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The temperature dependence of the liquid-drop ˇssion barrier is considered, the
critical temperature for the liquidÄgas phase transition in nuclear matter being a
parameter. Experimental and calculated data on the ˇssion probability are compared
for highly excited 188Os. The calculations have been made in the framework of
the statistical model. It is concluded that the critical temperature for the nuclear
liquidÄgas phase transition is higher than 16 MeV.

The investigation has been performed at the Flerov Laboratory of Nuclear Reac-
tions, JINR.
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1. INTRODUCTION

The critical temperature for the liquidÄgas phase transition is a crucial char-
acteristic related to the nuclear equation of state. There are many calculations
of Tc for ˇnite nuclei. In [1Ä5], it is done by using a Skyrme effective in-
teraction and the thermal HartreeÄFock theory. The values of Tc were found
to be in the range 10Ä20 MeV depending upon the chosen interaction para-
meters and the details of the model. In [6, 7] the thermostatic properties of
nuclei are considered employing the semi-classical nuclear model, based on the
SeylerÄBlanchard interaction. The value of critical temperature is estimated to be
Tc = 16.66 MeV.

As the temperature of a nucleus increases, the surface tension decreases and
then vanishes at Tc. For temperatures below critical, two distinct nuclear phases
coexist Å liquid and gas. Beyond Tc there is not two phase equilibrium, only
nuclear vapor exists.

The main source of the experimental information for Tc is the yield of inter-
mediate mass fragments. In some statistical models of nuclear multi-fragmentation
the shape of the IMF charge distribution, Y (Z), is sensitive to the ratio T/Tc.
It was noted in the earlier papers that the fragment charge distribution is well
described by the power law, Y (Z) ∼ Z−τ [8], as predicted by the classical
Fisher droplet model for the vicinity of the critical point [9]. In [8] the crit-
ical temperature was estimated to be ∼ 5 MeV simply from the fact that the
IMF mass distribution is well described by a power law for the collision of p
(80Ä350 GeV) with Kr and Xe. In the paper [10] the experimental data were
gathered for different colliding systems to get the temperature dependence of the
power law exponent. The temperature was derived from the inverse slope of the
fragment energy spectra in the range of the high-energy tail. The minimal value
of τ was obtained at T = 11−12 MeV, which was claimed as Tc. The later
data smeared out this minimum. Moreover, it became clear that the ®slope¯ tem-
perature for fragments does not coincide with the thermodynamic one, which is
signiˇcantly smaller. A more sophisticated use of Fisher's model has been made
in [11]. The model is modiˇed by including the Coulomb energy release, when
a particle moves from the liquid to the vapor. The data for multi-fragmentation
in π (8 GeV/c) + Au collisions were analyzed. The extracted critical temperature
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was (6.7 ± 0.2) MeV. The same analysis technique was applied for collisions of
Au, La, Kr (at 1.0 GeV per nucleon) with a carbon target [12]. The extracted
values of Tc are (7.6 ± 0.2), (7.8 ± 0.2) and (8.1 ± 0.2) MeV, respectively.

Signiˇcantly higher critical temperature, (16.6 ± 0.86) MeV, was obtained
in [13] by semi-empirical analysis of the data for the ®limiting temperatures¯ of
fragmenting systems. Authors of [13] interpreted the obtained value as Tc for the
symmetric nuclear matter.

Having in mind the shortcomings of Fisher's model [14, 15] we have esti-
mated the nuclear critical temperature in the framework of the statistical multi-
fragmentation model, SMM [16]. This model describes well the different prop-
erties of thermal disintegration of target spectators produced in collisions of
relativistic light ions. The intermediate mass fragment (IMF) yield depends on
the contribution of the surface free energy to the entropy of a given ˇnal state.
The surface tension coefˇcient of hot nuclei depends on the critical temperature.
The comparison of the measured and calculated IMF charge yields provides a
way to estimate Tc. It was found from the analysis of the fragment charge dis-
tributions for the p (8.1 GeV)+Au reaction that Tc = (20 ± 3) MeV [17]. In the
next paper by the FASA collaboration [18] the value Tc = (17 ± 2) MeV was
obtained from an analysis of the same data using a slightly different separation
of the events.

Thus, the different experimental estimations of the critical temperature from
fragmentation data are very controversial. This is a reason to look for other
observables which are sensitive to the critical temperature for the liquidÄgas
phase transition. It was suggested in [19] to analyze the temperature depen-
dence of the ˇssion probability to estimate Tc. Note, that Silva et al. [20]
explain why the power law used in the Fisher droplet model gives a spurious
value for Tc.

2. TEMPERATURE DEPENDENCE OF FISSION BARRIER

The ˇssility of heavy nuclei is determined by the ratio of the Coulomb and
surface free energies: the larger the ratio, the smaller the ˇssion barrier. As
the temperature approaches the critical one from below, the surface tension (and
surface energy) gradually decreases, and the ˇssion barrier becomes lower. Thus,
the measurement of ˇssion probabilities for different excitation energies allows an
estimate of how far the system is from the critical point. Temperature effects in
the ˇssion barrier have been considered in a number of theoretical studies based
on different models (see, e.g., [1,21Ä26]. The effect is so large for hot nuclei that
the barrier vanishes, in fact, at temperatures of 4Ä6 MeV for critical temperature
Tc in the range 15Ä18 MeV.
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In terms of the standard liquidÄdrop conventions [27], the ˇssion barrier can
be represented as a function of temperature by the following relation:

Bf (T, Ts) = Es(Ts) − E0
s (T ) + Ec(Ts) − E0

c (T ) =

= E0
s (T ) [(Bs − 1) + 2x(T ) · (Bc − 1)] . (1)

Here Bs is the surface (free) energy at the saddle point in units of surface
energy Eo

s (T ) of a spherical drop; Bc is the Coulomb energy at the saddle
deformation in units of Coulomb energy Eo

c (T ) of the spherical nucleus; Ts and
T are temperatures for the saddle and ground state conˇgurations. For the surface
energy and the ˇssility parameter x(T ), one can write [21]:

E0
s (T ) = E0

S(0)
σ(T )
σ(0)

[
ρ(0)
ρ(T )

]2/3

, x(T ) =
E0

c (T )
2E0

s(T )
= x(0)

ρ(T )σ(0)
ρ(0)σ(T )

, (2)

where σ(T ) and ρ(T ) are the surface tension and the mean nuclear density for a
given temperature. Equation (1) can be written as

Bf (T, Ts) = Bf (Ts) + ΔBf , (3)

where ΔBf = E0
s (Ts)−E0

s (T )+E0
c (Ts)−E0

c (T ). Here Bf (Ts) is ˇssion barrier
calculated under assumption that Ts = T . In that case the values Bs and Bc are
determined by the deformation at the saddle point, which depends on the ˇssility
parameter x(T ). These quantities were tabulated by Nix [27] for the full range
of the ˇssility parameter. The value of ΔBf is determined by the surface and
Coulomb energies of a spherical drop, and can be easily calculated. For σ(T ) we
use the approximation

σ(T ) = σ(0)
[
T 2

c − T 2

T 2
c + T 2

]5/4

. (4)

This equation obtained in [28] was devoted to the consideration of thermo-
dynamic properties of a plane interface between liquid and gaseous phases of
nuclear matter in equilibrium. This parameterization is successfully used by the
SMM for describing the multi-fragment decay of hot nuclei. Figure 1 shows the
different approximations used in the literature for the surface tension coefˇcient
as a function of T/Tc.

Curve number 2 was calculated in the framework of semi-classical model,
based on the SeylerÄBlanchard interaction [7]. An analytical expression for σ(T )
obtained in this paper is the following:

σ(T ) = σ(0)
(

1 + 1.5
T

Tc

) (
1 − T

Tc

)1.5

. (5)
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Fig. 1. The calculated coefˇcient of the surface tension as a function of T/Tc: curves 1
and 2 are obtained according to Eqs. (4) and 5), curves 3, 4 are for linear and quadratic
parameterizations of σ(T ). The symbols are taken from [1]

Two other parameterization of σ(T ) are also presented: linear ∼ (1 − T/Tc),
which is used in the analysis with the Fisher droplet model [11,12], and quadratic
∼ (1 − T/Tc)2 [29].

In accordance with [27], the expressions for E0
s (0) and x(0) are taken to be

E0
s (0) = 17, 9439γ · A2/3 MeV, x(0) =

Z2/A

50.88γ
, (6)

where γ = 1−1.7826
[

N−Z
A

]2
. Sauer et al. [1] investigated the thermal properties

of nuclei by using the HartreeÄFock approximation with the Skyrme force. The
equation of state was obtained, which gives the critical temperature Tc ≈ 18 MeV
for ˇnite nuclei. The temperature dependence of the mean nuclear density was
found to be ρ(T ) = ρ(0)(l − αT 2), where α = 1.26 · 10−3 MeV−2. In the
following we shall use this ˇnding for ρ(T ).

Figure 2 shows the relative values of the ˇssility parameter x(T ) for 188Os
calculated as a function of reduced temperature T/Tc. This nucleus has been
chosen since the results can be compared with well-known experimental data for
this nucleus [30]. The calculations are performed for the different versions of
σ(T ) mentioned above. A drastic change of nuclear ˇssility is expected even
halfway to the critical point.

Figure 3 displays the calculated value of the liquidÄdrop ˇssion barrier for
188Os as a function of relative temperature. Virtually, the barrier vanishes for
T > 0.4Tc if the surface tension is taken according to (4) and (5). For the linear
and quadratic approximations of σ(T ) the reduction of the ˇssion barrier with
temperature is much faster.
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Fig. 2. Relative value of ˇssility parameter, calculated for 188Os as a function of relative
temperature for different parameterization of surface tension. Meaning of the curves is
explained in caption of Fig. 1

Fig. 3. Temperature dependence of liquidÄdrop ˇssion barrier for 188Os. The meaning of
the curves is explained in caption of Fig. 1

3. THE ESTIMATION OF FISSION PROBABILITY

In this section we analyze the experimental data on the ˇssion probability
of 188Os, produced in collisions 4He+184W [30]. The excitation energy of the
compound nucleus created at the highest beam energy is 117 MeV. The shell and
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pairing effects are predicted to disappear for such a hot nucleus; therefore the
ˇssion barrier is expected to be the liquidÄdrop one. This barrier is temperature-
dependent. Comparison of the measured and model calculated ˇssion probabilities
provides a way to estimate the critical temperature Tc.

Experimentally the ˇssion probability Wf can be found from the measured
ˇssion cross section σf :

Wf = σf/σR, (7)

where σR is total reaction cross section. The main decay mode of the compound
nucleus in 4He+184W collisions is the sequential emission of neutrons. For the
highest excitation energy the mean number of emitted neutrons is 11Ä12. The
mean ˇssion probability during a neutron cascade of x steps can be calculated by
the following equation:

Wf = 1 −
x∏

i=1

[
1 − Γf (Ai, Zi, E

∗
i )

Γtot(Ai, Zi, E∗
i )

]
. (8)

The ratio Γf/Γtot is the relative ˇssion width for the i-step of the cascade.
According to the statistical model [31] the value of Γf is calculated as

Γf (E∗
i , Ii) =

1
2π · ρ(Ui)

Ui−Bfi∫
0

ρS(Ui − Bfi − ε)dε. (9)

Here U is the thermal part of excitation energy E∗, ρ(U) is the level density,
the index s is used for the saddle conˇguration. It is natural to use in (3)
the temperature-dependent ˇssion barrier as has been done in [21Ä26]. The
problem was considered also in [32]. The neutron width is given by the following
equation [33]:

Γn(E∗
i , Ii) =

2(2Sn + 1)mn

π2h3ρi(Ui)

Ui−Bni∫
0

σn(En)ρi(Ui − Bni − En)EndEn. (10)

Here Bni, En, Sn are binding, kinetic energies and spin of the neutron,
σn(En) is the neutron capture cross section for the inverse reaction. The contri-
bution of charged particle evaporation is on the level of several percent of Γtot.
Nevertheless it has been taken into account. For level density ρ(U) the Fermi-gas
model is used.

Figure 4 presents the comparison of the data for ˇssility of 188Os as a function
of excitation energy [30] with calculations under the assumption that the surface
tension is described by Eq. (4). The critical temperature is a parameter that can
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Fig. 4. Fission probability of 188Os as a function of the excitation energy: dots are
data [30], curves are calculated assuming different values of critical temperature. Surface
tension is taken according to Eq. (4)

Fig. 5. Fission probabilities for 188Os at excitation energy 40 MeV. The calculated values
(curves) are given as a function of the assumed critical temperature. Different parameter-
izations of surface tension are used (see Fig. 1). The experimental value is shown by the
horizontal band

be found from the best ˇt. It is done for the highest excitation energy available,
where the temperature dependence of the ˇssion barrier is more prominent.

The result is demonstrated in Fig. 5. Different calculations are presented,
which have been done using all the parameterization of the surface tension men-
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tioned above. It seems clear that the linear and quadratic approximations for σ(T )
should be excluded as unrealistic. Fission probabilities, calculated with Eqs. (4)
and (5) fall rather fast with increasing the critical temperature. They are crossing
the experimental band giving the following values of critical temperature: Tc ≈
(19.5 ± 1.2) MeV in the ˇrst case, and at Tc ≈ (16.5 ± 1.0) MeV for the use of
Eq. (5). This is in accordance with the value of the critical temperature obtained
by the FASA collaboration from multi-fragmentation data. These values are only
slightly changed when the shell effect is taken into account for the last steps of
the neutron cascade.

4. CONCLUSION

Critical temperature for the nuclear liquidÄgas phase transition has been esti-
mated from the ˇssion probability of the highly excited nucleus 188Os. Analysis
is made under different assumptions about the temperature dependence of nuclear
surface tension. The results presented here provide strong support for the value
Tc � 16 MeV.
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