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‘¶¨´μ¢Ò¥ ±μ··¥²ÖÍ¨¨ ¢ ¸¨¸É¥³ Ì ΛΛ ˆ ΛΛ̄, ·μ¦¤¥´´ÒÌ ¶·¨ ¸Éμ²±´μ¢¥´¨ÖÌ
·¥²ÖÉ¨¢¨¸É¸±¨Ì ÉÖ¦¥²ÒÌ ¨μ´μ¢

�´ ²¨§¨·ÊÕÉ¸Ö ¸¶¨´μ¢Ò¥ ±μ··¥²ÖÍ¨¨ ¤²Ö ¶ · ΛΛ ¨ ΛΛ̄, ·μ¦¤¥´´ÒÌ ¶·¨ ¸Éμ²±-
´μ¢¥´¨¨ ·¥²ÖÉ¨¢¨¸É¸±¨Ì ÉÖ¦¥²ÒÌ ¨μ´μ¢, ¨ ¸¢Ö§ ´´Ò¥ ¸ ´¨³¨ Ê£²μ¢Ò¥ ±μ··¥²ÖÍ¨¨ ¶·¨
¸μ¢³¥¸É´μ° ·¥£¨¸É· Í¨¨  ¤·μ´´ÒÌ · ¸¶ ¤μ¢ ¤¢ÊÌ £¨¶¥·μ´μ¢, ¢ ±μÉμ·ÒÌ ´¥ ¸μÌ· ´Ö¥É¸Ö
¶·μ¸É· ´¸É¢¥´´ Ö Î¥É´μ¸ÉÓ. Šμ³¶μ´¥´ÉÒ ±μ··¥²ÖÍ¨μ´´μ£μ É¥´§μ·  ³μ£ÊÉ ¡ÒÉÓ ´ °¤¥´Ò
¶μ ¤¢μ°´μ³Ê Ê£²μ¢μ³Ê · ¸¶·¥¤¥²¥´¨Õ ¶·μ¤Ê±Éμ¢ ¤¢ÊÌ · ¸¶ ¤μ¢ ³¥Éμ¤μ³ ®³μ³¥´Éμ¢¯. �¡-
¸Ê¦¤ ÕÉ¸Ö ¸¢μ°¸É¢  ®¸²¥¤ ¯ ±μ··¥²ÖÍ¨μ´´μ£μ É¥´§μ·  (¸Ê³³Ò É·¥Ì ¤¨ £μ´ ²Ó´ÒÌ ±μ³-
¶μ´¥´É), μ¶·¥¤¥²ÖÕÐ¥£μ μÉ´μ¸¨É¥²Ó´Ò¥ Ë· ±Í¨¨ É·¨¶²¥É´ÒÌ ¨ ¸¨´£²¥É´μ£μ ¸μ¸ÉμÖ´¨°
¸μμÉ¢¥É¸É¢ÊÕÐ¨Ì ¶ ·. ‘¶¨´μ¢Ò¥ ±μ··¥²ÖÍ¨¨ ¤²Ö ¤¢ÊÌ Éμ¦¤¥¸É¢¥´´ÒÌ Î ¸É¨Í (ΛΛ) ¨
¤¢ÊÌ ´¥Éμ¦¤¥¸É¢¥´´ÒÌ Î ¸É¨Í (ΛΛ̄) · ¸¸³ É·¨¢ ÕÉ¸Ö ¸ ÉμÎ±¨ §·¥´¨Ö μ¡Ð¥¶·¨´ÖÉμ° ³μ-
¤¥²¨ μ¤´μÎ ¸É¨Î´ÒÌ ¨¸ÉμÎ´¨±μ¢. ‚ · ³± Ì ÔÉμ° ³μ¤¥²¨ ¶·¨ ¤μ¸É ÉμÎ´μ ¡μ²ÓÏ¨Ì μÉ-
´μ¸¨É¥²Ó´ÒÌ ¨³¶Ê²Ó¸ Ì ±μ··¥²ÖÍ¨¨ ¨¸Î¥§ ÕÉ. �¤´ ±μ ¢ ÔÉ¨Ì Ê¸²μ¢¨ÖÌ ¢ ¸²ÊÎ ¥ ¤¢ÊÌ
´¥Éμ¦¤¥¸É¢¥´´ÒÌ Î ¸É¨Í (ΛΛ̄) § ³¥É´ÊÕ ·μ²Ó ¨£· ÕÉ ¤¢ÊÌÎ ¸É¨Î´Ò¥  ´´¨£¨²ÖÍ¨μ´´Ò¥
(¤¢ÊÌ±¢ ·±μ¢Ò¥, ¤¢ÊÌ£²Õμ´´Ò¥) ¨¸ÉμÎ´¨±¨, ¶·¨¢μ¤ÖÐ¨¥ ± μÉ²¨Î¨Õ ±μ··¥²ÖÍ¨μ´´μ£μ É¥´-
§μ·  μÉ ´Ê²Ö. ‚ Î ¸É´μ¸É¨, É ± Ö ¸¨ÉÊ Í¨Ö ³μ¦¥É ¢μ§´¨±´ÊÉÓ ¶·¨ ¶·μÌμ¦¤¥´¨¨ ¸¨¸É¥³Ò
Î¥·¥§ ®¸³¥Ï ´´ÊÕ Ë §Ê¯.
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Spin Correlations in the ΛΛ and ΛΛ̄ Systems Generated in Relativistic
Heavy Ion Collisions

Spin correlations for the ΛΛ and ΛΛ̄ pairs, generated in relativistic heavy ion collisions,
and related angular correlations at the joint registration of hadronic decays of two hyperons,
in which space parity is not conserved, are analyzed. The correlation tensor components can
be derived from the double angular distribution of products of two decays by the method
of ®moments¯. The properties of the ®trace¯ of the correlation tensor (a sum of three
diagonal components), determining the relative fractions of the triplet states and singlet state
of respective pairs, are discussed. Spin correlations for two identical particles (ΛΛ) and two
non-identical particles (ΛΛ̄) are considered from the viewpoint of the conventional model of
one-particle sources. In the framework of this model, correlations vanish at sufˇciently large
relative momenta. However, under these conditions, in the case of two non-identical particles
(ΛΛ̄) a noticeable role is played by two-particle annihilation (two-quark, two-gluon) sources,
which lead to the difference of the correlation tensor from zero. In particular, such a situation
may arise when the system passes through the ®mixed phase¯.

The investigation has been performed at the Veksler and Baldin Laboratory of High
Energy Physics and the Frank Laboratory of Neutron Physics, JINR.
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1. INTRODUCTION

Spin correlations for the ΛΛ and ΛΛ̄ pairs, generated in heavy ion collisions,
and respective angular correlations at the joint registration of hadronic decays of
two hyperons with space parity nonconservation give important information about
the character and mechanism of multiple processes. The advantage of the ΛΛ and
ΛΛ̄ systems over other ones is due to the fact that the P -odd decays Λ → p+π−

and Λ̄ → p̄+π+ serve as effective analyzers of spin state of the Λ and Λ̄ particles.
In connection with this, spin correlations in the ΛΛ and ΛΛ̄ systems can be rather
easily distinguished and studied experimentally by the method of ®moments¯ over
the background of a large amount of produced secondary particles. This fact is
especially meaningful for the investigations of multiple generation at modern and
future ion colliders like RHIC, LHC, NICA, since the polarization parameters Å
especially for the ΛΛ̄ pair Å are very sensitive to the scenario of process after
the act of collision of relativistic heavy ions.

2. GENERAL STRUCTURE OF THE SPIN DENSITY MATRIX
OF THE PAIRS ΛΛ AND ΛΛ̄

The spin density matrix of the ΛΛ and ΛΛ̄ pairs, just as the spin density
matrix of two spin-1/2 particles in general, can be presented in the following
form [1, 2, 3]:

ρ̂(1,2) =
1
4

[
Î(1) ⊗ Î(2) + (σ̂(1)P1) ⊗ Î(2)+

+ Î(1) ⊗ (σ̂(2)P2) +
3∑

i=1

3∑
k=1

Tikσ̂
(1)
i ⊗ σ̂

(2)
k

]
; (1)

in doing so, tr(1,2)ρ̂
(1,2) = 1.

Here Î is the two-row unit matrix, σ = (σ̂x σ̂y, σ̂z) is the vector Pauli operator
(x, y, z → 1, 2, 3), P1 and P2 are the polarization vectors of ˇrst and second

particle (P1 = 〈σ̂(1)〉, P2 = 〈σ̂(2)〉), Tik = 〈σ̂(1)
i ⊗σ̂

(2)
k 〉 are the correlation tensor
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components. In the general case Tik �= P1i P2k . The tensor with components
Cik = Tik − P1iP2k describes the spin correlations of two particles.

The respective one-particle density matrices are as follows:

ρ̂(1) =
1
2

(Î(1) + P1σ̂
(1)),

ρ̂(2) =
1
2

(Î(2) + P2σ̂
(2)).

(2)

The trace of the correlation tensor is T = Txx + Tyy + Tzz = 〈σ̂(1) ⊗ σ̂(2)〉.
The eigenvalues of the operator σ̂(1) ⊗ σ̂(2) equal λt = 1 for three triplet states
(total spin S = 1) and λs = −3 for the singlet state (total spin S = 0).

Let us introduce the operators of projection onto the triplet states and onto
the singlet state:

P̂t =
3 + σ̂(1) ⊗ σ̂(2)

4
; P̂s =

1 − σ̂(1) ⊗ σ̂(2)

4
. (3)

The following matrix equalities are satisˇed:

P̂ 2
t = P̂t; P̂ 2

s = P̂s; P̂tP̂s = P̂sP̂t = 0.

For all the purely triplet states the ®trace¯ of the correlation tensor T = 1,
whereas for the purely singlet state T = −3.

Now let us introduce the operator of permutation of spin projections, having
the form

P̂ (1,2) =
1
2
(Î(1) ⊗ Î(2) + σ̂(1) ⊗ σ̂(2)). (4)

Then we obtain

P̂ (1,2)P̂t = P̂tP̂
(1,2) = +P̂t; P̂ (1,2)P̂s = P̂sP̂

(1,2) = −P̂s. (5)

The eigenvalues of P̂ (1,2) equal +1 for the three triplet states and −1 for the
singlet state.

The two-particle spin density matrix (1) may be decomposed into the triplet,
singlet and the ®mixed¯ singlet-triplet parts:

ρ̂(1,2) = ρ̂t + ρ̂s + ρ̂ts + ρ̂st, (6)

in doing so,

ρ̂t = P̂t ρ̂(1,2)P̂t; ρ̂s = P̂s ρ̂(1,2)P̂s;

ρ̂ts = P̂t ρ̂(1,2)P̂s; ρ̂st = P̂s ρ̂(1,2)P̂t.
(7)
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The relative fraction of the triplet states amounts to

Wt = tr ρ̂t = tr(P̂tρ̂
(1,2)P̂t) = tr(P̂tρ̂

(1,2)) =
3 + T

4
, (8)

and the relative fraction of the singlet state amounts to

Ws = tr ρ̂s = tr(P̂sρ̂
(1,2)P̂s) = tr(P̂sρ̂

(1,2)) =
1 − T

4
; (9)

in doing so,

Wt + Ws = 1; T = Wt − 3Ws = 1 − 4Ws. (10)

Due to the orthogonality of the projection matrices P̂t and P̂s, the following
relation holds:

tr ρ̂ts = tr ρ̂st = tr (ρ̂(1,2)P̂sP̂t) = 0.

There are also some matrix equalities containing the operator of permutation
of spin projections P̂ (1,2):

P̂ (1,2)ρ̂tP̂
(1,2) = +ρ̂t; P̂ (1,2)ρ̂sP̂

(1,2) = +ρ̂s;

P̂ (1,2)ρ̂tsP̂
(1,2) = −ρ̂ts; P̂ (1,2)ρ̂stP̂

(1,2) = −ρ̂st.
(11)

It should be noted that the matrices ρ̂t and ρ̂s incorporate only symmetric
combinations of spin operators of two particles, whereas the matrices ρ̂ts and ρ̂st

include only antisymmetric combinations of spin operators.
The explicit formulas for the triplet (ρ̂t), singlet (ρ̂s) and ®mixed¯ (ρ̂ts, ρ̂st)

components of the spin density matrix are as follows:

ρ̂t =
1
4

[
3 + T

4
Î(1) ⊗ Î(2) + (σ̂(1) ⊗ Î(2) + Î(1) ⊗ σ̂(2))

P1 + P2

2
+

+
3∑

i=1

3∑
k=1

σ̂
(1)
i ⊗ σ̂

(2)
k

(
Tik + Tki

2
+

1 − T

4
δik

)]
; (12)

ρ̂s =
1
4

1 − T

4
(Î(1) ⊗ Î(2) − σ̂(1) ⊗ σ̂(2)); (13)

ρ̂+ = ρ̂ts + ρ̂st =
1
4

[
(σ̂(1) ⊗ Î(2) − Î(1) ⊗ σ̂(2))

P1 − P2

2
+

+
3∑

i=1

3∑
k=1

σ̂
(1)
i ⊗ σ̂

(2)
k

Tik − Tki

2

]
(i �= k), (14)
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ρ̂− = ρ̂ts − ρ̂st = − i

4

[
3∑

i=1

3∑
k=1

3∑
l=1

εikl σ̂
(1)
i ⊗ σ̂

(2)
k (P1;l − P2;l)+

+
3∑

i=1

3∑
k=1

3∑
l=1

εikl (σ̂(1)
i ⊗ Î(2) − Î(1) ⊗ σ̂

(2)
i )P1;k P2;l

]
, (15)

where εikl is the totally antisymmetric tensor of the 3rd rank.
In doing so, the matrices ρ̂t, ρ̂s and ρ̂+ are Hermitian and the matrix ρ̂− is

anti-Hermitian.
If the ˇrst particle and second particle have different relativistic momenta,

the polarization vectors P1, P2 and the correlation tensor components with ®left¯
and ®right¯ indices are speciˇed, respectively, in the rest frames of the ˇrst
and second particle Å in the uniˇed coordinate axes of the c.m. frame of two
particles.

3. SPIN CORRELATIONS AND ANGULAR CORRELATIONS
AT JOINT REGISTRATION OF DECAYS

OF TWO Λ PARTICLES INTO THE CHANNEL Λ → p + π−

Any decay with the space parity nonconservation may serve as an analyzer
of spin state of the unstable particle [3].

The normalized angular distribution at the decay Λ → p+π− takes the form:

dw(n)
d Ωn

=
1

4 π
(1 + αΛPΛ n). (16)

Here PΛ is the polarization vector of the Λ particle, n is the unit vector
along the direction of proton momentum in the rest frame of the Λ particle,
αΛ is the coefˇcient of P -odd angular asymmetry (αΛ = 0.642). The decay
Λ → p + π− selects the projections of spin of the Λ particle onto the direction of
proton momentum; the analyzing power equals ξ = αΛn.

Now let us consider the double angular distribution of �ight directions for
protons formed in the decays of two Λ particles into the channel Λ → p + π−,
normalized by unity (the analyzing powers are ξ1 = αΛn1, ξ2 = αΛn2). It is
described by the following formula [2, 3]:

d2w(n1,n2)
d Ωn1 d Ωn2

=
1

16 π2

[
1 + αΛP1 n1 + αΛP2 n2 + α2

Λ

3∑
i=1

3∑
k=1

Tikn1in2k

]
,

(17)
where P1 and P2 are polarization vectors of the ˇrst and second Λ particle, Tik

are the correlation tensor components, n1 and n2 are unit vectors in the respective
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rest frames of the ˇrst and second Λ particle, deˇned in the common (uniˇed)
coordinate axes of the c.m. frame of the pair (i, k = {1, 2, 3} = {x, y, z}).

Using the method of moments, the components of polarization vectors and
correlation tensor may be determined as a result of averaging combinations of
trigonometric functions of angles of proton �ight over the double angular distri-
bution [2, 3]:

P1i =
3

αΛ
〈n1i〉, P2k =

3
αΛ

〈n2k〉, Tik =
9

α2
Λ

〈n1in2k〉. (18)

Here

〈....〉 ≡
∫

(....)
(

d2 w(n1,n2)
d Ωn1 d Ωn2

)
d Ωn1 d Ωn2 ; (19)

n1x = sin θ1 cosφ1; n1y = sin θ1 sin φ1; n1z = cos θ1;
n2x = sin θ2 cosφ2; n2y = sin θ2 sin φ2; n2z = cos θ2,

(20)

where θ1 and φ1, θ2 and φ2 are the polar and azimuthal angles of emission
of protons in the rest frames of the ˇrst and second Λ particle, respectively,
with respect to the uniˇed system of coordinate axes; d Ωn1 = sin θ1dθ1dφ1 and
d Ωn2 = sin θ2dθ2dφ2 are the elements of solid angles of proton emission.

The double angular distribution may be integrated over all angles except the
angle θ between the vectors n1 and n2:

cos θ = n1n2 = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2). (21)

At this integration, the solid angle element d Ωn2 can be deˇned, without
losing generality, in the coordinate frame with the axis z being parallel to the
vector n1, and the solid angle element d Ωn1 is deˇned in the coordinate frame
where the polarization parameters are speciˇed:

d Ωn2 = sin θ dθ dφ, d Ωn1 = sin θ1 dθ1 dφ1,

here φ is the azimuthal angle of rotation of the vector n2 around the vector n1.
So, the angular correlation between the proton momenta at the decays of two

Λ particles is expressed as follows:

dw(cos θ) =
(∫

d2 w(n1,n2)
d Ωn1 d Ωn2

dφd Ωn1

)
sin θdθ. (22)

In doing so,

n1 =
1

8π2

∫
n1 dφ d Ωn1 = 0, n2 =

1
8π2

∫
n2 dφ d Ωn1 = 0,

n1i n2k =
1

8π2

∫
n1i n2k dφ d Ωn1 =

1
3

cos θ δik.

(23)
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The angular correlation, being described by the formula [2, 3, 4, 5]

dw(cos θ) =
1
2

( 1 +
1
3

α2
ΛT cos θ) sin θd θ, (24)

is determined only by the ®trace¯ of the correlation tensor T = Wt − 3Ws,
and it does not depend on the polarization vectors (single-particle states may be
unpolarized).

So, ˇnally we have

dw(cos θ) =
1
2

[
1 − α2

Λ

(
Ws −

Wt

3

)
cos θ

]
sin θd θ, (25)

Ws and Wt are relative fractions of the singlet state and triplet states, respectively.

4. CORRELATIONS AT THE JOINT REGISTRATION OF THE DECAYS
Λ → p + π− AND Λ̄ → p̄ + π+

Due to CP invariance, the coefˇcients of P -odd angular asymmetry for the
decays Λ → p + π− and Λ̄ → p̄ + π+ have equal absolute values and opposite
signs: αΛ̄ = −αΛ = −0.642. The double angular distribution for this case is as
follows [2, 3]:

d2w(n1,n2)
d Ωn1 d Ωn2

=
1

16 π2

[
1 + αΛPΛ n1 − αΛPΛ̄ n2 − α2

Λ

3∑
i=1

3∑
k=1

Tikn1in2k

]
(26)

(here −αΛ = +αΛ̄ and −α2
Λ = +αΛαΛ̄).

Thus, the angular correlation between the proton and antiproton momenta in
the rest frames of the Λ and Λ̄ particles is described by the expression:

dw(cos θ) =
1
2

(1 − 1
3

α2
ΛT cos θ) sin θd θ =

=
1
2

[1 + α2
Λ (Ws −

Wt

3
) cos θ] sin θd θ, (27)

where θ is the angle between the proton and antiproton momenta.

5. MODEL OF ONE-PARTICLE SOURCES

For describing the momentum-energy correlations and related spin correla-
tions of identical particles, generated in processes with high multiplicity, the
model of one-particle sources (®constituents¯) is widely applied [6].
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In the framework of this model, the sources emitting particles do not overlap
in space and time, Å it is supposed that the sizes of the sources themselves are
small as compared with the distances between them. In accordance with this,
each source is characterized by the 4-coordinate xi = {ri, ti}. In doing so, the
spatial region occupied by all the sources is very small as compared with the
sizes of detectors measuring the particle momenta p1 and p2, and the duration
of the generation process is very small as compared with the time parameters of
detectors.

According to the model of one-particle sources (Kopylov, Podgoretsky) [6],
particles are emitted by the sources independently and incoherently. Thus, at
the early stage of particle formation (at the stage of hadronization of quarks and
gluons) the momentum-energy and spin correlations are absent. Correlations for
identical particles, produced in the same event of collision, arise on account of
the effects of quantum statistics (Bose statistics for particles with integer spin and
Fermi statistics for particles with half-integer spin) and ˇnal-state interaction [7].
At present the model of sources is successfully used as well for the descrip-
tion of pair momentum-energy correlations of non-identical particles, conditioned
exclusively by the ˇnal-state interaction.

It is essential that the pair momentum-energy correlations and spin correla-
tions, connected with the particle identity and the ˇnal-state interaction, depend
upon the momentum difference in the c.m. frame of the pair and, Å as upon the
parameters of the process, Å upon the spaceÄtime characteristics of the region
of multiple generation of particles, corresponding to the so-called ®freeze-out¯.
In accordance with the model of sources, the correlations reach the maximum at
relative momenta being small as compared with the inverse spaceÄtime dimen-
sions of the generation region, whereas in the limit of large relative momenta they
disappear. This fact has served a basis for elaboration of the correlation method
(the so-called correlation femtoscopy), allowing one to investigate experimentally
the spaceÄtime development of the processes of multiple generation of leptons,
photons and hadrons.

Since the momentum-energy correlations and spin correlations in the frame-
work of the model of one-particle sources are substantial only in a sufˇciently
narrow range of small relative momenta, in most of real events the particle den-
sity in phase space is small enough, so that it would be possible to consider
the pair correlations only, disregarding the triple correlations (moreover, the cor-
relations of higher orders) as well as neglecting their in�uence upon the pair
correlations.

In the model under consideration, the sources have a very broad momentum
spectrum as compared with the relative momenta being characteristic for pair
correlations; thus, the emission probabilities for each of the one-particle sources
change insigniˇcantly under the variation of 4-momenta p1 and p2 within the
correlation effect (that is the so-called ®smoothness condition¯).
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The method of correlation femtoscopy, based on the source model, has been
used successfully for studying the correlations in processes of collision of ele-
mentary particles. But, by its essence, this approach is the most adequate one
namely for processes of multiple generation of particles in collisions of heavy
nuclei.

6. SPIN CORRELATIONS AT THE GENERATION
OF ΛΛ PAIRS IN MULTIPLE PROCESSES

a) The Fermi-statistics effect leads not only to the momentum-energy ΛΛ
correlations at small relative momenta (correlation femtoscopy), but to the spin
correlations as well.

The following relation holds, in consequence of the symmetrization or anti-
symmetrization of the total wave function of any identical particles with nonzero
spin (bosons as well as fermions) [1, 2, 8]:

(−1)S+L = 1.

Here S is the total spin and L is the orbital momentum in the c.m. frame of
the pair. At the momentum difference q = p1 − p2 → 0 the states with nonzero
orbital momenta ®die out¯, and only states with L = 0 and even total spin S
survive.

Since the Λ-particle spin is equal to 1/2, at q → 0 the Λ Λ pair is generated
only in the singlet state with S = 0.

Meantime, at the 4-momentum difference q �= 0 there are also triplet states
generated together with the singlet state.

Within the conventional model of one-particle sources emitting unpolarized
particles, the triplet states with spin projections +1, 0 and −1 are produced with
equal probabilities. If correlations are neglected, the singlet state is generated
with the same probability, Å the relative ®weights¯ are W̃t = 3/4, W̃s = 1/4.

Taking into account the Fermi statistics and s-wave ˇnal-state interaction,
which is essential at close momenta (at orbital momenta L �= 0 the contribution
of ˇnal-state interaction is suppressed), the fractions of triplet states and the
singlet state become proportional to the quantities [7, 8]:

Wt(q) =
3
4

(1 − 〈cos qx〉), Ws(q) =
1
4
(1 + 〈cos qx〉 + 2 Bint(q)), (28)

here q = p1 − p2 is the difference of 4-momenta, x = x1 − x2 is the difference
of 4-coordinates of two sources.

In the above formula,

〈cos qx〉 =
∫

W (x) cos qx d4x
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is the Fermi-statistics contribution; here W (x) is the distribution of difference
of 4-coordinates of two sources; Bint(q) is the contribution of s-wave ˇnal-state
interaction of two Λ particles. In doing so,

R(q) = Wt(q) + Ws(q) = 1 − 1
2
〈cos qx〉 +

1
2

Bint(q) (29)

is the correlation function describing the momentum-energy correlations of two
Λ particles with close momenta.

The correlation function R(q) represents the ratio of the two-particle spectrum
to the non-correlated background, which is constructed usually as a product of
one-particle spectra from different events at the same values of momenta. In
terms of inclusive cross sections we have [8]:

d6σ

d3p1d3p2
=

R(q)
σtot

〈n(n − 1)〉
〈n〉2

(
d3σ

d3p1

) (
d3σ

d3p2

)
, (30)

where n is the multiplicity and σtot is the total interaction cross section (for the
Poisson distribution of multiplicity we have 〈n(n − 1)〉/〈n〉2 = 1).

b) The spin density matrix of two Λ particles with close momenta at the
emission of unpolarized Λ particles has the following structure:

ρ̂(1,2) =
Ws(q) ρ̂s + Wt(q) ρ̂t

Ws(q) + Wt(q)
=

=
1

R(q)

[(
1
4

(1 + 〈cos qx〉 + 2 Bint(q)
)

ρ̂s +
3
4

(1 − 〈cos qx〉)ρ̂t

]
. (31)

Here

ρ̂s =
1
4

(Î(1) ⊗ Î(2) − σ̂(1) ⊗ σ̂(2))

is the density matrix of the singlet state, and

ρ̂t =
1
4

(Î(1) ⊗ Î(2) +
1
3

σ̂(1) ⊗ σ̂(2))

is the density matrix of the unpolarized triplet state, averaged over the spin
projections λ = +1, 0,−1:

ρ̂t =
1
3
(ρ̂t +1 + ρ̂t 0 + ρ̂t−1); ρ̂s + 3 ρ̂t = Î(1) ⊗ Î(2).

It is easy to see that Eq. (31) for ρ̂(1,2) can be rewritten in the form:

ρ̂(1,2) =
1
4

(Î(1) ⊗ Î(2) − 〈cos qx〉 + Bint(q)
2 R(q)

σ̂(1) ⊗ σ̂(2)). (32)

9



The correlation tensor components [2]

Tik = Cik = − 〈cos qx〉 + Bint(q)
2 − 〈cos qx〉 + Bint(q)

δik (33)

depend upon the momentum difference as well as upon the spaceÄtime parameters
of the generation region; the trace of the correlation tensor amounts to

T =
∑

i

Tii = −3
〈cos qx〉 + Bint(q)

2 − 〈cos qx〉 + Bint(q)
. (34)

Thus, on account of the effects of quantum statistics and ˇnal-state interaction,
at small relative momenta two identical particles, initially unpolarized (P1 =
P2 = 0 ) and non-correlated by spins, remain unpolarized as well but their spins
become correlated.

At q → 0 we obtain: 〈cos qx〉 → 1, Tik → −δik (singlet state).
On the other hand, in the limit of large q: 〈cos qx〉 → 0, Bint(q) → 0,

R(q) → 1, Tik → 0, i.e., both the momentum-energy and spin correlations
vanish.

c) Now let us consider the emission of Λ particles with equal polarization
vectors P̃1 = P̃2 = P̃ [2].

It should be noted that, at the stage of emission by sources, correlations are
absent.

The fraction of the triplet state with the total spin projection λ = +1 onto
the direction of P̃ and the respective constituent of the spin density matrix are as
follows:

W̃t 1 =
(1 + P̃ )2

4
; ρ̂t 1 =

1
4

(Î(1) + σ̂(1) l) ⊗ (Î(2) + σ̂(2) l), (35)

here P̃ = |P̃| and l is the unit vector directed along P̃.
Analogously, we have the following fractions and spin density matrix con-

stituents:
for the triplet state with total spin projection λ = −1:

W̃t−1 =
(1 − P̃ )2

4
; ρ̂t 1 =

1
4

(Î(1) − σ̂(1) l) ⊗ (Î(2) − σ̂(2) l); (36)

for the triplet state with total spin projection λ = 0:

W̃t 0 =
1 − P̃ 2

4
; ρ̂t 0 =

1
4

[Î(1) ⊗ Î(2) + σ̂(1) ⊗ σ̂(2) − 2σ̂(1) l)(σ̂(2) l)]; (37)

and for the singlet state:

W̃s =
1 − P̃ 2

4
; ρ̂s =

1
4

(Î(1) ⊗ Î(2) − σ̂(1) ⊗ σ̂(2)). (38)
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In doing so, the fractions of spin states W̃t 1, W̃t−1 W̃t 0, W̃s obey the
normalization condition

W̃t 1 + W̃t−1 + W̃t 0 + W̃s = 1,

and the primary spin density matrix is described by the expression:

ρ̂ = W̃t 1 ρ̂t 1 + W̃t−1 ρ̂t−1 + W̃t 0 ρ̂t 0 + W̃s ρ̂s =

=
1
4

(Î(1) + P̃ σ̂(1)) ⊗ (Î(2) + P̃ σ̂(2)). (39)

At low relative momenta, on account of Fermi statistics and ˇnal-state in-
teraction, the fractions of triplet states and singlet states change and become
proportional to the following quantities:

Wt 1(q) =
(1 + P̃ )2

4
(1 − 〈cos qx〉), (40)

Wt−1(q) =
(1 − P̃ )2

4
(1 − 〈cos qx〉), (41)

Wt 0(q) =
1 − P̃ 2

4
(1 − 〈cos qx〉), (42)

Ws(q) =
1 − P̃ 2

4
(1 + 〈cos qx〉 + 2 Bint(q)). (43)

The inclusive cross section of generation of the ΛΛ pair with close momenta
is proportional to the correlation function describing the momentum-energy cor-
relations:

R(q) = Wt 1(q) + Wt−1(q) + Wt 0(q) + Ws(q) =

= 1 − 1 + P̃ 2

2
〈cos qx〉 +

1 − P̃ 2

2
Bint(q). (44)

In doing so, the ®renormalized¯ density matrix is determined by the relation:

ρ̂ =
1

R(q)
(Wt 1(q)ρ̂t 1 + Wt−1(q)ρ̂t−1 + Wt 0(q)ρ̂t 0 + Ws(q)ρ̂s). (45)

In accordance with this, the polarization parameters of the Λ particles, renor-
malized due to the effects of Fermi statistics and s-wave ˇnal-state interaction,
take the form:

P1 = P2 =
1

R(q)
(1 − 〈cos qx〉) P̃; (46)
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Tik =
1

R(q)

[
(1 − 〈cos qx〉)P̃iP̃k − 1 − P̃ 2

2
(〈cos qx〉 + Bint(q))δik

]
. (47)

Irrespective of the primary polarization P̃ , at the momentum difference q → 0
only the singlet state of the ΛΛ pair is realized, and the renormalized polarization
vectors P1 = P2 tend to zero. The s-wave ˇnal-state interaction ampliˇes the
predominant role of the singlet state. If P̃ = 1, then in the limit q → 0 the
generation of ΛΛ pairs is forbidden Å in full accordance with the Pauli principle.

d) In the c.m. frame of the ΛΛ pair we have: q = {0, 2k}, where k
is the momentum of one of the particles. In doing so, the momentum k is
connected with the relative momentum q in the laboratory frame by the Lorentz
transformation [8]:

k =
1
2

[q + (γ − 1)
(qv)v
|v|2 − γv q0], (48)

here v = (p1 + p2)/(ε1 + ε2) is the velocity of the ΛΛ pair in the laboratory
frame, γ = (1 − v2)−1/2 is the Lorentz factor, q = p1 − p2 and q0 = ε1 − ε2.

The Lorentz transformations of 4-coordinates are given by the expressions:

r∗ = r + (γ − 1)
(rv)v
|v|2 − γv t, t∗ = γ(t − vr), (49)

where r = x1 − x2 and t = t1 − t2.
The interference term connected with identity (quantum statistics) is deter-

mined by the expression:

〈cos qx〉 = 〈cos 2kr∗〉 =
∫

Wv(r∗) cos(2kr∗)d3r∗, (50)

where

Wv(r∗) =
∫

W (x) d t∗ =
∫

W (r∗, t∗) d t∗

is the distribution of coordinate difference between two sources in the c.m. frame
of the ΛΛ pair.

Meantime, the contribution of s-wave ˇnal-state interaction is expressed as
follows (at the sizes of the generation region in the c.m. frame, exceeding the
effective radius of interaction of two Λ particles):

Bint(q) = B(ΛΛ)(k,v) =
∫

Wv(r∗) b(k, r∗)d3r∗, (51)

12



where the function b(k, r∗) has the structure [2, 7, 8]:

b(k, r∗) = |f (ΛΛ)(k)|2 1
(r∗)2

+ 2 Re
(

f (ΛΛ)(k)
eikr∗

coskr∗

r∗

)
−

− 2π

k
|f (ΛΛ)(k)|2 d

d k

(
Re

1
f (ΛΛ)(k)

)
δ3(r∗). (52)

Here k = |k|, r∗ = |r∗|, f (ΛΛ)(k) is the amplitude of low-energy ΛΛ
scattering:

f (ΛΛ)(k) = a
(ΛΛ)
0 (1 +

1
2

d
(ΛΛ)
0 a

(ΛΛ)
0 k2 − i k a

(ΛΛ)
0 )−1, (53)

where a
(ΛΛ)
0 is the length of s-wave scattering and d

(ΛΛ)
0 is the effective radius:

d
(ΛΛ)
0 =

1
k

d

d k

(
Re

1
f (ΛΛ)(k)

)
.

In the case of Gauss distribution of 4-coordinates of two independent sources
in the laboratory frame, with the mean-square radius

√
〈r2

1〉 =
√
〈r2

2〉 =
√

3r0

and the mean-square emission time
√
〈t21〉 =

√
〈t22〉 = τ0, we obtain for the

function Wv(r∗) [8]:

Wv(r∗) =
1

8π3/2 γ r2
0

√
r2
0 + v2τ2

0

exp
[
−r∗2 − (r∗n)2

4r2
0

− (r∗n)2

4γ2(r2
0 + v2τ2

0 )

]
. (54)

In doing so,

〈cos(2kr∗)〉 = exp
[
−4k2r2

0 − 4γ2v2(kn)2(r2
0 + τ2

0 )
]
, (55)

and the contribution of s-wave ˇnal-state ΛΛ interaction at the momentum k = 0
(maximum value) is as follows [7]:

B(ΛΛ)(0,v) =
1
γρ

[
1
2

(a(ΛΛ)
0 )2

r0

(
A − d

(ΛΛ)
0

2
√

πr0

)
+

2√
π

C a
(ΛΛ)
0

]
, (56)

where

ρ =
√

r2
0 + v2τ2

0 , A =
1
u

arcsinu,

C =
1
2u

ln
1 + u

1 − u
; u =

v
√

r2
0 + τ2

0

ρ
.

(57)
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7. SPIN CORRELATIONS AT THE GENERATION
OF ΛΛ̄ PAIRS IN MULTIPLE PROCESSES

In the framework of the model of independent one-particle sources, spin
correlations in the ΛΛ̄ system arise only on account of the difference between the
interaction in the ˇnal triplet state (S = 1) and the interaction in the ˇnal singlet
state. At small relative momenta, the s-wave interaction plays the dominant role
as before, but, contrary to the case of identical particles (ΛΛ), in the case of
non-identical particles (ΛΛ̄) the total spin may take both the values S = 1 and
S = 0 at the orbital momentum L = 0. In doing so, the interference effect,
connected with quantum statistics, is absent.

If the sources emit unpolarized particles, then, in the case under consider-
ation, the correlation function describing momentum-energy correlations has the
following structure (in the c.m. frame of the ΛΛ̄ pair):

R(k,v) = 1 +
3
4

B
(ΛΛ̄)
t (k,v) +

1
4

B(ΛΛ̄)
s (k,v). (58)

The spin density matrix of the ΛΛ̄ pair is given by the formula:

ρ̂(ΛΛ̄) = Î(1) ⊗ Î(2) +
B

(ΛΛ̄)
t (k,v) − B

(ΛΛ̄)
s (k,v)

4 R(k,v)
σ̂(1) ⊗ σ̂(2), (59)

and the components of the correlation tensor are as follows:

Tik =
B

(ΛΛ̄)
t (k,v) − B

(ΛΛ̄)
s (k,v)

4 + 3 B
(ΛΛ̄)
t (k,v) + B

(ΛΛ̄)
s (k,v)

δik, (60)

here the contributions of ˇnal-state triplet and singlet ΛΛ̄ interaction are deter-
mined by the expression (analogously to Eqs. (51), (52) for the ΛΛ interac-
tion [2, 7]):

B
(ΛΛ̄)
s(t) (k,v) = |f (ΛΛ̄)

s(t) (k)|2 〈 1
(r∗)2

〉 + 2 Re
(

f
(ΛΛ̄)
s(t) (k) 〈 eikr∗

eikr∗

r∗

)
−

− 2π

k
|f (ΛΛ̄)

s(t) (k)|2 d

d k

⎛⎝Re
1

f
(ΛΛ̄)
s(t) (k)

⎞⎠ Wv(0), (61)

where f
(ΛΛ̄)
s(t) (k) is the amplitude of the s-wave low-energy singlet (triplet) ΛΛ̄

scattering.
At sufˇciently large values of |k|, one should expect that [7]:

B(ΛΛ̄)
s (k,v) = 0, B

(ΛΛ̄)
t (k,v) = 0.

14



In this case the angular correlations in the decays Λ → p+π−, Λ̄ → p̄+π+,
connected with the ˇnal-state interaction, are absent:

Tik = 0, T = 0.

8. ANGULAR CORRELATIONS IN THE DECAYS Λ → p + π−

AND Λ̄ → p̄ + π+ AND THE ®MIXED PHASE¯

Thus, at sufˇciently large relative momenta (for example, |k| � mπ) one
should expect that the angular correlations in the decays Λ → p + π− and
Λ̄ → p̄ + π+, connected with the interaction of the Λ and Λ̄ hyperons in the
ˇnal state (i.e., with one-particle sources) are absent. But, if at the considered
energy the dynamical trajectory of the system passes through the so-called ®mixed
phase¯, then the two-particle sources, consisting of the free quark and antiquark,
start playing a noticeable role. For example, the process s s̄ → ΛΛ̄ may be
discussed.

In this process, the charge parity of the pairs ss̄ and ΛΛ̄ is equal to C =
(−1)L+S, where L is the orbital momentum and S is the total spin of the fermion
and antifermion. Meantime, the CP parity of the fermionÄantifermion pair is
CP = (−1)S+1.

In the case of one-gluon exchange, CP = 1, and then S = 1, i.e., the ΛΛ̄
pair is generated in the triplet state; in doing so, the ®trace¯ of the correlation
tensor T = 1.

Even if the frames of one-gluon exchange are overstepped, the quarks s and
s̄, being ultrarelativistic, interact in the triplet state (S = 1). In so doing, the
primary CP parity is CP = 1, and, due to the CP parity conservation, the
ΛΛ̄ pair is also produced in the triplet state. Let us denote the contribution of
two-quark sources by x. Then at large relative momenta

T = x > 0.

Apart from the two-quark sources, there are also two-gluon sources being able
to play a comparable role. Analogously with the annihilation process γγ → ΛΛ̄,
in this case the trace of the correlation tensor is described by the formula (the
process g g → ΛΛ̄ is implied):

T = 1 − 4 (1 − β2)
1 + 2 β2 sin2 θ − β4 − β4 sin4 θ

, (62)

where β is the velocity of Λ (and Λ̄) in the c.m. frame of the ΛΛ̄ pair, θ is
the angle between the momenta of one of the gluons and Λ in the c.m. frame
(see [9]). At small β (β 	 1) the ΛΛ̄ pair is produced in the singlet state (total
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spin S = 0, T = −3), whereas at β ≈ 1 Å in the triplet state (S = 1, T = 1).
Let us remark that at ultrarelativistic velocities β (i.e., at extremely large relative
momenta of Λ and Λ̄) both the two-quark and two-gluon mechanisms lead to the
triplet state of the ΛΛ̄ pair (T = 1).

In the general case, the appearance of angular correlations in the decays
Λ → p + π− and Λ̄ → p̄ + π+ with the nonzero values of the ®trace¯ of the
correlation tensor T at large relative momenta of the Λ and Λ̄ particles may
testify to the passage of the system through the ®mixed phase¯.

9. SUMMARY

It is advisable to investigate the spin correlations of ΛΛ and ΛΛ̄ pairs pro-
duced in relativistic heavy ion collisions.

The spin correlations are studied by the method of angular correlations Å
method of moments.

The spin correlations, as well as the momentum-energy ones, make it possible
to determine the spaceÄtime characteristics of the generation region and, besides,
the parameters of low-energy scattering of Λ on Λ and Λ on Λ̄. They should be
investigated jointly with the momentum-energy correlations.
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