/publish/


