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Mathematical Modeling of a Steady Glass Fiber Drawing Process

A spline differential numerical method is developed for studying the non-
isothermal glass fiber drawing process. The method is based on the one-dimensional
version of the equations of motion coupled by the heat transfer equation. The effects
of the temperature-dependent viscosity, gravity, surface tension and air drag, as well
as those of axial heat conduction, heat convection and radiative heat transfer are taken
into account. Numerical results for the fiber radius, axial velocity and temperature
are schown, illustrating the cooling effects of Stanton and radiation numbers.
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1. INTRODUCTION

The drawing of glass fibers is known (Kase & Matsuo [1], Glicksman [2],
Shah & Pearson [3]) as non-isothermal process. In real conditions, due to different
external and internal sources of disturbances (e.g., draw velocity and temperature
fluctuations, take-up velocity and air-drag variations, etc.), the drawing process
appears as unsteady. The undesirable effect of the disturbances manifests itself
in variations of the fiber diameter. What is more, at very high extension ratios
the diameter variations become (Gupta et al. [4]) self-sustained and are referred
to as draw resonance.

In a series of papers Onofri et al. [5,6] developed optical techniques for on-
line measuring of the diameter of small glass fibers. The interferometric method
was extended by Onofri et al. [7] for on-line measuring of the drawing tension.
Using these methods, Onofri et al. [8] studied experimentally the weekly unsteady
fiber drawing regime.

It will be interesting to develop a numerical method for predicting the di-
ameter and tension variations in conditions similar to the drawing experiments in
the above-mentioned papers. Simultaneously, we want to develop a tool for iden-
tifying the origin of the fiber fluctuations. To do this, we consider the drawing
process as a superposition of a steady state drawing disturbed by small amplitude
perturbations, originated from different external and internal sources.

As a first step, in the present paper we restrict ourselves to the case of steady
drawing conditions. A spline differential method is proposed for calculating
the radius, velocity and temperature profiles along the fiber. The method is
based on one-dimensional equations of motion of the fiber (Gupta [9]) in which
the effects of the temperature-dependent viscosity, gravity, surface tension and
air drag are taken into account. These equations are coupled by heat transfer
equation for the temperature profile in the fiber, accounting for the effects of
the axial heat conduction, heat convection and radiative heat transfer. Selected
numerical results are shown to demonstrate the role of cooling effects based on
Stanton and radiation numbers.

2. STATEMENT OF THE PROBLEM

Geometrical configuration of the fiber forming process and the correspond-
ing cylindrical coordinate system Orz are shown in Fig.1. The fiber fluid is
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Fig. 1. Geometrical configuration of the fiber (sketch)

considered as Newtonian, incompressible and non-isothermal with variable non-
dimensional temperature 7" and viscosity 7(T"). For describing the fiber dynamics
including the motion of the glass melt jet, one-dimensional equations in the form
adopted by Gupta [9] are used. The latter are written as a system of coupled
one-dimensional continuity, momentum and heat transfer equations, namely:
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where superscript prime denotes the derivative in respect to the axial coordinate z,
while A(z),V(z) and T'(z) — the cross-section, axial velocity and temperature,
respectively, assumed unknown functions of z. The above equations are written
in non-dimensional form, based on the following characteristic scales: length L in
axial and radius aq in radial direction, velocity Vj, temperature Tj, and viscosity



7o as defined in Table 1 at the end of the paper. Note that the momentum Eq. (1b)
takes into account the effects of axial viscous stress (proportional to 1/Re), gravity
(1/Fr) and surface tension (1/We), where non-dimensional parameters
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stand for Reynolds, Froude and Weber number, respectively. Also, the last term
in Eq. (1b) accounts for the effect of air drag assumed proportional to the local
drag coefficient C'y as follows:
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Similarly in heat transfer Eq. (1c) the cooling effects of heat convection, controlled
by local Stanton number St* and heat radiation, proportional to the radiation
number H, are included together with the axial heat transfer (proportional to
inverse Peclet number Pe):
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where h denotes the convective heat transfer coefficient, Pr is Prandtl number,

while the remaining quantities are given in table. In Eq. (1c) the non-dimensional

temperature of the surrounding air is denoted as T, = T,,/Tj.

Dimensional parameters of the problem

Input Physico-chemical Physico-chemical proper-
properties of the melt ties of the surrounding air
ao | Tip (nozzle) radius ¢p |Specific heat capacity g |Gravity acceleration
L |Forming zone length k | Viscosity exponential Kq |Thermal conductivity
coefficient
To|Mean temperature €  |Hemispherical total Ja | Viscosity
of the melt emissivity
T4 |Temperature Mo |Melt viscosity Vo |Kinematics viscosity
of the ambient air
Vo |Mean velocity of the melt{x  |Thermal conductivity pa |Density
V1, |Take-up velocity p  |Density
o |Surface tension coefficient
os|Stefan—Boltzmann constant

Following Kase & Matsuo [1], the local Stanton number is expressed as a
function of the local air Reynolds number (Re; = ReaAl/ 2V) and as a result is




related to the local cross-section (radius) and axial velocity in the form

St* = StA™ Y2y,

where
oLV
St = 0.2 20 Rey 2
pcpl2

is the fixed Stanton number, Re, = aoVy /v, — air Reynolds number related to
the local nozzle conditions, while typically m = 1/3.

In a similar way the local drag coefficient is chosen proportional to local air
Reynolds number in the form proposed by Glicksman [10]

Cp = 0.4 (Re VAV " (3)
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Substituting Eq. (3) into (2), we obtain D% = Dg, (\/Z V) , where
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is treated as one of the non-dimensional parameters of the problem and referred
to as drag number.

For completing the statement of the problem, the corresponding boundary
conditions should be added. The first group of the latter follows from the defini-
tion of the characteristic scales:

A0)=1, V(0)=1, T(0)=1. 4)
The second group describes the drawing process at take-up conditions:

V(1)=E, T'(1)=-2/AQ){St"[T(1)-T,)+ H [T*(1) - TS|}, )

where E denotes the extension ratio. Note that the temperature condition in
Eq. (5) is obtained from Eq. (lc) after neglecting the effect of the axial heat
transfer in the take-up zone.

The temperature dependence of the fiber viscosity in Eq. (1b) is given in
exponential form

n(T) = exp{—k(T - 1)},

where k = kT, is referred to as non-dimensional viscosity exponential coefficient.

Finally, the full set of non-dimensional parameters of the problem consists
of E, Re, Fr, We, Pe, St, Dy, k,T,.



3. NUMERICAL RESULTS AND DISCUSSION

In order to solve non-linear boundary-value problem (1), (4), (5), an algorithm
based on Continuous analog of Newton method (Puzynin et al. [11]) is used. This
method has some important advantages in comparison with the classical one, and
in particular a wider range of convergence. At each iteration the resulting linear
boundary-value problems are solved numerically by means of spline-collocation
scheme of higher order of accuracy (Boyadjiev [12]).

As far as the fiber drawing process is multi-parametric, it is not realistic to
illustrate the effect of each parameter. Instead, in what follows we concentrate on
the cooling effects due to the heat convection and radiative heat transfer. It should
be noted that the non-dimensional parameters in our calculations are derived from
the Test M1 of Glicksman [2] and read as follows:

Re=9.03x1072, Fr=989x10"", We=6.21x10"°, St=0.55,
Dr=0.396, Pe=7890, H =320, k=217, T,=2.04x10"2

Where applicable they correspond to a take-up position located at L ~ 1 m.

In Fig.2 the effect of cooling is illustrated by the temperature at take-up
section. As expected, the higher the Stanton number, the closer the take-up
temperature to the surrounding air temperature 7;. Practically for St > 0.8 the
take-up temperature reaches its final value and then remains unchanged.
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Fig. 2. Take-up temperature versus Stanton number

The full temperature profiles for selected values of the Stanton number,
arranged in descending order, are shown in Fig. 3. The latter shows that decreasing
Stanton number reduces the temperature gradient because of the decrease of
convective cooling.
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Fig. 3. Fiber temperature profiles versus axial coordinate for selected values of Stanton
number

For the same Stanton numbers the corresponding axial velocity profiles are
shown in Fig.4. At high Stanton numbers (curves 1 and 2 in Fig.4) the fiber
forming zone ends far before the take-up point, resulting in constant velocity
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Fig. 4. Fiber velocity profiles versus axial coordinate for the same Stanton numbers as in
Fig.3. All curves are calculated for extension ratio &/ = 157 (like in Figs.2 and 3)

(resp. in constant radius — see Fig. 5) out of the forming zone. Further decrease
of the cooling (curve 3) extends the length of the forming zone and the final
fiber radius (see Fig.5) is achieved close to the take-up point. However, an
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Fig. 5. Evolution of fiber radius versus axial coordinate

additional reduction of the Stanton number changes significantly the behavior of
curve 4. This is due to the fact that the last portion of the forming zone is
viscous dominated, resulting in an exponential variation of the velocity of the
form V(z) ~ E*.

In order to confirm the above conclusion, the velocity profiles in Fig.6 are
calculated for the same Stanton number (St = 0.08) and extension ratio (E = 157)
but different viscosity exponential coefficients. Increasing the latter reduces the
length both of the viscous dominated zone and of the forming zone.
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Fig. 6. Effect of the viscous exponential coefficient on the forming zone lengths

Another cooling factor acting on the forming zone is the radiation number
H. The effect of the latter on the fiber radius is demonstrated in Fig. 7. It should
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Fig. 7. Effect of the radiation number on the fiber radius

be mentioned that the cooling effect of radiation number is less important than
the effect of Stanton number.

4. CONCLUSION

A spline differential numerical method is developed for studying the non-
isothermal glass fiber drawing process. The method is based on one-dimensional
version of the equations of motion coupled by the heat transfer equation. The
effects of the temperature-dependent viscosity, gravity, surface tension and air
drag, as well as those of axial heat conduction, heat convection and radiative
heat transfer, are taken into account. Numerical results for the fiber radius, axial
velocity and temperature are shown, illustrating the cooling effects of Stanton and
radiation numbers.
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