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In the framework of Bohmian quantum mechanics supplemented with the Chetaev theorem on stable
trajectories in dynamics in the presence of dissipative forces we have shown the possibility of the
classical (without tunneling) universal description of radioactive decay of heavy nuclei, in which under
certain conditions the so-called noise-induced transition is generated or, in other words, the stochastic
channel of alpha decay, cluster radioactivity and spontaneous ˇssion conditioned by the Kramers diffusion
mechanism.

Based on the ENSDF database we have found the parameterized solutions of the Kramers equation
of Langevin type by Alexandrov dynamic auto-regularization method (FORTRAN code REGNÄDubna).
These solutions describe with high accuracy the dependence of the half-life (decay probability) of heavy
radioactive nuclei on total kinetic energy of daughter decay products.

The veriˇcation of inverse problem solution in the framework of the universal Kramers description of
the alpha decay, cluster radioactivity and spontaneous ˇssion, which was based on the newest experimental
data for alpha decay of evenÄeven superheavy nuclei (Z = 114, 116, 118), has shown good coincidence
of the experimental and theoretical half-life dependence on alpha-decay energy.
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1. INTRODUCTION

In this paper we consider the question, which can be formulated the following
rather strict and paradoxical form: ®Are the so-called quantization conditions that
are imposed on the corresponding spectrum of a dynamical system possible in
principle in classical mechanics, analogously to what is taking place in quantum
mechanics?¯

Surprisingly, the answer to this question is positive and has been given more
than 70 years ago by the Russian mathematician N.G. Chetaev in his article ®On
Stable Trajectories in Dynamics¯ [1, 2]. The leading idea of his work and of the
whole scientiˇc ideology was the most profound personal paradigm, with which
begins, by the way, his principal work [2]: ®Stability, which is a fundamentally
general phenomenon, has to appear somehow in the main laws of nature¯. Here,
it seems, Chetaev states for the ˇrst time the thesis of the fundamental impor-
tance of theoretically stable motions and their relation to the motions actually
taking place in mechanics. He explains it as follows: the Hamiltonian theory
of holonomic mechanical systems being under the action of forces admitting
the force function has well proven itself, although, as Liapunov has shown [3],
arbitrarily small perturbation forces can theoretically make such stable motions
unstable. And since in actual fact holonomic mechanical systems regardless of
everything often maintain stability, Chetaev puts out the paradoxical idea of the
existence of special type of small perturbation forces, which stabilize the real
motions of such systems [2]. Finally, Chetaev come to a conclusion that these
arbitrarily small perturbation forces or, more precisely, ®small dissipative forces
with full dissipation, which always exist in our nature, represent a guarantee-
ing force barrier which makes negligible the in	uence of nonlinear perturbation
forces¯ [4]. Furthermore, it has turned out that this ®clear stability principle of
actual motions, which has splendidly proven itself in many principal problems
of celestial mechanics. . . unexpectedly gives us a picture of almost quantum
phenomena¯ [5].

It is interestingly to note that a similar point of view can be found in the dif-
ferent time and with the different extent of closeness in Dirac [6] and 't Hooft [7].
For example, in [6] a quantization procedure appears in the framework of general-
ized Hamiltonian dynamics which is connected with the selection of the so-called
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small integrable A-spaces, only in which solutions of the equations of motion,
and thus, only stable motions of a physical system are possible (see Eqs. (48) in
Ref. [6]). On the other hand, according to the 't Hooft idea, a classical deter-
ministic theory (on the Planck scale) supplemented with a dissipative mechanism
generates the observed quantum behavior of our world on a laboratory scale. In
particular, 't Hooft has shown that there is a very important class of classical de-
terministic system in which Hamiltonian is positive due to dissipation mechanism,
that leads to ®an apparent quantization of the orbits which resemble the quantum
structure seen in the real world¯ [7]. It is obvious that the 't Hooft idea on the
verbal level is practically an adequate re	ection of the crux of the Chetaev idea,
since a physical essence of both ideas is based on the fundamental role of dissi-
pation in microcosm, which can be described by nontrivial but unambiguous (on
the Planck scale) thesis: there is not a dissipation Å there is not a quantization!

In this paper we generalize the Chetaev theorem on stable trajectories in
dynamics in the presence of dissipative forces in case when the Hamiltonian
of system is explicitly time-dependent, and using obtained results we develop
the alternative model of radioactive decay of heavy nuclei (alpha decay, cluster
radioactivity and spontaneous ˇssion), which relies not on the traditional quantum
effect of the particle penetration or tunneling through the nuclear potential barrier,
but on the classical ®jump¯ over this barrier due to diffusion induced by a noise.

2. THE SCHRéODINGER EQUATION AS THE CONDITION
OF STABLE TRAJECTORIES IN CLASSICAL DYNAMICS

IN THE PRESENCE OF DISSIPATIVE FORCES

Below we generalize the Chetaev theorem on stable trajectories in dynamics
in case when the Hamiltonian of system is time-dependent [8]. For that let us
consider a material system (where q1, . . . , qn and p1, . . . , pn are generalized
coordinates and momenta of a holonomic system) in the ˇeld of potential forces
admitting the force function of U(q1, . . . , qn) type.

The complete intergal of the HamiltonÄJacobi differential equation corre-
sponding to the system under consideration has the form

S = f(t, q1, . . . , qn; α1, . . . , αn) + A, (1)

where α1, . . . , αn and A are arbitrary constants, and the general solution of the
mechanical problem, according to the well-known Jacobi theorem is deˇned by
the formulas

βi =
∂S

∂αi
, pi =

∂S

∂qi
, i = 1, . . . , n, (2)

where βi are new constants of integration. The possible motions of the mechanical
system are determined by the different values of constants αi and βi.
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We will call the motion of the material system, of which the stability is going
to be studied, nonperturbed motion. To begin with, let us study the stability of
such a motion with respect to the variables qi under the perturbation only of the
initial values of the variables (i.e., of the values of the constants αi and βi) in
absence of perturbation forces.

If we denote by ξj = δqj = qj−qj(t) and ηj = δpj = pj−pj(t) the variations
of the coordinates qj and the momenta pj , and by H(q1, . . . , qn, p1, . . . , pn) the
Hamilton function, then it is easy to obtain for Hamilton's canonical equations of
motion

dqj

dt
=

∂H

∂pj
.

dpj

dt
= −∂H

∂qj
(3)

differential equations (in ˇrst approximation) in Poincar
e's variations [9], which
have the following form:

dξi

dt
=

∑
j

∂2H

∂qj∂pi
ξj +

∑
j

∂2H

∂pj∂pi
ηj ,

(i = 1, . . . , n),

dηi

dt
= −

∑
j

∂2H

∂qj∂qi
ξj −

∑
j

∂2H

∂pj∂qi
ηj ,

(4)

where the coefˇcients are continuous and bounded real functions of t. These
equations are of essential importance in studies of the stability of motion of
conservative mechanical systems. Let us show this.

Poincar
e has found [9] that if ξs, ηs and ξ′s, η′
s are any two particular solutions

of variational equations (4), then the following quantity is invariant:∑
s

(ξsη
′
s − ηsξ

′
s) = C, (5)

where C is a constant. The proof is just a differentiation over t.
It is not difˇcult to show that for each ξs, ηs there is always at least one

solution ξ′s, η′
s for which the constant C in Poincar
e's invariant does not vanish.

Indeed, for a nontrivial solution ξs, ηs one of the initial values ξs0, ηs0 at time
t0 will be different from zero. Then the second particular solution can always
be deˇned by the initial values ξ′s0, η′

s0 in such a way that the constant under
consideration does not vanish.

Let for two solutions of the variation equations ξs, ηs and ξ′s, η′
s the value of

the constant C be different from zero, and λ and λ′ are the characteristic func-
tions corresponding to these solutions. If we apply to this invariant Liapunov's
theory [3], then we can directly, on the one hand, conclude that the characteristic
value of the left-hand side of the invariance relation (5), corresponding to the
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nonvanishing constant, is zero. On the other hand, this allows us to obtain the
following inequality:

λ + λ′ � 0. (6)

If we now assume that the system of Pincar
e's variation equations is correct,
then using Liapunov's theorem on the stability of the systems of differential
equations in ˇrst approximation [3], it is easy to show that for the stability of the
nonperturbed motion of the Hamiltonian system under consideration it is necessary
that all the characteristic numbers of the independent solutions in Eq. (6) be equal
to zero:

λ = λ′ = 0. (7)

Thus, Eq. (7) represents a stability condition for the motion of the Hamiltonian
system (4) with respect to the variables qi and pi under the perturbation of the
initial values of the variables only, i.e., the values of the constants αi and βi.
However, the determination of the characteristic numbers as functions of αi and
βi is a very difˇcult problem and therefore is not practical. The problem becomes
simpler, if we note that, since the nonperturbed motion of our Hamiltonian system
satisfying condition (7) is stable under any perturbations of initial conditions, it
has to be stable under arbitrary perturbations of the constants βi only. In other
words, the problem is reduced to the determination of the so-called conditional
stability.

According to this assumption about the character of initial perturbations from
the solutions of the HamiltonÄJacobi equation (2) the following relations are
obtained immediately up to the terms of the second order:

ηi =
∑

j

∂2S

∂qi∂qj
ξi, (8)

which allows us, taking into consideration the relation

H =
1
2

∑
gijpipj + U, (9)

to write the ˇrst group of Eqs. (4) in the form

dξi

dt
=

∑
js

ξs
∂

∂qs

(
gij

∂S

∂qj

)
, (10)

where coefˇcients gij depend on coordinates only. Here the variables qj and
the constants αj on the right-hand sides must be replaced using their values
corresponding to nonperturbed motion.

If the variation equations (10) are correct, then, according to the well-known
Liapunov theorem [3] about the sum of the eigenvalues of the independent so-
lutions and to condition (9), we can conclude that the following condition is
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necessary for stability (10):

λ

{
exp

∫
Ldt

}
= 0, where L =

∑
ij

∂

∂qi

(
gij

∂S

∂qj

)
, (11)

where λ is the eigenvalue of the function in the brackets.
Furthermore, if the system of equations (10), in additions to the correctness

giving the condition (11), satisˇes reducibility requirements and if the correspond-
ing linear transformation

xi =
∑

j

γijξj (12)

has a constant determinant ‖ γij ‖�= 0, then, due to the invariance of the eigen-
values of the solutions of system (10) under such a transformation and due to the
well-known OstrogradskyÄLiouville theorem, it can be shown that in this case
from Eq. (11) a necessary stability will follow in the form

L =
∑
ij

∂

∂qi

(
gij

∂S

∂qj

)
= 0, (13)

which expresses the vanishing of the sum of the eigenvalues of system (11). A
simple but elegant proof of condition (13) can be found in Ref. [10].

Let us now consider a more complicated problem. Let the material system
in actual motion is under the action of forces with force function U , presumably
taken into account by the considerations above, and some unknown perturbation
(dissipative) forces, which are supposed to be potential and admitting the force
function Q. Then the actual motion of the material system will take place under
the in	uence of the forces with the joint force function U∗ = U +Q, and thereby
the actual motion of the system will not coincide with the theoretically predicted
(in the absence of perturbation).

Keeping the problem setting the same as above, which concerns the stability
of the actual unperturbed motions under the perturbation of initial conditions only,
the necessary condition for stability in the ˇrst approximation of the type (13)
will not be effective in the general case, since the new function S is unknown
(just as Q). Nevertheless, it turns out that it is possible to ˇnd such stability
conditions, which do not depend explicitly on the unknown action function S and
potential Q.

Thus, let us start with the stability requirement of the type (13), assuming
that the conditions for its existence (well-deˇniteness, etc.) for actual motions are
fulˇlled. Let us introduce in Eq. (13) instead of function S a new function ψ,
deˇned by

ψ = A exp (ikS), (14)
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where k is a constant and A is a real function on the coordinates qi and
time t only.

From this follows

∂S

∂qj
=

1
ik

(
1
ψ

∂ψ

∂qj
− 1

A

∂A

∂qj

)
(15)

and, therefore, Eq. (13) will become

∑
i,j

∂

∂qi

[
gij

(
1
ψ

∂ψ

∂qj
− 1

A

∂A

∂qj

)]
= 0. (16)

On the other hand, for the perturbed motion it is possible to write the HamiltonÄ
Jacobi equation in the general case when Hamiltonian H is explicitly time-
dependent:

1
2k2

∑
i,j

gij

(
1
ψ

∂ψ

∂qi
− 1

A

∂A

∂qi

) (
1
ψ

∂ψ

∂qj
− 1

A

∂A

∂qj

)
=

∂S

∂t
+ U0 + Q, (17)

where ∂S/∂t is obtained by Eq. (14). Adding Eqs. (17) and (18) we have a
necessary stability condition (in the ˇrst approximation) in this form

1
2k2ψ

∑
i,j

∂

∂qi

(
gij

∂ψ

∂qj

)
− 1

2k2A

∑
i,j

∂

∂qi

(
gij

∂A

∂qj

)
−

− 1
k2A

∑
i,j

gij
∂A

∂qj

(
1
ψ

∂ψ

∂qi
− 1

A

∂A

∂qi

)
− 1

ikAψ

[
A

∂ψ

∂t
− ψ

∂A

∂t

]
−U −Q = 0.

(18)

Equality (18) will not contain Q, if the amplitude A is deˇned from the
equation

1
2k2A

∑
i,j

∂

∂qi

(
gij

∂A

∂qj

)
+

i

kA

∑
i,j

gij
∂A

∂qj

∂S

∂qi
− 1

ikA

∂A

∂t
+ Q = 0, (19)

which, after the separation into the real and imaginary parts, splits into two
equations

Q = − 1
2k2A

∑
i,j

∂

∂qi

(
gij

∂A

∂qj

)
,

∂A

∂t
= −

∑
i,j

gij
∂A

∂qj

∂S

∂qi
, (20)

where Q is dissipation energy.
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Thus, if the perturbing forces have the structure of the type (20) satisfying
the requirement formulated above, the necessary stability condition (18) will have
the form of ®Schréodinger's¯ type differential equation

i

k

∂ψ

∂t
= − 1

2k2

∑
i,j

∂

∂qi

(
gij

∂ψ

∂qj

)
+ Uψ. (21)

In other words, we obtain the following important result. Equation (13) cor-
responding to the Chetaev stability condition is equivalent to the equation of
®Schréodinger's¯ type (21) when using the transformation (14). It is obvious that
for the equations of type (21) one-valued, ˇnite and continuous solutions for
the function ψ in stationary case are admissible only for the eigenvalues of the
total energy E and, consequently, the stability of actual motions considered here,
can take place only for these values of total energy E. It should be noted, that
Schréodinger was the ˇrst who paid attention (while mathematicians knew this
long ago [11]) to such a class of differential equations, where the discreteness of
spectrum displays under the natural conditions such as an intergrability of solution
squared modulus and the solution ˇniteness at the singular points of equation [11]
(unlike, for example, boundary-value problems with boundary conditions).

Let us now come back to the problem of quantization and illustrate it on
a very simple example. Let us consider a material point of mass m moving in
the ˇeld of conservative forces with force function U , which in the general case
is time-dependent. We will study stability of motion of this point in Cartesian
coordinates x1, x2, x3. Denoting the momenta coordinatewise as p1, p2, p3 we
obtain for the kinetic energy the well-known expression

T =
1

2m
(p2

1 + p2
2 + p2

3). (22)

In this case, conditions (21) for the structure of the perturbation forces admit the
following relations:

Q = − �
2

2m

ΔA

A
,

∂A

∂t
= −

∑ ∂A

∂xi

pi

m
, k =

1
�
, (23)

and the differential equation (21), which is used for the determination of stable
motions, becomes

i�
∂ψ

∂t
= − �

2

2m
Δψ + Uψ, (24)

i.e., coincides with the well-known Schréodinger equation in quantum mechan-
ics [12], which represents a relation constraining the choice of the constants of
integration (of the total energy E in stationary case) of the full HamiltonÄJacobi
integral. Below Eq. (24) will be named by the SchréodingerÄChetaev equation to
emphasize in that way the speciˇcity of its origin.
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In the case it becomes interesting to consider the case connected with
the inverse substitution of the wave function (14) in the Schréodinger equa-
tion (24), which generates an equivalent system of equations, known as the
BohmÄMadelung system of equations [13Ä15], however, taking into account con-
ditions (13) and (20):

∂A

∂t
= − 1

2m
[AΔS + 2∇A · ∇S] = −∇A · ∇S

m
, (25)

∂S

∂t
= −

[
(∇S)2

2m
+ U − �

2

2m

ΔA

A

]
. (26)

It is important to note that the last term in Eq. (26), which in interpreta-
tion [13] is of a ®quantum¯ potential of the so-called Bohm's ψ-ˇeld [14, 15]
exactly coincides with the dissipation energy Q in Eq. (23). At the same time
Eq. (25) is identical with condition for ∂A/∂t in Eq. (20).

If we make a substitution of P = ψψ∗ = A2 type, Eqs. (25) and (26) can be
rewritten as follows:

∂P

∂t
= −∇P · ∇S

m
, (27)

∂S

∂t
+

(∇S)2

2m
+ U − �

2

4m

[
ΔP

P
− 1

2
(∇P )2

P 2

]
= 0. (28)

The statement that P (x, y, z, t) indeed is the probability density function of
particle trajectory number is substantiated as follows. Let us assume that the
in	uence of the perturbation forces generated by the potential Q on the wave
packet in an arbitrary point in the phase space is proportional to the density of
the particle trajectories (ψψ∗ = A2) at this point. From where follows that the
wave packet is practically not perturbed when the following condition is fulˇlled:∫

Qψψ∗dV ⇒ min, where
∫

ψψ∗dV = 1, (29)

where dV denotes a volume element of the phase space. And this implies in turn
that, for the totality of motions in the phase space, the perturbation forces allow
the absolute stability only if condition (29) is fulˇlled or, in other words, when
the obvious condition for the following variational problem (with respect to Q)
is fulˇlled:

δ

∫
Qψψ∗dV = δQ = 0. (30)

This variational principle (30) is actually nothing else than the principle of least
action of perturbation, which will be named below by the Chetaev variational
principle [1, 4, 16].
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Let us write for Q (using the previous notations and Eq. (9)) the following
equality:

Q = −∂S

∂t
− U − T = −∂S

∂t
− U − 1

2

∑
ij

gij
∂S

∂qi

∂S

∂qj
. (31)

On the other hand, if (14) holds, it is easy to show that

1
2

∑
ij

gij
∂S

∂qi

∂S

∂qj
= − 1

2k2ψ2

∑
ij

gij
∂ψ

∂qi

∂ψ

∂qj
+

1
2k2A2

∑
ij

gij
∂A

∂qi

∂A

∂qj
+

+ ik
1

2k2A2

∑
ij

gij
∂A

∂qi

∂S

∂qj
. (32)

Further, we need to carry out the following successive substitutions. First, for the
ˇrst term on the right-hand side of Eq. (32) we substitute its value from the ˇrst
stability condition (16), then we insert the obtained relation into (31) and ˇnally
put the result into the equation corresponding to the variational principle (30).

It is remarkable that as a consequence of the substitution procedure described
above we obtain a relation which exactly equal to Eq. (18) and, therefore, the
resulting structure expression and the necessary condition for stability coincide
with (20) and (21). And this means that based on Chetaev's variational princi-
ple (30) we obtained an independent conˇrmation of the fact that the physical
nature of P (x, y, z, t) indeed re	ects not simply the notion of probability density
of ®something¯ according to Bohm's equation of continuity [13Ä15], but plays
the role appropriate to the probability density of the particle trajectory number.

Such semantic content of the probability density function P (x, y, z, t) and
simultaneously, the exact coincidence of the ®quantum¯ potential of Bohm's
ψ-ˇeld [13Ä15] in Eq. (26) and of the force function of perturbation Q in Eq. (23)
leads to astonishing, but fundamental conclusions:

Å- In view of Chetaev's theorem on the stable trajectories of dynamics
the reality of Bohm's ψ-ˇeld is an evident and indisputable fact, which in turn
leads at ˇrst glance to the paradoxical conclusion that classical and quantum
mechanics are two complementary procedures of one Hamiltonian theory. In other
words, classical mechanics and the quantization (stability) conditions represent,
in contradiction to the correspondence principle, two complementary procedures
for description of stable motions of a physical system in a potential ˇeld. In
the framework of this theory Eq. (26) is an ordinary HamiltonÄJacobi equation
and it differs from the analogous equation obtained from � → 0 (Q → 0 [14])
only in so far as its solution is a priori stable. It is obvious, that exactly this
difference is a cause of such phenomenon as quantum chaos characterizing, as
is generally known, the peculiarities of quantum mechanics of the systems with
chaotic behavior in the classic limit [17].
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Å Obviously, that in the light of Chetaev's theorem the sense of Heisenberg's
uncertainty relations cardinally changes, because in this case the basic cause of
statistical straggling characterized by variances of coordinates and momenta, are
small dissipative forces (see Eq. (23) for ∂/∂t), which are generated by the per-
turbation potential (or that is equivalently, by the quantum potential Q). At the
same time it is easy to show that the variance values of coordinates and momenta
are predetermined by the average quantum potential 〈Q〉. This is visually demon-
strated within the framework of the mathematical notation of uncertainty relations
for one-dimensional case in the following form (see Eq. (6.7.23) in Ref. [14]):〈

(Δx)2
〉 〈

(Δpx)2
〉

=
〈
(Δx)2

〉
〈Q〉 2m � �

2
/
4, (33)

where 〈(Δx)2〉 and 〈(Δpx)2〉 are variances of coordinates and momenta, respec-
tively.

Å Based on the principle of least action of perturbation (30) it is shown that
the function P (x, y, z, t) semantically and syntactically is equivalent to the prob-
ability density function of particle trajectory number. It is easy to see (Eq. (27))
that the function P (x, y, z, t) directly gives information about the velocity (and
consequently about a coordinate) of particle, for which it is possible to write
down the expression in the form more evident than Eq. (27):

u =
dx

dt
= − ∂P/∂t

∂P/∂x
. (34)

This proof in combination with the new (Chetaev's) interpretation of the
Heisenberg uncertainty relations directly and unambiguously shows that Bohmian
quantum mechanics supplemented with Chetaev's generalized theorem does not
have hidden parameters in the form of the velocity and coordinate of the particle.
In other words, these parameters, which describe the particle trajectory, not only
exist but are completely predetermined by the wave solution of the SchréodingerÄ
Chetaev equation (24), or, more exactly, by the density function of particle
trajectory number.

It is important to note here that all the most known alternative theories
of quantum mechanics, including Bohmian mechanics, are theories with hidden
variables. In the ˇrst place, it concerns the stochastic quantum mechanics of
Nelson [18], the fractal quantum mechanics of Nottale [19] and the geometric
quantum mechanics of Santamato [20]. They are all like that just because the
probability density function P (x, y, z, t) is exclusively deˇned by the continuity
equation (i.e., without taking into account ΔS = 0 in Eq. (25)), which, as stated
above, only in the case of Chetaev's interpretation is transformed into a condi-
tion (27), which automatically eliminates the problem of the hidden variables.

Now let us consider the distinctions in principle of Bohmian quantum me-
chanics supplemented with generalized Chetaev's theorem both from Bohmian
mechanics itself and from the traditional, i.e., probabilistic quantum mechanics.
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Analysis of Eq. (24) naturally raises the extremely deep and fundamental
question of the physical nature of really existent (as is shown above) small
perturbation forces, or ®small dissipative forces with total dissipation¯ according
to Chetaev [2]. We consider that we deal with the perturbation waves of de
Broglie type whose action describes by Bohmian ψ-ˇeld. Such conclusion is
caused, ˇrst of all, by the fact that de Broglie's ®an embryonic theory of waves
and particles union¯ [21] was developed just on the basis of identity of least
action principle and the Fermat principle, that very exactly and clearly re	ects
a physical essence of Chetaev's theorem on the stable trajectories in dynamics
(see Eq. (30)). Moreover, it is possible to conclude that within the framework of
Bohmian mechanics supplemented with Chetaev's generalized theorem the reality
or, more exactly, the observability of de Broglie wave, ˇrstly, is provided by the
reality of Bohmian ψ-ˇeld, which has sense of dissipation energies Q in Eq. (23),
and, secondly, it is the direct consequence of the absence of hidden variables.
In other words, in the BohmÄChetaev quantum mechanics the reality of quantum
potential and the absence of the hidden variables are the necessary and sufˇcient
condition for the reality of de Broglie wave.

Thus, it is possible to conclude that, on the one hand, the BohmÄChetaev
quantum mechanics and probabilistic quantum mechanics are the theories without
hidden variables and, on the other hand, in virtue of Eq. (33) they are nonlocal
theories. And because of indicated reasons the physical (non)observability of
de Broglie wave is the main and essential distinction between these two theories.
If a wave is physically unobserved, the probabilistic interpretation of quantum
mechanics is true. If the real existence of de Broglie wave will experimentally be
proved, Chetaev's interpretation of quantum mechanics will be true in this case.

Note that the question of the true existence of de Broglie wave has a
long history, and today it is not something exotic or metaphysical. In this
sense, today it is clear that the new fundamental experiments should apply
another principle, for example, the direct determination of real wave function
by the ultrasensitive detection of electromagnetic perturbation interference (i.e.,
ψ trajectories) [18, 22], which accompanies the electron diffraction, using the low
intensity source as in the Tonomura experiment [24].

This question becomes especially topical due to the new experimental data of
Catillon et al. [23], who studying the channeling of electrons in the thin silicon
crystal have observed the anomalous scattering. This can testify to the possible
existence of electron stable motion of zitterbewegung type [14, 24]. Obviously,
if this result will be reliably conˇrmed in further experiments, it will become the
direct sign of the reality of the de Broglie wave hypothesis [21].

At the same time, we consider necessary to present another, indirect but not
less effective method for clearing the true interpretation of quantum mechanics.
First of all, such a method is predetermined by the fact that the BohmÄChetaev
trajectory dynamics due to the real existence of dissipative forces and, conse-
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quently, due to the real existence of the de Broglie waves makes it possible to
describe the decays of the radioactive decay of heavy nuclei by alternative model,
which relies not on the traditional quantum effect of the particle penetration or
tunneling through the nuclear potential barrier, but on the classical ®jump¯ over
this barrier due to diffusion induced by a noise. Below we show how an idea of
such a description naturally and clear is formalized in the language of Bohmian
quantum mechanicse, supplemented with the Chetaev generalized theorem on
stable trajectories in classical dynamics in the presence of dissipative forces.

3. DIFFUSION MECHANISM OF ALPHA DECAY, CLUSTER
RADIOACTIVITY AND SPONTANEOUS FISSION

As is well known, the dissipation in general case is deˇned by friction and
random Langevin force with zero average value on the corresponding space-
time sampling. Since the quantum potential Q of these forces is dissipative in
the framework of the BohmÄChetaev mechanics, the one-dimensional balance
equation for dissipative forces has the form:

∂Q

∂x
= Ffrict(x, ẋ) + FL(x, t), where 〈FL〉 = 0. (35)

Note, that this equation is a consequence of the fact that force of friction
Ffrict, as well as the Langevin force FL are generated by the same source, i.e.,
by interaction between particle and environment, for example, by interaction
with heat reservoir. Then Hamiltonian of the system is not explicitly time-
dependent, differentiating Eq. (26) with respect to coordinate x and taking into
account Eq. (35) we obtain the well-known Langevin equation [25, 26] for one-
dimensional case

mẍ = −dUx − Ffrict(x, ẋ) + FL(x, t). (36)

It is possible to show [27Ä29] that the Langevin equation is in general case
reduced to the FokkerÄPlanck equation

∂W

∂t
= − p

m

∂W

∂x
+

∂U

∂x

∂W

∂p
+ γ

∂

∂p

[
p + mD(T )

∂

∂p

]
W, (37)

where W = W (x, p, t) is the probability density distribution in phase space
{x, p}.

This equation ˇrst received within the framework of the well-known Kramers
diffusion problem of stochastic transitions over the potential barrier makes it
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possible to obtain the exact expression for transition rate, which in general case
looks like [30, 31]

wK =
ωmin

2π

⎧⎨
⎩

[
1 +

(
β

2ωmax

)2
]1/2

− β

2ωmax

⎫⎬
⎭ exp

(
−ΔU

〈ε〉

)
, (38)

β =
γ

m
� ωmax

10
,

where the average energy of the harmonic oscillator (oscillating particle) due to
thermal and ®zero-order¯ (at T = 0) variations is equal [32]:

D(T ) =
�ωmin

2
coth

(
�ωmin

2kBT

)
=

{
kBT for high T,

�ωmin/2 when T → 0,
(39)

where ωmin and ωmax are the angular frequencies of potential U(x) in the potential
minimum and in the vertex of barrier, respectively; ΔU is potential barrier height;
kB is Boltzmann constant.

At the same time, to give the universal description of induced and spontaneous
decays (at T = 0), we use for the calculation of Eq. (38) the relation generalizing
the similar relation of Fermi-gas model [27Ä29]:

D(T ) = (E∗/a)1/2, (40)

where a = A/(8±1) MeV−1 is the parameter of one-particle level density [28, 29].
Now we are ready for the description of our subject of interest, i.e., for

investigation of the Kramers stochastic transitions over the potential barrier (38)
in nonlinear nuclear dynamics for α decay, cluster radioactivity and spontaneous
ˇssion.

4. THE KRAMERS CHANNEL OF α DECAY, CLUSTER
RADIOACTIVITY AND SPONTANEOUS FISSION

Let us consider the general case of a potential, in which some nuclear par-
ticle, for example, α particle, cluster or spontaneously ˇssionable nucleus is
moving (Fig. 1). This is a positive potential of Coulomb repulsion VCoul out of
nucleus (r > R) and a negative potential of nuclear attraction Vnucl, for example,
of rectangular form, within nucleus (r < Rnucl). Note that the Kramers veloc-
ity (38) depends only on barrier height and curvature of potential in its extremes,
therefore the exact shape of potential is inessential. It in full measure concerns
the exact form of nuclear attraction potential. Therefore, it is important to note
that obtained below results can be qualitatively applied to a wide class of bistable
systems.
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Fig. 1. The dependence of nuclear particle potential energy on distance to the nuclear
center

It is well known that it is possible to determinate approximately the nuclear
radii from the experimental data of α decay. The proximity means that in such
experiments the distance between the centers of nucleus and α-particle, where
nuclear forces cease to act, is measured. In other words, the distance R equal
to the sum of nuclear radius RA−4, Z−2, α-particle radius Rα and nuclear force
action radius Rnf is determined. Thus, the Coulomb repulsion potential out of
nucleus is acting at distances r > R = RA−4, Z−2 + Rα + Rnf . The same is true
for the Coulomb interaction radius in case of cluster radioactivity and spontaneous
ˇssion. At the same time, the probability effective current wK over the Coulomb
potential barrier by virtue of geometry (Fig. 1) and Eq. (38) will be described by
the following simpliˇed expression:

wK =
b

2π
exp

(
−VCoul − ETKE

〈ε〉

)
, (41)

where ETKE = Eα ≈ QX , ETKE = Ecl or ETKE = ESF is the decay ki-
netic energy for α decay, cluster radioactivity (cl) or spontaneous ˇssion (SF),
respectively; QX is total decay energy.

We suppose below that the excitation heat energy E∗ is some part of the
decay kinetic energy ETKE :

E∗ = μETKE, μ 
 1. (42)

Physical sense and the explanation of the necessity of this condition we will give
below.

Substituting Eq. (42) into Eq. (40) and after that substituting the obtained
result into Eq. (38), we have the probability effective current wK (41) over
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potential barrier:

wK =
〈ω〉Kramers

2π
exp

[
−

(
A

8μ

)1/2
VCoul − ETKE√

ETKE

]
. (43)

Then by virtue of equality TK = T1/2 = (wK)−1 we ˇnd Kramers's effective
time

lg T1/2 = − lg
〈ω〉Kramers

2π
+ lg e

(
A

8μ

)1/2
VCoul − ETKE√

ETKE

, (44)

where T1/2 is half-life; 〈ω〉Kramers is the effective frequency of α-particle ap-
pearance on the nuclear surface of radius R;

VCoul =
(Z − Zcl)zcl

RCoul
=

(Z − Zcl)zcl

RA−Acl,Z−Zcl + Rcl + Rnf
[MeV] , (45)

where A and Z are the mass number and the charge of parent nucleus; Zcl is the
charge of outgoing particle; (ZÄZcl) is the charge of the daughter nucleus; RCoul

is minimal Coulomb radius, fm.
Now it is easy to explain the necessity of assumption (42). It is stipulated

by the fact that just under this condition the expression for Kramers effective
time (44) can be represented by the following approximate formula:

lg T1/2
∼=

C√
ETKE

− B, (46)

which is one of the variants of the GeigerÄNuttall law for α decay, which was
experimentally established at the earliest stage of nuclear physics. In 1989Ä
1990 such an experimental dependence was also discovered for cluster radioac-
tivity [33, 34].

To explain the experimental law (46) predetermining the large variations of
the half-life of heavy nuclei, in 1928 the theory of quantum-mechanical tunneling
of α particles through the Coulomb barrier was proposed. This mechanism in the
framework of the Gamow theory [35] reduces to the following expression for the
time of α-particle passage through potential barrier (the half-life T1/2 of heavy
nuclei):

lg T1/2 = − lg
〈ω〉Gamov

2π
+lg e

4e2(Z − 2)
�

√
2μα

Eα

[
arccos

√
x −

√
x(1 − x)

]
,

x =
RCoul

rT
, (47)

where μα = (A−4)4/A is reduced mass; � is reduced Planck constant, 〈ω〉Gamov

is effective frequency of α-particle appearance on nuclear surface of radius RCoul;
rT = e2(Z − 2)2/Eα.
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If the Coulomb barrier height is much greater than energy Eα, what is typical
situation for all natural α-radiators (i.e., x = RCoul/rT 
 1), and the term in
square brackets in Eq. (47) is approximately equal to (0.5π − 2x−1/2), Eq. (22)
for half-life T1/2 is simpliˇed and looks like

lg T1/2 = − lg
〈ω〉Gamov

2π
+lg e

πe22(Z − 2)
�

√
2μα

Eα
−lg e

2
�

√
μαe22(Z − 2)RCoul.

(48)
It is easy to show that Eqs. (44) and (48) characterizing the ®Kramers¯ and

®Gamow¯ half-life evolution, respectively, are equally well described by relation
of the GeigerÄNuttall type (46). However, in both cases we have not any informa-
tion about the effective frequencies (〈ω〉Gamov and 〈ω〉Kramers) of particle-cluster
appearance on the nuclear surface of radius RCoul as well as about the value of
this radius. In ®Kramers¯ case the uncertainty of value μ is else accrues (see
Eq. (44)). Note that due to the uncertainty of effective frequency of α-particle
appearance on nuclear surface of radius RCoul, we obtain by Eq. (48) only the
order of half-life and not its exact value. The second uncertainty can be explained
by the fact that, according to the measurements of quadrupole moments, the ma-
jority of α-radioactive nuclei are not spherical as it was supposed in the Gamow
α-decay theory, but they have ellipsoidal form with a ratio of longer to shorter
half-axes, which running up to 1.5. Since the penetrability of potential barrier
of nonspherical nucleus is various in the different its parts, and it is especially
high near the ®ends¯ of a nucleus, the estimations of nuclei radius obtained by
alpha-decay data give the overestimated values, which actually characterize the
longitudinal radius of a nucleus and not a certain effective radius.

Thus, since the dependence of Kramers effective time on decay energy and
Coulomb barrier characteristics for cluster radioactivity and spontaneous ˇssion
has the same nature as for alpha decay, the problem of indicated above un-
certainties remains unsolved. It specially concerns the uncertainty of effective
frequencies (〈ω〉Gamov and 〈ω〉Kramers) of cluster-particle appearance on a nu-
clear surface of radius RCoul, as the corresponding theoretical estimations are
extremely difˇcult to obtain, and even if they are obtained, they are strongly
approximate [36, 37].

At the same time, the energy, half-lives and decay relative probabilities for the
majority of radioactive heavy nuclei are measured with good accuracy within the
framework of alpha-, cluster- and ˇssion-fragment spectroscopy. These data are
collected in the well-known ENSDF nuclear data library [38] and in combination
with theoretical estimation (44) make it possible to solve one of the primary
problems in the nuclear spectroscopy of radioactive decay, which is formulated
in the following way. Using the experimental ENSDF data, for example, T exp

1/2 ,

and theoretical estimations of T theory
1/2 (see Eq. (44)) it is necessary to solve the

inverse nonlinear problem, which can be described by the system of nonlinear
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equations of the following type:

T exp
1/2 = T theory

1/2 (ETKE , A, Z, Acl, Zcl, RCoul, ω, μ) (49)

with respect to unknown parameters RCoul , ω and μ.
The solution of the system of nonlinear algebraic equations of such a type

under certain conditions allows us to obtain a set of important data on intranuclear
processes. In particular, it makes possible to obtain a functional dependence
of effective frequency (〈ω〉Kramers) of cluster-particle occurrence on a nuclear
surface of radius RCoul and the dependence of radius RCoul on quantum numbers
(in our case, the mass number and the charge) characterizing the parent and
daughter nuclei. On the other hand, the large variations of half-lives will lead
to situation, when common determinant of the system will have many ®zeros¯,
and as a whole, the system will be quasi-degenerate. This means that we have
the ill-conditioned system of nonlinear equations, whose solutions can be instable
to the low changes of initial data. In other words, a problem of this type
belongs to a class of ill-posed problems, and to solve it we used the Alexandrov
dynamic autoregularization method (FORTRAN code REGNÄDubna [39]) which
is constructive development of the Tikhonov regularization method [40].

Below we show the results of the application of the Alexandrov dynamic
autoregularization method for solving the inverse nonlinear problem in the frame-
work of the Kramers universal description (19) of stochastic channels for α decay,
cluster radioactivity and spontaneous ˇssion using the well-known experimental
data.

5. COMPARING THEORY WITH EXPERIMENT

In the case of heavy nucleus radioactive decay with heavy cluster emission
(such as 14C, 24Ne, 28Mg, 34Si) as well as in the case of α decay, the inequality
Qcl < BCoul

Acl(A−Acl)
is fulˇlled, where Qcl is cluster decay energy and BCoul

Acl(A−Acl)

is Coulomb interaction energy between daughter nucleus (of mass number AÄAcl

and charge ZÄZcl) and cluster (of mass number Acl and charge Zcl) in contact
point [34]. In other words, such a process is deep-subbarrier. Tacking into
account experimental facts [34, 41], which show that the kinetic energy of decay
products emitted from parent nucleus (A) remains almost the same

Eexp
cl

∼= Qcl
A − Acl

A
, (50)

we can assume, that daughter nuclei and clusters are almost unexcited. Both of
these arguments allow us to consider that the noticeable reorganization of parent
nucleus due to decay not always takes place. Hence it is possible to assume
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that radioactive decay with heavy cluster emission is α-decay analogue [34]. In
this sense, the experimental result on the detection of the ˇne structure of 233Ra
cluster decay [42] is very important. This result was theoretically predicted in the
framework of the model [45], which use analogues with α decay. Therefore, this
experiment in fact gives decisive conˇrmation of analogy between mechanisms
of α decay and decay with heavy clusters emission [34].

Before to analyze the results of computational experiment, one important
and unexpected fact has to be noted, it was found that the solution of inverse
problem in the framework of the Kramers universal description of α decay and
cluster radioactivity (44) is absolutely sufˇcient to describe the spontaneous ˇssion
without any additional adjusting parameters. This suggests that for α decay as well
as for cluster radioactivity and spontaneous ˇssion the inequality of ETKE �= Qα

type is true. At least, it fulˇls in known experiments on α decay of heavy
and superheavy nuclei [44]. It can be partially explained by the fact that for
α decay, where the transition in one of the excited states of ˇnite nucleus happens
or vice versa, the transition from one of the excited states of parent nucleus
takes place, the energy of α particles is always less or more, respectively, than
normal. Running a few steps forward, we can assume that the allowance for
this strict inequality (ETKE �= Qα) will lead to sharp decrease of the numbers of
parameterization parameters for functions RKramers, < ω >Kramers, μ on quantum
numbers A, Z, Acl, Zcl, in Eq. (49).

Now let us consider the solving of inverse problem in the framework of the
Kramers (44) universal description of α decay, cluster radioactivity and sponta-
neous ˇssion, where alpha particle is considered as the smallest cluster. Using
the Alexandrov dynamic regularization method [39] for solving the inverse prob-
lem (44) on the set of experimental data (Tables 1Ä3) from the ENSDF [38],
we have obtained the phenomenological functional dependences of previously
unknown parameters in the framework of the Kramers (44) universal description
of α decay, cluster radioactivity and spontaneous ˇssion.

Table 1. The ENSDF experimental data for α decay of evenÄeven nuclei and the
theoretical half-lives T theory

1/2 obtained by our model

No. Nuclei A Z Acl Zcl ETKE, MeV QX, MeV T theory
1/2

, y T exp
1/2

, y ΔT exp
1/2

, y

1 Pt 168 78 4 2 6.832±0.010 6.999±0.001 7.1228E-11 6.3376E-11 3.17E-12
2 Pt 174 78 4 2 6.038±0.004 6.184±0.001 3.6504E-8 2.8171E-08 5.39E-11
3 Pt 176 78 4 2 5.753±0.003 5.887±0.000 2.5613E-7 1.9963E-07 1.58E-08
4 Pt 178 78 4 2 5.446±0.003 5.561±0.000 9.1244E-7 6.6862E-07 1.90E-08
5 Hg 174 80 4 2 7.067±0.006 7.233±0.001 6.9551E-11 6.0207E-11 1.27E-12
6 Hg 180 80 4 2 6.119±0.004 6.258±0.000 6.9882E-8 8.1755E-08 3.17E-10
7 Hg 182 80 4 2 5.867±0.005 5.999±0.001 6.1335E-7 3.4318E-07 1.90E-09
8 Pb 186 82 4 2 6.332±0.007 6.471±0.001 7.4096E-8 1.5305E-07 1.58E-09
9 Pb 188 82 4 2 5.983±0.004 6.111±0.000 1.0762E-6 7.9537E-07 3.17E-10
10 Po 188 84 4 2 7.910±0.013 8.082±0.001 7.0991E-12 9.5064E-12 9.51E-13
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Table 1 (continuation)
No. Nuclei A Z Acl Zcl ETKE, MeV QX, MeV T theory

1/2
, y T exp

1/2
, y ΔT exp

1/2
, y

11 Po 190 84 4 2 7.537±0.006 7.699±0.001 6.8357E-11 7.7636E-11 1.58E-12
12 Po 192 84 4 2 7.167±0.007 7.322±0.001 1.0062E-9 1.0520E-09 4.44E-12
13 Po 194 84 4 2 6.843±0.003 6.990±0.000 1.0917E-8 1.2422E-08 1.27E-14
14 Po 196 84 4 2 6.520±0.023 6.657±0.000 1.1203E-7 1.8157E-07 7.29E-10
15 Po 198 84 4 2 6.182±0.022 6.309±0.002 1.5956E-6 3.3653E-06 5.70E-09
16 Po 200 84 4 2 5.862±0.018 5.981±0.002 2.9636E-5 2.1865E-05 1.90E-08
17 Po 202 84 4 2 5.588±0.017 5.686±0.002 4.9223E-5 8.4987E-05 9.51E-08
18 Po 206 84 4 2 5.224±0.015 5.327±0.001 2.9137E-2 2.4093E-02 2.74E-05
19 Po 214 84 4 2 7.687±0.007 7.849±0.001 4.1992E-12 5.2064E-12 6.34E-15
20 Po 216 84 4 2 6.778±0.005 6.906±0.001 2.0487E-9 4.5948E-09 6.34E-12
21 Po 218 84 4 2 6.002±0.009 6.115±0.001 3.9984E-6 5.8940E-06 3.80E-09
22 Rn 198 86 4 2 7.205±0.005 7.349±0.000 1.9900E-9 2.0597E-09 9.51E-12
23 Rn 200 86 4 2 6.902±0.003 7.043±0.000 2.8424E-8 3.0421E-08 9.51E-10
24 Rn 202 86 4 2 6.640±0.019 6.774±0.002 2.1262E-7 3.1688E-07 9.51E-10
25 Rn 208 86 4 2 6.140±0.017 6.271±0.002 7.0718E-5 4.6296E-05 2.66E-08
26 Rn 218 86 4 2 7.129±0.012 7.263±0.002 1.1089E-9 1.1091E-09 1.58E-11
27 Rn 220 86 4 2 6.288±0.010 6.405±0.001 2.2059E-6 1.7619E-06 3.17E-10
28 Rn 222 86 4 2 5.489±0.030 5.590±0.000 1.3687E-2 1.0468E-02 8.21E-08
29 Ra 204 88 4 2 7.486±0.006 7.636±0.001 2.1582E-9 1.8062E-09 3.49E-12
30 Ra 212 88 4 2 6.899±0.017 7.040±0.002 3.3566E-7 4.1195E-07 6.34E-09
31 Ra 214 88 4 2 7.137±0.003 7.283±0.000 4.7379E-8 7.7953E-08 9.51E-11
32 Ra 220 88 4 2 7.453±0.007 7.592±0.001 7.6376E-10 5.7039E-10 6.34E-13
33 Ra 222 88 4 2 6.559±0.005 6.679±0.000 1.3684E-6 1.1462E-06 3.17E-10
34 Ra 224 88 4 2 5.685±0.015 5.789±0.000 1.3964E-2 1.0021E-02 1.10E-05
35 Ra 226 88 4 2 4.784±0.025 4.871±0.000 1.9239E3 1.6000E+03 7.00E-01
36 Th 210 90 4 2 7.899±0.017 8.053±0.002 6.1465E-10 2.8519E-10 5.39E-11
37 Th 216 90 4 2 7.922±0.008 8.081±0.001 7.1259E-10 8.2389E-10 4.75E-11
38 Th 218 90 4 2 9.666±0.010 9.849±0.001 4.2241E-15 3.4540E-15 4.12E-17
39 Th 222 90 4 2 7.980±0.002 8.127±0.001 1.1147E-10 7.0981E-11 4.12E-14
40 Th 224 90 4 2 7.170±0.010 7.304±0.001 7.4860E-8 3.3272E-08 6.34E-11
41 Th 226 90 4 2 6.337±0.010 6.444±0.001 3.7302E-5 5.8122E-05 1.90E-08
42 Th 228 90 4 2 5.423±0.022 5.520±0.002 2.6517E0 1.9120E+00 2.00E-03
43 Th 230 90 4 2 4.687±0.015 4.770±0.002 6.9160E4 7.5386E+04 3.00E+02
44 Th 232 90 4 2 4.012±0.014 4.083±0.001 9.5977E9 1.4050E+10 6.00E+07
45 U 226 92 4 2 7.570±0.020 7.704±0.001 1.2414E-8 1.1091E-08 4.75E-09
46 U 228 92 4 2 6.680±0.010 6.796±0.001 1.9017E-5 1.7302E-05 3.80E-08
47 U 230 92 4 2 5.888±0.007 5.993±0.001 1.0152E-1 5.6947E-02 5.75E-04
48 U 232 92 4 2 5.320±0.014 5.414±0.001 9.5117E1 6.8890E+01 4.00E-02
49 U 234 92 4 2 4.775±0.014 4.858±0.001 1.7898E5 2.4549E+05 6.00E+01
50 U 236 92 4 2 4.494±0.003 4.573±0.001 2.8904E7 2.3421E+07 4.00E+03
51 U 238 92 4 2 4.198±0.003 4.270±0.001 4.4627E9 4.4680E+09 3.00E+05
52 Pu 236 94 4 2 5.768±0.008 5.867±0.001 2.6875E0 2.8580E+00 8.00E-04
53 Pu 238 94 4 2 5.499±0.020 5.593±0.002 8.2055E1 8.7713E+01 1.00E-02
54 Pu 240 94 4 2 5.168±0.015 5.256±0.001 7.9892E3 6.5610E+03 7.00E-01
55 Pu 242 94 4 2 4.902±0.009 4.984±0.001 3.6001E5 3.7360E+05 1.10E+02
56 Pu 244 94 4 2 4.589±0.001 4.666±0.001 8.0242E7 8.0012E+07 9.00E+04
57 Cm 238 96 4 2 6.520±0.050 6.608±0.004 2.4091E-4 2.7379E-04 1.14E-06
58 Cm 240 96 4 2 6.291±0.005 6.398±0.001 7.1683E-2 7.3922E-02 2.74E-04
59 Cm 242 96 4 2 6.113±0.008 6.216±0.000 4.9037E-1 4.4617E-01 1.64E-05
60 Cm 244 96 4 2 5.805±0.005 5.902±0.000 1.8000E1 1.8100E+01 1.00E-02
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Table 1 (continuation)
No. Nuclei A Z Acl Zcl ETKE, MeV QX, MeV T theory

1/2
, y T exp

1/2
, y ΔT exp

1/2
, y

61 Cm 246 96 4 2 5.387±0.010 5.475±0.001 3.0607E3 4.7596E+03 4.00E+00
62 Cm 248 96 4 2 5.078±0.025 5.162±0.003 4.0888E5 3.4800E+05 6.00E+02
63 Cf 240 98 4 2 7.590±0.010 7.719±0.001 2.9232E-6 1.8252E-06 2.85E-07
64 Cf 244 98 4 2 7.209±0.004 7.329±0.002 5.9464E-5 3.6885E-05 1.14E-07
65 Cf 246 98 4 2 6.750±0.010 6.862±0.001 4.6022E-3 4.0726E-03 5.70E-06
66 Cf 248 98 4 2 6.258±0.005 6.361±0.001 7.9071E-1 9.1293E-01 7.67E-04
67 Cf 250 98 4 2 6.030±0.020 6.128±0.002 1.0019E1 1.3081E+01 9.00E-03
68 Cf 252 98 4 2 6.118±0.004 6.217±0.000 3.7474E0 2.6450E+00 8.00E-04
69 Fm 246 1004 2 8.237±0.015 8.361±0.002 2.8942E-8 3.4857E-08 6.34E-10
70 Fm 248 1004 2 7.870±0.020 8.000±0.001 1.4652E-6 1.1408E-06 9.51E-09
71 Fm 250 1004 2 7.436±0.012 7.558±0.001 5.3393E-5 6.2742E-05 5.70E-07
72 Fm 252 1004 2 7.039±0.002 7.155±0.002 2.3293E-3 2.8964E-03 5.70E-06
73 Fm 254 1004 2 7.192±0.002 7.308±0.002 3.8158E-4 3.6961E-04 2.28E-07
74 º 252 1024 2 8.415±0.001 8.549±0.001 9.3074E-8 7.1932E-08 4.44E-10
75 º 256 1024 2 8.448±0.001 8.581±0.001 4.8203E-8 9.2212E-08 1.58E-10
76 Sg 260 1064 2 9.770±0.003 9.912±0.003 1.2100E-10 1.1408E-10 2.85E-12
77∗ Ä 294 1184 2 11.650±0.060 11.838±0.0602.8198E-11 2.8202E-11 +3.39E-11

-8.17E-12
78∗ Ä 292 1164 2 10.660±0.070 10.809±0.0704.9622E-10 5.7039E-10 +5.07E-10

-2.14E-10
79∗ Ä 290 1164 2 10.840±0.080 10.990±0.0801.8945E-10 2.2499E-10 +1.01E-10

-1.20E-10
80∗ Ä 288 1144 2 9.940±0.060 10.091±0.0602.6095E-8 2.5350E-08 +8.56E-9

-1.50E-8
81∗ Ä 286 1144 2 10.190±0.060 10.339±0.0603.8586E-9 4.1195E-09 +1.27E-09

-2.06E-9
∗Data are given by Yu. Ts. Oganessian.

Table 2. The ENSDF experimental data for cluster radioactivity of evenÄeven nuclei
and the theoretical half-lives T theory

1/2 obtained by our model

No. Nuclei A Z Acl Zcl ETKE, MeV QX, MeV T theory
1/2

, y T exp
1/2

, y ΔT exp
1/2

, y

82 Ra 226 88 14 6 26.46±1.00 28.79±1.00 6.315E13 6.32E13 3.7E13
83 Ra 224 88 14 6 28.63±1.00 30.53±1.00 1.833E8 2.52E8 8.01E7
84 Ra 222 88 14 6 30.97±1.00 33.05±1.00 8.369E3 3.17E3 469.00
85 Th 230 90 24 10 51.98±1.00 57.68±1.00 1.208E17 1.26E17 2.21E16
86 U 232 92 24 10 55.86±1.00 62.31±1.00 1.370E13 1.00E13 7.17E11
87 U 234 92 28 12 65.26±1.00 74.13±1.00 3.097E18 1.59E18 7.48E16
88 Pu 236 94 28 12 70.22±1.00 79.60±1.00 1.139E14 1.59E14 1.58E14
89 Cm 242 96 34 14 82.88±1.00 96.43±1.00 9.977E13 1.00E14 5.86E13
90 Th 228 90 20 8 40.44±1.00∗ 44.73±1.00 1.792E13 1.68E13 Ä
91 U 234 92 24 10 51.80±1.00∗ 58.84±1.00 1.869E18 2.52E18 Ä

∗Predicted values.
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Table 3. The ENSDF experimental data for spontaneous ˇssion of evenÄeven nuclei
and the theoretical half-lives T theory

1/2 obtained by our model

No. Nuclei A Z Acl Zcl ETKE, MeV QX, MeV T theory
1/2

, y T exp
1/2

, y ΔT exp
1/2

, y

92 U 236 92 94 37 165.0±1.0 181.49±1.00 2.5014E+16 2.00E+16 1.00E+15
93 U 236 92 93 37 164.0±1.0 185.31±1.00 1.6000E+16 1.60E+16 2.00E+15
94 Pu 240 94 96 38 172.0±1.0 194.88±1.00 1.3400E+11 1.34E+11 2.00E+09
95 Cm 244 96 97 38 185.5±1.0 200.76±1.00 8.5405E+06 1.34E+7 2.00E+05
96 Cm 250 96 100 38 182.3±1.0 198.18±1.00 1.9154E+04 2.00E+04 5.00E+02
97 Cf 254 98 102 39 186.1±1.0 206.72±1.00 1.8165E-01 1.78E-01 5.48E-04
98 Cf 252 98 101 39 186.5±1.0 207.73±1.00 8.5490E+01 8.55E+01 1.00E+00
99 Cf 246 98 98 39 195.6±1.0 209.03±1.00 2.3353E+03 2.00E+03 2.00E+02
100 Fm 258 100 103 40 200.3±1.0 220.90±1.00 3.8000E-11 3.80E-11 6.34E-13

In this case, the system of nonlinear equations (49) looks like

lg T exp
1/2 = lg T Kramers

1/2 (Ecl, A, Z, Zcl, RKramers(A, Z, Acl, Zcl),

ωKramers(RKramers), μ(Z, Acl, Zcl)), (51)

for which we have applied the parameterization of functions RKramers, ωKramers,
μ with respect to quantum numbers A, Z, Acl, Zcl (which determine the mass
numbers and charges of parent nucleus and cluster) and energies ETKE, Qcl

(which determine the kinetic and total energy of decay) in the following form:

lg
〈ω〉Kramers

2π
= a20 +

1
RKramers

, (52)

μ = exp
[
a1 + a2

(A − 2Z)2

A2
+ a3

A − Acl

A

(
1 − ETKE

Qcl

)
+

+
(

a4
A − Acl

A
+ a5

1
Zcl

) (
1 − 1

Zcl

)]
, (53)

RKramers =
[
B1(A − Zcl)1/3 + B1A

1/3
cl − 1

]
B2 [fm] , (54)

B1 = exp

[
a6

(
A − 2Z

A

)2

+ a7
Z

A
+

(
a8 + a9

A − Acl

A
+ a10

1
Acl

)
×

×
(

1 − ETKE

Qcl

)
+

(
a11 + a12

A − Acl

A
+ a13

1
Zcl

) (
1 − 1

Zcl

)]
, (55)

B2 = exp

[
a14

1
Z

+ a15

(
A − 2Z

A

)2

+ a16
Z

A
+ a17

A − Acl

A

(
1 − ETKE

Qcl

)
+

+
(

a18 + a19
Z − Zcl

Z

) (
1 − 1

Zcl

)]
. (56)
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Note, one of ways for ˇnding the hidden dependences of parameters on
characteristic variables (in our case, on the quantum numbers A, Z, Acl, Zcl and
energies ETKE, Qcl), which determine the state of investigated system, is brie	y
described in [45].

The solutions of inverse nonlinear problem of the Kramers type (51) for
the ENSDF experimental data set (Table 1), which are presented as the val-
ues of parameters ai and their relative errors Δai/ai, are collected in Table 4.
Data in Tables 1Ä3 and in Fig. 2 show good coincidence (χ2/NDF = 82.5/72)
of the experimental and theoretical half-lives for α decay, cluster (14C, 24Ne,
28Mg, 34Si) radioactivity and spontaneous ˇssion depending on decay total kinetic
energy ETKE.

Fig. 2. The theoretical and experimental values of half-life for evenÄeven nuclei as function
of the ˇssion total kinetic energy ETKE for α decay, cluster radioactivity and spontaneous
ˇssion

To veriˇcate the obtained solution of inverse problem in the framework
of the Kramers universal description (44) of α decay, cluster radioactivity and
spontaneous ˇssion, whose parameters are given in Table 4, we have used the
experimental data of α decay for superheavy nucleus, which were kindly given by
Yu. Ts. Oganessian (JINR, Dubna, Russia) [44]. Figure 3 shows good accordance
between the experimental and theoretical (Kramers's) half-lives for alpha decay,
depending on the decay energy Eα. We consider that some lack of the coincidence
of the theoretical and experimental data in Fig. 3 (see Table 4) is caused by low
number of measurements (due to understandable reasons), which did not exceed
25 measurements for each decay type [44].

22



Table 4. The values of parameters ai and their relative errors Δai/ai

i ai Δai, %
1 Ä0.5786501537235E+01 2.90
2 Ä0.2096263480335E+02 1.90
3 Ä0.3814591516659E+02 2.70
4 0.6900587198207E+01 2.70
5 0.7660345598675E+01 5.00
6 0.1908313257301E+02 1.40
7 0.1826397833295E+02 1.30
8 0.5919551276390E+01 1.60
9 Ä0.1028171722816E+02 1.50
10 Ä0.4411225968202E+02 3.50
11 Ä0.1131089043128E+02 1.00
12 0.1314247777365E+01 1.20
13 0.2865440882262E+01 2.60
14 0.4240393211738E+01 18.00
15 Ä0.1229614115313E+02 2.20
16 Ä0.1772081454140E+02 1.20
17 0.1689691120764E+02 0.75
18 0.1666949024191E+02 0.82
19 Ä0.8643631861055E+01 0.78
20 0.2749864919484E+02 1.20

Based on the solution of inverse problem in the framework of the Kra-
mers (19) universal description of α decay, cluster radioactivity and spontaneous
ˇssion, whose parameters are shown in Table 4, we give predictable value of
energy ETKE for 234U and 228Th nuclei, which inclined to 20O and 24Ne cluster-
radioactivity, respectively (see Table 2 and Fig. 2). These data can be of interest
for future experiments.

Finally, it is possible to conclude that received results are an indirect conˇr-
mation of the applicability of the Langevin 	uctuation-dissipative dynamics and,
in particular, of the Kramers diffusion mechanism [30, 31] for the effective de-
scription of collective motions in nuclei, which generate the stochastic channel
of α decay, cluster radioactivity and spontaneous ˇssion. Although a situation
is, at ˇrst sight, complicated by the fact that dissipation in nucleus (or more
exactly, the nuclear friction) is experimentally unobserved magnitude [46], but, it
turned out, there is the obvious possibility of the unambiguous proof of its real
existence. For example, it is well known, that the introduction of the external
periodic signal into the Langevin equation (36) must result in the observation of
stochastic resonance [47]. In other words, the experiments on the search of nu-
clear stochastic resonance in α decay, which cannot in principle take place within
the framework of probabilistic interpretation of quantum mechanics but must be
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Fig. 3. The theoretical and experimental values of the half-life of evenÄeven nuclei as
function of the ˇssion total kinetic energy ETKE for α decay of superheavy nuclei with
Z = 114, 116, 118

observed within the framework of Bohmian mechanics supplemented with the
Chetaev generalized theorem [8, 48], can become the determinative factor for the
revelation of fundamental role of dissipation not only in the nuclear dynamics but
generally in quantum physics.

At last, note that, when the ˇrst research UV-lasers of frequency about 1018Ä
1020 s−1 [49] will appear in the near future, the problem of the stochastic mode
excitation in atomic nucleus under action of periodic external ˇeld will become
actual not only in respect to the direct study of dissipation and, consequently, of
self-organization and quantum chaos in it, but fundamental in view of possible
break-through of ®probabilistic smokescreen¯ [14] to the holistic understanding
of causal interpretation of quantum physics.
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