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bym . u np. E11-2009-126
YucneHHoe UCCIIeoB HUE YP BHEHUI PEHOPMIPYIIIBI B MOJAEIN
BEKTOPHOTO IOJISI, ABEKTUPOB HHOIO HU3O0TPOIHOM CTOX CTHMYECKOH CPenou

P ccMoTpeHo BiMsiHME CHJIBHON OJHOOCEBON M JIOM CIIT GHON HHU30TPOIHU H
CT OMIBHOCTH CKEMIMHIOBBIX PEXWUMOB B MHEPLHMOHHOM HMHTEPB Jieé B MOJENU II C-
CHBHOT'O IOIIEPEYHOr0 BEKTOPHOIO MOJS, JBEKTUPOB HHOTO HECKHUM E€MbIM TypOy-
JIEHTHBIM IIOTOKOM, C HCIIOJIb30B HHUEM TEOPETUKO-IIOJNIeBOM peHopmrpymisl. Ilpen-
IOJI T €TCH, YTO I0JIEé CKOPOCTEH MMEET I' YCCOBCKYIO CT TUCTHKY C HYJIEBBIM CpEl-
HUM M C OIPEAEIECHHBIM IIYMOM C KOHEUHBIMU BPEMEHHBIMH Koppemsduusamu. Ilok -
3 HO, YTO CKEIJIMHIOBbIE PEXUMBI B MHEPLUUOHHOM HHTEPB JIe CBA3 HBI C CYLLECTBO-
B HUEM CT OWIBHBIX MH(MP Kp CHBIX HEMOABUXHBIX TOYEK COOTBETCTBYIOIIMX yp B-
HEHUI PEHOPMIPYIIIBL C ONPENE/IEHHBIMU YITIOBBIMU MHTErp J1 Mu. Ilpusenen H yu3
UHTETP JIOB. 3 0 4 pemeH YHCIEHHO, M TP HUYHBIE 3H YEHHUS MPOCTP HCTBEHHOU
p 3MmepHoctH d. € (1,3], HUXe KOTOPHIX CKEHTHHIOBBIA PeXHM HECT GHIIEH, H K-
AeHbl K K (PyHKIMH I P METPOB HHU3OTPOIHHU.

P 6or Bemonnen B JI 6op Topuu nHcopM LMOHHBIX TexHosoruii OUSAU.
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Numerical Investigation of Renormalization Group Equations
in a Model of Vector Field Advected by Anisotropic Stochastic Environment

Using the field-theoretic renormalization group, the influence of strong uniaxial
small-scale anisotropy on the stability of inertial-range scaling regimes in a model
of passive transverse vector field advected by an incompressible turbulent flow is
investigated. The velocity field is taken to have a Gaussian statistics with zero
mean and defined noise with finite time correlations. It is shown that the inertial-
range scaling regimes are given by the existence of infrared stable fixed points of
the corresponding renormalization group equations with some angle integrals. The
analysis of integrals is given. The problem is solved numerically and the borderline
spatial dimension d. € (1, 3] below which the stability of the scaling regime is not
present is found as a function of anisotropy parameters.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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1. INTRODUCTION

During the last two decades the so-called toy models of advection of a passive
scalar field (concentration of an impurity, temperature, etc.) or a vector field
(weak magnetic field in a conductive environment) by a given Gaussian statistics
of the velocity field have played the main role in the theoretical investigations
of intermittency and anomalous scaling in fully developed turbulence [1,2]. The
reason for this is twofold. On the one hand, the breakdown of the classical
Kolmogorov—Obukhov phenomenological theory of fully developed turbulence [3]
is more noticeable for simpler models of a passively advected scalar or vector
quantity than for the velocity field itself and, on the other hand, the problem of
a passive advection is easier from theoretical point of view (see, e.g., [1] and
references therein).

An effective approach for studying self-similar scaling behavior is the method
of the field-theoretic renormalization group (RG) [4] which can also be used in
the theory of fully developed turbulence and related problems [5,6]. During
the last decade the so-called rapid-change models of a passive scalar or vector
quantity advected by a self-similar white-in-time velocity field (also known as
Kraichnan model for scalar case and Kazantsev—Kraichnan model for vector field)
and their various generalized descendants were analyzed. It was shown that
within the field-theoretic RG approach the anomalous scaling is related to the
existence of «dangerous» composite operators with negative critical dimensions
in the framework of the operator product expansion (OPE) [5,6].

Nevertheless, one particular model of a passive vector advection is much more
complicated for theoretical investigations than the others even in the case that the
vector field is advected by the velocity field with a Gaussian statistics. It is the
model where the so-called stretching term is absent (the so-called A = 0 model,
see, e.g, [7,8,10]). The investigation of the anomalous scaling of correlation
functions in this model is essentially more complicated even in the simplest
isotropic case and the assumption of the presence of the small-scale anisotropy in
the model leads to difficulties even in analysis of the stability of the corresponding
asymptotic scaling regimes [9]. The complexity of its analysis is similar to the



corresponding problem in the field-theoretic renormalization group approach to
the stochastic Navier—Stokes equation [9].

In what follows, we shall concentrate on analysis of the stability of scaling
regimes of the model and it will be shown that the inertial-range scaling regimes
are given by the infrared (IR) stable fixed points of the system of five differential
Gell-Mann-Low equations (also known as flow equations) which contain a special
type of integrals. Therefore, their calculation in process of integration of the
system of differential equations is needed. In this respect, one effective approach
to the integration of the integrals will be discussed in detail.

2. THE MODEL AND THE FIELD THEORY

We consider the so-called A = 0 model of the advection of transverse
(solenoidal) passive vector field b = b(x, ) given by the stochastic equation

Otb =1pAb — (v-V)b + 1, (1)

where 9, = 9/0t, A = V? is the Laplace operator, v is the diffusivity (a
subscript 0 denotes bare parameters of unrenormalized theory), and v = v(x,t)
is the incompressible advecting velocity field. The vector field f = f(x,¢t) is a
transverse Gaussian random (stirring) force with zero mean and covariance

Dl = (filx,0)f;(x/,t)) = 6(t —t')Cyj(r/L), r=x—x 2)

where parentheses (---) hereafter denote average over corresponding statistical
ensemble and L denotes an integral scale related to the stirring. In what follows,
the concrete form of the correlator defined in (2) is not essential.

We suppose that the statistics of the velocity field is also given in the form
of a Gaussian distribution with zero mean and pair correlation function [8]

dkdw et )tk s
(vi(@)v;(2)) EDZ’j(w;w/)=/WRij(k)D”(w,k)e (=t +ik(x—x) (3)

where d is the dimension of the space, k is the wave vector, and R;;(k) is the
uniaxial anisotropic transverse projector taken in the following form [9]:

Rij(k) = (14+ ai(n- k)2/k2) P, (k) + azngsn Pis (k) Py (k), 4)

where P;;(k) = 0;; — kik; /k2 is common isotropic transverse projector, the
unit vector n determines the distinguished direction of uniaxial anisotropy, and
a1, ao are the parameters characterizing anisotropy. The necessity of positive
definiteness of the correlation tensor D;fj leads to the restrictions on the values of



the anisotropy parameters, namely a; o > —1. The function D"(w, k) in (3) is
taken in the following form [8]:

gorogk4_d_25_n

D" (w, k) =
(. k) (iw + worok?=")(—iw + uorok2=1)’

&)

where go plays the role of the coupling constant of the model, the parameter
ug is the ratio of turnover time of scalar field and velocity correlation time, and
the positive exponents € and 7 are small RG expansion parameters (for details
see [8,9]). The value ¢ = 4/3 corresponds to the Kolmogorov «two-thirds
law» for the spatial statistics of velocity field, and n = 4/3 corresponds to the
Kolmogorov frequency. Simple dimensional analysis shows that gg and ug, which
we commonly term as charges, are related to the characteristic ultraviolet (UV)
momentum scale A (or inner legth [ ~ A~1) by relations go ~ A%¢ and ug ~ A".

It can be shown that the stochastic problem (1)-(3) can be treated as a field
theory with the following action functional [4, 5]:

S((I)) = b;[(—@t — ’Uiai + l/()A +
+ voxi0(n-9)*)8jk + 11 (x20A + Xx30(n - 9)%) ngbr —
1 _
- 3 (vi[D;fj] Ly, —b;D{jb;), 6)

where D}; and ij are given in (3) and (2) respectively, b’ is an auxiliary vector
field (see, e.g., [3]), and the required integrations over & = (x, ¢) and summations
over the vector indices are implied. In action (6) the terms with new parameters
X10, X20, and 3o are related to the presence of small-scale anisotropy and they
are necessary to make the model multiplicatively renormalizable. The model (6)
corresponds to a standard Feynman diagrammatic technique (see, e.g., [8] for
details), and the standard analysis of canonical dimensions then shows which
one-irreducible Green functions can possess UV superficial divergences.

The functional formulation (6) gives possibility to use the field-theoretic
methods, including the RG technique to solve the problem. By means of the RG
approach it is possible to extract large-scale asymptotic behavior of the correla-
tion functions after an appropriate renormalization procedure which is needed to
remove UV divergences.

Using the standard RG analysis (see, e.g., [5,8]), one concludes that possible
scaling regimes of the model are given by the IR stable fixed points of the
system of five nonlinear RG differential equations (flow equations) for five scale-
dependent effective variables (charges) C' = {g, u, x1, x2, x3} of the model which
are functions of the dimensionless scale parameter ¢ = k/A [5]. In our model the



system of the flow equations has the following form:

d
150 = g(~2e+2m1),

dx; .
dt ( /'7—’_71) t_ = X'L(’Vl_’y'H»l)v 1= 172737

dt
(M
where the functions ~;,¢ = 1,2, 3,4 are given by the following expressions (one-
loop approximation):

d
dt

1

Sdfl / d 3)/2
= — d K 8
7 9(277) d+ ) z o1t 1, (®)
0

9 Sa—1 1 (1—l‘ )(d 3)/2 .
) d KZ y V= 1a273a 9
T T e (- 1><d+1>/ R +1 8 ©)

0

where Sy = 27%2/T'(d/2) is the surface of the d-dimensional sphere, w; =

(I4+u+x12?), we = (1+u+x12? + (x2 + x32?)(1 — 2?)), and the coefficients

K;,i=1,2,3,4 are given as follows:

Ki = 2(1+xe+u)+2(x1—x2+x3+a1(1+x2+u)2? — (14 2x3 —
—201(x1 — X2 +x3) Fu+ a1 +u))z? — (x1 +az(=14x1 —u) +
+ar(1+2x3 + 1)z’ — (@ — ag)x12® +d(—1+ z)(1 + 2)(—=2(1 +
+x2 +u) = (2x1 — x2 +2x3 + 200 (1 + x2 +u) — az(1 + x2 +u)) x
xx? + (o1 (—=2x1 + x2 — 2x3) + X3 + a2(x1 — x2 + x3))z" + (1 —
—az) = x32°) + (1 + arz?) (=1 —u — (x1 + x3)z” + x32" +
+x2(—1+2%)),

Ky = as(—1+2*)((=2+d)(1+d)(1+x2+u)+ (3—2x1 +4x2 —
—2x3+3u+d(l—x1+x2—x3+d(—1+x1 —2x2+x3—u)+
Fu))z? — (=3x1 + 2(1 4+ x2 — 2x3 +u) + d(1 + (=1 4+ d)x1 —
—dxa — X3 + 2dxs + u)zt — (2+ d)xa — (=2 + d*)x3)z®) —
(14 o 2®)(d(1 4+ x2 + u) — (=2x2 — 3(1 +u) + d(—x1 +
+x2 — x3 Fd(1+x2+u))x? — (=3x1 +2(1 + x2 — x3 +u) +
+d(1 4 x3 +d(x1 — x2 + x3) +u))z* — (2 +d)x1 —
—(=2+ d*)xs)z°),

Ks = —d(1+u)+ (d> —2d—2)x2 + (=3 +2x2 — 2x3 + aa(—1 + dx2 —
—u) = 3u+ a1 (=2x2 + d*x2 — d(1 + 2x2 +u)) + d(—x1 + 3x2 —
—2x3 +d(1 — x2 + x3 +u)))x® + (=3x1 +2(1 + x3 +u) + d(1 +
+dx1 —x2+3x3 —dxs +u) +a2(3—x1 +3u+d(l —2x2 + x3+



+u)) + a1 (=34 2x2 — 2x3 — 3u+d(—x1 + 3x2 — 2x3 + d(1 —
+x2 —2x3 —u) —2(14+u)) + a1 (—3x1 +2(1 + xs +u) +d(1 +
+dx1 — x2 + 3x3 — dxs + )2’ + (a1 — a2)((2 + d)x1 — dx3)2®,

Ky = ao(—-1+ 332)(1 +2x2+u+ (x1 —2(44+3x2 — x3 + 4u))x2 +
+2(4 — 4x1 + 2x2 — 3x3 + 4u)zt +4(2x1 + x3)2® + d(1 4 x2 +
+u + (—6 + X1 — X2+ X3 — 6u)x2 — (—6 +6x1+ X3 — 6u)x4 +
+6x12°%) — d?(2® — 1)(—(1 + x3 + u)a® + (—x1 + xa)z" +
+x2(2? = 1)) = (1 + a12?)(3 — (12 — 3x1 — 2x3 + d(6 + x3))z* +
+((2+d)(4+d—6x1) + (=6 +d+d*)xs)z* +(2+d)((4+
+d)x1 — (=2 + d)x3)z® — (d = 2)x2(a® = 1)((2+ d)a? — 1) +
+u(3+ (2 + d)z?((4 + d)z® — 6))).

In (7), the scale parameter ¢ belongs to the interval 0 < ¢t < 1 with the initial
conditions given at ¢t = 1 and the IR stable fixed point corresponds to the limit
t—0,ie., Cli=g = C*.

Before we perform the analysis and solution of the system of differential
equations (7), it is necessary to guarantee the convergence of the integrals which
are present in (8) and (9) within the interval € [0, 1]. Another question is to find
an effective method to solve the integrals. Both questions are briefly discussed
in the next section.

3. NUMERICAL AND ANALYTICAL ANALYSIS OF INTEGRALS

The integrals in (8) and (9) are linear combinations of the following integrals:

_ 2\ 52 on
[:/dxu’ (10)

wW1w2
0

where the explicit form of functions w; and ws is given in the text below (8) and
(9), and n is a natural number, i.e., n = 0,1, 2,... Therefore, the v functions in
(8) and (9) will be convergent if and only if integrals (10) are convergent. The
necessary and sufficient conditions for the convergence of the integrals (10) are
subject of the following theorem:

Theorem 1: The integrals (10) are convergent within integration interval
x € [0,1] if and only if the following conditions are satisfied:

i) x1 € (—1—wu,00);

i) x2 € (—1 — u, 00);

iii) x3 € (— (VITFu+xa —|—\/1—|—u+X2)2,oo).




Proof: The proof of the theorem is similar to the proof of an analogous
theorem which was proven in [9], therefore we shall not present it here.

In principle, there are a few ways of solveing the integrals (10). In what
follows, we shall try to transform them to the form which is more appropriate
for their numerical calculations, i.e, the procedure improves their convergent
properties. The approach is based on the following theorem:

Theorem 2: Let « be a real number and let Py(x) and Q(x) be polynomials
of real variable x such that d(Py(x)) < d(Q(z)), where d(R(x)) denotes the
degree of a polynomial R(z) and Q(z) is nonzero for x € [0,1]. Then for
arbitrary m € Zg the following formula holds:

C[R@O-a) 1 (Pa() P
1_0/ ow ‘ZL(aw)( 1 Q1 )*

L vr_Tlati) (Pi 1), Pil(_”)] +0/1 ];m((;)) (1—a?) """ da,

I Tlatit1/2) \ Q) O—1)
(11)
where
1 (Pa()  Pa(-D) 1 (Pi(1) | (1)
i 2( Q1) QLD ) b 2( Q) T eD )

fori=1,2,....,m.

Proof: The proof of the theorem is done by the mathematical induction with
respect to m. The case m = 0 is evident. Further, let us denote as 7'(n) the
proposition of the theorem for m = n and suppose that the theorem holds for
n 2 0. Thus, it is necessary to prove the validity of the theorem for m =n + 1.

According to the assumption of validity of T'(n), it follows that

1

[ R (1-27)" . - 1 Pia(l)  Pia(=1)
1_0/ ow ‘Z{4<a+i>< Q) Q1) )*

=1
Vi D(a+i) Pioi(1) | Pioa(=1)
+Tr<a+i+1/z>< on) Q) ﬂ*
z)

1
Pn( 2\ a+n
1-— de = Iy, + I, (12
+0/Q(x)( %) r=Iy,+ (12)



_ Pia(@) - (Aiaz + Bia) Qx)

Pi(z) = 1.2 ;
1 /PR 4(1)  Pia(=1) (P Pia(=1)
A”‘2< QU QD ) Py 2( QU e )

for all ¢ € [1,n] and as I,, we have denoted the integral part of (12). Further,
integral I,, in (12) can be written as follows:

1
o Pn(ZL') —.’E2 a+n > —
I”‘O/ Q) L)
1 1

An Bn a+n Pn aTn
- [AEE e e [ )™ e )
0

where P, 4 is defined by the relation

P,(x) _ Apx+ B, Pyy(x)

T-2Q@  1-22 Q) (1
therefore, A
Proa(e) = o) = Uz + B Qo s
with identities
Pn(l) Pn(_l)
o ~ Mt g * (10

By solving the previous system of equations, one obtains
An = — —_ 5 B’I’L = — 17
(80 - 5 2\em Torny) 7

and by insertion of A, and B, from (17) into (13), one obtains the following
expression for integral I,:

1

1
L :An/x(l—m2)a+” dx+Bn/(1—x2)a+n do+t
0

1
Pn+1(x) oy at+n+1 1
1— de = A, ——————
[ E (=) = A e
0



VE Datn+1) [ Paa@) o petni
By F(a+n+3/2)+0/ Q@) mT) s
_ 1 (Pn(l)_Pn(—1)>+ﬁ Dla+@n+1)
4(a+n+1) \ Q1) Q(-1) 4 Mo+ (n+1)+1/2)
Po) | PueDY | [ Ponala) (| pyeken
X(Q(1)+Q(—1)>+O/ @ T

n

- - 1 P_1(1) Pi_i(-1)
I=Ty,+Li=>) {4(@4—1') ( Q1)  Q(-1) >+
(

i=1

+\/_E o+ (n+1)) (Pn(l) n Pn(—1)> N

4 T(a+(n+1)+1/2) \ Q1) Q(-1)
1
Pn+1($) 2\ at+n+1
+O/ @ (1—a%) dr =

It
&R Pa(l)  Pa(-1)
B ;Luaw)( Q1) Q1) )*

L T+ (Puﬂ) P“(‘l))]+1n+1=

T Te+i+ri2\om "o

=Is ny1+ Intr (18)

In the end, from (14), (17), and (18) it follow that T'(n + 1) holds, which
proves the theorem. W

The formula given in (11), which was proven in Theorem 2, allows one to
compute the integrals (10) in the form of a sum of the gamma functions, which
can be calculated exactly, and one integral which is convenient for integration
with respect to needed precision and computing time of calculations. It is clear
that in our case, d € (1, 3], it is sufficient to take m = 1 and the integral becomes
more convenient for integration, namely, the exponent p in (1 — 22)? part of
the integrand becomes a positive real number and the integral can be simply



Dependence of the borderline dimension d. on the parameters «; and ae for u* =0 (a)
and u* =1 (b). The corresponding scaling regime is stable above the given surfaces

calculated with the high precision in a very short time by appropriate numerical
method of integration.

4. SCALING REGIMES OF THE MODEL

We have performed a numerical analysis of the system of differential flow
equations and we have found all possible fixed points which drive the corre-
sponding scaling regimes of the model. The model exhibits five different scaling
regimes. Two of them correspond to the rapid-change model limit: one is trivial
with ¢*/u* = 0, 1/u* = 0 which is stable for n > 0 and 2 < 5 and the other
is non-trivial with g*/u* > 0, 1/u* = 0 which is stable for ¢ < 1 and 2¢ > n.
Two of the scaling regimes correspond to the so-called «frozen» limit: one is
again trivial with ¢* = 0, u* = 0 which is stable for ¢ < 0 and n < 0 and the
other is non-trivial with g* > 0, u* = 0 which is stable for ¢ > 0 and € > 7.
The last and the most interesting scaling regime corresponds to the case with
finite time correlations of velocity field and it is given by nonzero v* and g* > 0
(see, e.g., [8] and references therein) which is stable for ¢ = . Further, we are
interested in the dependence of the so-called borderline dimension d. € (1, 3]
on the anisotropy parameters o and as under which the corresponding scaling
regime is unstable. Some results are shown in the figure. One can see that the
presence of small-scale anisotropy leads to the violation of the stability of the
corresponding scaling regimes below d = 2 for appropriate values of anisotropy
parameters. But from the viewpoint of further investigation into anomalous scal-



ing of the correlation functions of the advected vector field, the most important
conclusion is that all the three-dimensional scaling regimes remain stable under
the influence of small-scale uniaxial anisotropy.

5. CONCLUSIONS

Using the field-theoretic RG, we have studied the influence of small-scale
uniaxial anisotropy on the stability of the scaling regimes in the model of a passive
vector advected by a given stochastic environment with finite time correlations.
The existence of five possible scaling regimes as functions of parameters ¢ and
7 has been briefly discussed. It has been shown that the stability of the scaling
regimes under the influence of small-scale uniaxial anisotropy is driven by the
system of five nonlinear differential flow equations which contain angle integrals.
The conditions for the convergence of the integrals have been found and one
convenient method for their numerical calculation has been worked out. It has
been shown that the anisotropy does not disturb the three-dimensional scaling
regimes, but the two-dimensional scaling regimes could be destroyed by the
small-scale anisotropy. The results will be used in the further investigations of
the anomalous scaling of the model.

The work was supported in part by VEGA grant 2/0173/09 of the Slovak
Academy of Sciences, by ITMS project No. 26220120009, and by RFBR grant
No. 08-01-00800-p.
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