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When applying quantum-ˇeld theory methods to arbitrary physical problem
(e.g., in elementary particles physics, condensed matter physics, statistical me-
chanics, critical dynamics, stochastic dynamics, etc.), the necessity to calculate,
in general, multi-loop Feynman diagrams usually appears [1Ä3]. In this respect,
the one-loop calculations are always relatively simple, and this fact usually allows
one to make full analysis of the problem. Beautiful demonstration of such cal-
culations was given, e.g., in [4], where a formula for reducing n-point Feynman
diagrams to scalar integrals was presented. On the other hand, the corresponding
calculations become much more complicated when one wants to make similar
analysis in two- and/or higher-loop approximation. Despite the fact that in such
a case it is usually impossible to make complete analytical calculations, a general
integral formula for reducing tensor momentum integrals to scalar ones can also
be found. The formula was explicitly shown in [5], where it was present without
proof and used in two-loop calculations in ˇeld-theoretic model of passive scalar
advected by given turbulent environment. The aim of the present work is to prove
the formula in detail.

Thus, in what follows, we shall ˇnd and prove an analytical representation
for the following general tensor integrals:

∫
. . .

∫
dk(1) . . . dk(l)

k
(q1)
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k
(q2)
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. . . k
(qn)
in[

l∑
i=1

l∑
s=1

visk(i) · k(s) + 2
l∑

i=1

a(i) · k(i) + c

]α , (1)

where l and n are natural numbers, k(i) and a(i), i = 1, 2, . . . , l are vectors in

d-dimensional real Euclidean vector space, k
(i)
j denotes jth component of the

vector k(i), vis is an arbitrary symmetric l × l real matrix, c and α are arbitrary

real numbers, x · y =
d∑

i=1

xiyi is the scalar product, and integrations are taken

over d-dimensional Euclidean space.
Before we formulate the corresponding theorem, let us brie
y describe the

process which leads to tensor integrals (1). For simplicity we shall work in the
Euclidean space, but the procedure can be directly generalized to the pseudo-
Euclidean space.

Typical l-loop Feynman diagram is proportional to the combination of the
integrals of the following type:
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where Ai, i = 1, . . . , m are some polynomials of the second order with respect
to independent momenta (wave-vectors) k(i), i = 1, . . . , l and αi, i = 1, . . . , m
are some, in general, real numbers. Further, by using the well-known Feynman
parametrization procedure [1, 2], which is given by the following relation:
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2 · · ·Aαm

m
=

Γ
( m∑

i=1

αi
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. . .
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0
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δ
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i

( m∑
i=1

Aiui

) m∑

i=1
αi

,

(3)
where δ(x) is the Dirac δ-function, the integration over momenta k(i), i = 1, . . . , l
is reduced to integrals of the form presented in (1) with the corresponding sym-
metric real l × l matrix vis, l vectors ai, and some real quantities c and α which
are independent of momenta k(i), i = 1, . . . , l.

Thus, to proceed it is necessary to calculate the general integral (1). It is the
subject of the following theorem which represents the integrals of the form (1) in
appropriate analytical form which is convenient for further analysis.

Theorem: Let V be the d-dimensional Euclidean vector space over the ˇeld
of real numbers R. Let l, n ∈ N (natural numbers), and k(i), for i = 1, 2, . . . , l
be vectors in V . Then for an arbitrary l× l symmetric real matrix with det v �= 0,
arbitrary vectors a(i) (i = 1, 2, . . . , l), and arbitrary c, α ∈ R, the following
general formula holds:

∫
. . .

∫
dk(1) . . . dk(l)k

(q1)
i1

k
(q2)
i2

. . . k
(qn)
in[

visk(i) · k(s) + 2a(i) · k(i) + c
]α =

(−1)nπ
dl
2 (det v)−

d
2

Γ(α)
×

×
[n
2 ]∑

p=0

Γ
(

α − dl

2
−

[n

2

]
+ p

) [
c − (v−1)isa(i) · a(s)

][n
2 ]+ dl

2 −α−p

([n

2

]
− p

)
! (2p + n(mod 2))!4[n

2 ]−p
×

×
∑

P (r1,r2,...,rn)

(v−1)q1s1a
(s1)
i1

(v−1)q2s2a
(s2)
i2

. . . (v−1)q2p+n(mod 2)s2p+n(mod 2)×

× a
(s2p+n(mod 2))

i2p+n(mod 2)
δi2p+n(mod 2)+1i2p+n(mod 2)+2×

× (v−1)q2p+n(mod 2)+1q2p+n(mod 2)+2 . . . δin−1in(v−1)qn−1qn , (4)

where summation is taken over all simultaneous permutations of couples of indices

rj = {qj , ij}, j = 1, . . . , n; k
(s)
j and a

(s)
j are j-th components of the vectors k(s)

and a(s), respectively; δij denotes Kronecker delta; v−1 is the inverse matrix;
�n/2� = n/2 for an even n, and �n/2� = (n − 1)/2 for an odd n, and over all
dummy indices the corresponding summation is assumed.
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Proof: To prove formula (4) it is appropriate to use mathematical induction.
First of all, the theorem is correct for the scalar case with n = 0. In this speciˇc
situation the formula is well known (see, e.g., Ref. [3]), namely,

∫
. . .

∫
dk(1) . . . dk(l)[

visk(i) · k(s) + 2a(i) · k(i) + c
]α =

=
π

dl
2 (det v)−

d
2 Γ

(
α − dl

2

)

Γ(α)

[
c − v−1

is a(i) · a(s)
] dl

2 −α

, (5)

where, for simplicity, we use the following suitable notation: v−1
is ≡ (v−1)is.

This notation will be used within the whole proof.

Now, by differentiating both sides of equation (5) with respect to a
(q1)
i1

and
by subsequent replacing α → α − 1, one obtains

∫
. . .

∫
dk(1) . . . dk(l) k

(q1)
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visk(i) · k(s) + 2a(i) · k(i) + c
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= (−1)
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dl
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2
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Γ(α)
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c − v−1

is a(i) · a(s)
] dl

2 −α

v−1
q1sa

(s)
i1

,

which is exactly the integral (4) for n = 1.
To proceed, it is suitable to deˇne the following notation:

C(i1,...,in;s1,...,st) =

= v−1
q1s1

a
(s1)
i1

v−1
q2s2

a
(s2)
i2

. . . v−1
qtst

a
(st)
it

δit+1it+2v
−1
qt+1qt+2

. . . δin−1inv−1
qn−1qn

. (6)

Further, let us suppose that formula (4) is valid for an even n ∈ N, n � 0, i.e.,

∫
. . .

∫
dk(1) . . . dk(l) k
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. . . k
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visk(i) · k(s) + 2a(i) · k(i) + c
]α =

=
(−1)nπ

dl
2 (det v)−

d
2

Γ(α)
×

×
n
2∑

p=0

Γ
(

α − dl

2
− n

2
+ p

) [
c − v−1

is a(i) · a(s)
]n

2 + dl
2 −α−p

(n

2
− p

)
! (2p)! 4

n
2 −p

×

×
∑

P (r1,r2,...,rn)

C(i1,...,in;s1,...,s2p). (7)
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By differentiating both sides of equation (7) with respect to a
(qn+1)
in+1

, one obtains

∫
. . .

∫
dk(1) . . . dk(l)

k
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i1
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d
2

Γ(α + 1)
×

×
n
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p=0

Γ
(

α + 1 − dl

2
− n

2
+ p

) [
c − v−1

is a(i) · a(s)
]n

2 + dl
2 −α−p−1

(n

2
− p

)
! (2p)!4

n
2 −p

×

× v−1
qn+1sa

(s)
in+1

∑
P (r1,r2,...,rn)

C(i1,...,in;s1,...,s2p) +
(−1)n+1π

dl
2 (det v)−

d
2

Γ(α + 1)
×

×
n
2∑

p=0

Γ
(
α − dl

2 − n

2
+ p

) [
c − v−1

is a(i) · a(s)
] n

2 +dl
2 −α−p

(n

2
− p

)
! (2p)!4

n
2 −p+ 1

2

×

×
∑

P (r1,r2,...,rn)

[
v−1

q1qn+1
δi1in+1 C(i2,...,in;s2,...,s2p) + v−1

q2qn+1
δi2in+1×

× C(i1,i3,...,in;s1,s3,...,s2p) + · · · + v−1
q2pqn+1

δi2pin+1×
× C(i1,...,i2p−1,i2p+1,...in;s1,...,s2p−1)

]
.

Now, using the substitution α → α− 1 and after appropriate algebraic manipula-
tions, one obtains

∫
. . .

∫
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(
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2
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2
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c − v−1
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] (n+1)−1

2 + dl
2 −α−p

(
(n + 1) − 1

2
− p

)
! (2p + 1)!4

(n+1)−1
2 −p

×

×
∑

P (r1,r2,...,rn+1)

C(i1,...,in+1;s1,...,s2p+1),
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which is exactly formula (4) for odd values of n + 1 (to obtain the exact form as
in (4), it is necessary to make the substitution n + 1 → n).

Now, let us suppose that formula (4) is valid for an odd n ∈ N, n � 1. In this

case, formula (4) takes the following form
( [n

2

]
=

n − 1
2

and n(mod 2) = 1
)
:

∫
. . .

∫
dk(1) . . . dk(l) k
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. . . k
(qn)
in[

visk(i) · k(s) + 2 a(i) · k(i) + c
]α =

=
(−1)nπ

dl
2 (det v)−

d
2
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×
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n−1
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p=0
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(
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2
− n − 1

2
+ p

) [
c − v−1
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]n−1
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2
− p

)
! (2p + 1)! 4

n−1
2 −p

×

×
∑

P (r1,r2,...,rn)

C(i1,...,in;s1,...,s2p+1). (8)

Again, by differentiating both sides of equation (8) with respect to a
(qn+1)
in+1

, one
obtains

∫
. . .

∫
dk(1) . . . dk(l)
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k
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. . . k
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k
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visk(i) · k(s) + 2a(i) · k(i) + c
]α+1 =

=
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d
2

Γ(α + 1)
×

×
n−1
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Γ
(
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2
− n − 1

2
+ p + 1
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c − v−1
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2 + dl
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(
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2
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)
! (2p + 1)!4
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2 −p

×

× v−1
qn+1sa

(s)
in+1

∑
P (r1,r2,...,rn)

C(i1,...,in;s1,...,s2p+1) +
(−1)n+1π

dl
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d
2
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×
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2∑
p=0

Γ
(

α − dl

2
− n − 1

2
+ p

)[
c − v−1
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2

×
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×
∑

P (r1,r2,...,rn)

[
v−1

q1qn+1
δi1in+1 C(i2,...,in;s2,...,s2p+1) + v−1

q2qn+1
δi2in+1 ×

× C(i1,i3,...,in;s1,s3,...,s2p+1)+

+ · · · + v−1
q2p+1qn+1

δi2p+1in+1 C(i1,...,i2p,i2p+2,...in;s1,...,s2p)

]
.

Thus, using the substitution α → α−1 and rather cumbersome but straightforward
algebraic and combinatoric manipulations, one obtains the ˇnal result:

∫
. . .

∫
dk(1) . . . dk(l)

k
(q1)
i1

k
(q2)
i2

. . . k
(qn)
in

k
(qn+1)
in+1[

visk(i) · k(s) + 2a(i) · k(i) + c
]α =

=
(−1)n+1π

dl
2 (det v)−

d
2

Γ(α)
×

×
n+1
2∑

p=0

Γ
(

α − dl

2
− n + 1

2
+ p

) [
c − v−1

is a(i) · a(s)
]n+1

2 + dl
2 −α−p

(
n + 1

2
− p

)
! (2p)!4

n+1
2 −p

×

×
∑

P (r1,r2,...,rn+1)

C(i1,...,in+1;s1,...,s2p),

which is exactly equal to formula (4) for even values of n + 1 (again, to obtain
the exact form as in (4), it is necessary to make the substitution n + 1 → n).

Thus, we prove the formula given in Eq. (4) by using the method of math-
ematical induction in two steps. First, from an assumption of validity of the
formula for even values of n we have obtained the formula for odd values of
n + 1, and at the second stage we have obtained the formula for even values of
n + 1 from assumption of validity of the formula for odd values of n. �

Therefore, by applying the Feynman parametrization formula (3) to the typical
l-loop integrals (2) and by subsequently applying the above-proven theorem (4),
the integrals (2) are reduced to the integrals over parameters ui, i = 1, . . . , m
which must be analyzed separately.

The work was supported in part by VEGA grant 2/0173/09 of the Slovak
Academy of Sciences and by ITMS project No. 26220120009.

REFERENCES

1. Ramond P. Field Theory: A Modern Primer. Westview, 2001.

2. Zinn-Justin J. Quantum Field Theory and Critical Phenomena. Oxford: Clarendon,
1989.

6



3. Vasil'ev A. N. Quantum-Field Renormalization Group in the Theory of Critical Phe-
nomena and Stochastic Dynamics. St. Petersburg: St. Petersburg Institute of Nuclear
Physics, 1998.

4. Davydyshev A. I. A Simple Formula for Reducing Feynman Diagrams to Scalar Inte-
grals // Phys. Lett. B. 1991. V. 263. P. 107.

5. Chkhetiani O.G., Hnatich M., Jur�ci�sinov�a E., Jur�ci�sin M., Mazzino A., Repa�san M.
In
uence of Helicity on Anomalous Scaling of a Passive Scalar Advected by the
Turbulent Velocity Field with Finite Correlation Time: Two-Loop Approximation //
Phys. Rev. E. 2006. V. 74. P. 036310.

Received on August 21, 2009.



�¥¤ ±Éμ· …. ˆ.Š· ¢Î¥´±μ

�μ¤¶¨¸ ´μ ¢ ¶¥Î ÉÓ 02.10.2009.
”μ·³ É 60× 90/16. �Ê³ £  μË¸¥É´ Ö. �¥Î ÉÓ μË¸¥É´ Ö.

“¸². ¶¥Î. ². 0,62. “Î.-¨§¤. ². 0,82. ’¨· ¦ 310 Ô±§. ‡ ± § º 56729.

ˆ§¤ É¥²Ó¸±¨° μÉ¤¥² 	¡Ñ¥¤¨´¥´´μ£μ ¨´¸É¨ÉÊÉ  Ö¤¥·´ÒÌ ¨¸¸²¥¤μ¢ ´¨°
141980, £. „Ê¡´ , Œμ¸±μ¢¸± Ö μ¡²., Ê².†μ²¨μ-ŠÕ·¨, 6.

E-mail: publish@jinr.ru
www.jinr.ru/publish/


