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Classes of Exact Solutions to the Teukolsky Master Equation

The Teukolsky Master Equation (TME) describes perturbations of the Kerr metric
in linear approximation. It admits separation of variables, thus yielding the Teukolsky
Radial Equation (TRE) and the Teukolsky Angular Equation (TAE). We present here
a uniˇed description of all classes of exact solutions to these equations in terms of
the con�uent Heun functions and the con�uent Heun polynomials. Large classes
of new exact solutions are found and described together with their characteristic
properties. Special attention is paid to the polynomial solutions which are singular
ones and describe collimated one-way-running waves. It is shown that a proper
linear combination of such singular solutions can describe bounded one-way-running
waves.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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1. INTRODUCTION

At present the study of different types of perturbations of the gravitational
ˇeld of black holes, neutron stars and other compact astrophysical objects is a
very active ˇeld for analytical, numerical, experimental and astrophysical research.
Ongoing and nearest future experiments based on perturbative and/or numerical
analysis of relativistic gravitational dynamics are expected to provide critical tests
of the existing theories of gravity [1].

The study of perturbations of rotating relativistic objects in Einstein GR was
pioneered by Teukolsky [2] making use of the famous Teukolsky Master Equation
(TME). It describes the perturbations sΨ(t, r, θ, ϕ) of all physically interesting
spin-weights s = 0, ±1/2, ±1, ±3/2, ±2 to the Kerr background metric in terms
of the corresponding NewmanÄPenrose scalars. The pairs of spin-weights s with
opposite signs σ = sign(s) = ±1 correspond to two different perturbations with
opposite helicity and spin |s| = 0, 1/2, 1, 3/2, or 2. Under proper boundary
conditions for TME one obtains quasinormal modes (QNM) of the Kerr black
holes. Various signiˇcant results and additional references can be found in [3Ä5].

The key feature of the TME is that in the BoyerÄLindquist coordinates one
can separate the variables using the ansatz Ψ(t, r, θ, ϕ) = e−iωteimϕS(θ)R(r),
i.e., looking for solutions in a speciˇc factorized form. Thus, one obtains a
pair of two connected ordinary differential equations for the nontrivial factors

sSω,E,m(θ) and sRω,E,m(r) Å the Teukolsky angular equation (TAE) [2,3, 6]

1
sin θ

d

dθ

(
sin θ

d

dθ
sSω,E,m(θ)

)
+ sWω,E,m(θ) sSω,E,m(θ) = 0, (1.1a)

sWω,E,m(θ) = E + a2ω2 cos2 θ − 2saω cos θ − (m2 + s2 + 2ms cos θ)/ sin2 θ
(1.1b)
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and the Teukolsky radial equation (TRE) [2,3]

Δ−s d

dr

(
Δs+1 d

dr
sRω,E,m(r)

)
+ sVω,E,m(r) sRω,E,m(r) = 0, (1.2a)

sVω,E,m(r) =
1
Δ

K2 − is
1
Δ

dΔ
dr

K − L. (1.2b)

The azimuthal number m has arbitrary integer values m = 0, ±1, ±2, . . .,
and Δ = r2−2Mr+a2, K = ω(r2+a2)−ma, L = E−s(s+1)+a2ω2−2maω−
4isωr. The real parameter a = J/M is related with the angular momentum J
of the Kerr metric, M being its Keplerian mass. The two complex parameters ω
and E Å the constants of separation, are to be determined using the boundary
conditions of the problem.

The negativity of the imaginary part ωI = �(ω) < 0 of the complex fre-
quency ω = ωR + iωI ensures linear stability of the solutions in the exterior do-
main of the Kerr metric with respect to the future time direction t → +∞ [2, 7].
In the interior domain the solutions to the TME are not stable [8].

From a mathematical point of view, the function sKω,E,m(t, r, θ, ϕ) ∼
e−iωteimϕ

sSω,E,m(θ) sRω,E,m(r) actually deˇnes a factorized kernel of the gen-
eral integral representation for the solutions to the TME:

sΨ(t, r, θ, ϕ) =

=
∞∑

m=−∞

1
2π

∫
dω

∫
dE sAω,E,m e−iωt eimϕ

sSω,E,m(θ) sRω,E,m(r). (1.3)

The formal mathematical representation (1.3) is written ad hoc as the most
general superposition of all particular solutions. In it a summation on all admis-
sible values of the two separation constants ω and E is assumed. Its usefulness
will be illustrated by different examples in what follows.

It is well known [9] that the Carter separation constant (which is equivalent
to the constant E, used here) may be related with the total angular momentum
of the solution sΨ(t, r, θ, ϕ). Under proper boundary conditions for the TAE
this momentum has discrete values deˇned by an integer l [2]. When there are
physically interesting superpositions sΨ(t, r, θ, ϕ) of solutions with a deˇnite
total angular momentum, the integration with respect to the constant E must be
replaced with summation over the integer l. Thus, instead of the most general
linear mixture (1.3) we have to use the representation of the solutions

sΨ(t, r, θ, ϕ) =
∞∑

m=−∞

1
2π

∫
dω

∑
l

sAω,l,m e−iωt eimϕ
sSω,l,m(θ) sRω,l,m(r),

(1.4)
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introduced in the problem at hand for the ˇrst time in [2]. The transition
from the representation (1.3) to representation (1.4) is formally equivalent to
the use of a singular kernel proportional to the sum of Dirac δ-functions:∑

l δ(E − sE(ω, l, m)) in (1.3). Here sE(ω, l, m) belongs to some spectrum
which is speciˇc for the given problem and deˇned by the corresponding boundary
conditions, see Sec. 7.

Further on, the boundary conditions may ˇx some discrete spectrum for the
frequencies ω in (1.4). Then the integral on ω will be replaced by discrete
summation over some ωn. This is equivalent to the use once more of a singular
kernel, now proportional to

∑
n δ(ω − ωn).

The study of the QNM [5] not only illustrates the above situation but also
shows that the kernel sKω,E,m(t, r, θ, ϕ) can be singular with respect to the
variable r at inˇnity and at the horizons.

In the existing literature only regular with respect to the variable θ kernels

sKω,E,m(t, r, θ, ϕ) are in use. In the present work, we start the consideration
of both regular and singular with respect to the angle θ kernels in the integral
representation (1.3) of the solutions to the TME. Different types of kernels are to
be used for solution of different boundary problems. Note, that from a physical
point of view, the regularity of the very solution sΨ(t, r, θ, ϕ) in equations (1.3)
and (1.4) is important. The kernels like sKω,E,m(t, r, θ, ϕ) are auxiliary mathe-
matical objects. One is often forced to use singular kernels in the natural integral
representations of the solution to physical problems. The regularity of the very
physical solution sΨ(t, r, θ, ϕ) with respect to the variable θ depends on the
choice of the amplitudes sAω,E,m. It can be guaranteed by a suitable choice of
these amplitudes, as shown in Sec. 10.

Despite the essential progress both in the numerical study [10] of the solu-
tions to equations (1.1a) and (1.2a) and in the investigation of their analytical
properties [11], at present there exists a number of basic questions remaining
unanswered. For example, it has been well known for a long time [12] that
the TAE (1.1a) and TRE (1.2a) can be reduced to the con�uent Heun ordi-
nary differential equation [13] written here in the following simplest uniform
shape [16,17]:

H ′′ +
(

α +
β + 1

z
+

γ + 1
z − 1

)
H ′ +

(
μ

z
+

ν

z − 1

)
H = 0. (1.5)

The constants μ and ν in Eq. (1.5) are related with the constants α, β, γ, δ, η,
accepted in the notation HeunC(α, β, γ, δ, η, z) as follows:

δ = μ + ν − α
β + γ + 2

2
, (1.6a)

η =
α(β + 1)

2
− μ − β + γ + βγ

2
. (1.6b)
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To the best of our knowledge we still do not have a detailed description of the
exact analytical solutions to the TAE (1.1a) and TRE (1.2a) in terms of the con�u-
ent Heun function HeunC(α, β, γ, δ, η, z) Å the unique particular local solution
of Eq. (1.5) which is regular in the vicinity of the regular singular point z = 0
and obeys the normalization condition HeunC(α, β, γ, δ, η, 0) = 1 [13]∗. Note
that other particular solutions to equation (1.5), as well as its general solution, are
not termed ®con�uent Heun's functions¯, according to the accepted modern ter-
minology [13]. The reason is that, in general, other solutions can be represented
in a nontrivial way in terms of solutions HeunC(α, β, γ, δ, η, z) of the corre-
sponding arguments. Hence, from a computational point of view, it is sufˇcient
to study only the Taylor series of this standard local solution and its analytical
continuation in the complex plane Cz. Thus, the instrumental use of the con�uent
Heun function HeunC(α, β, γ, δ, η, z) Å the basic purpose of the present work,
is much more advantageous than the simple fact, recognized already in [12], that
the TRE and TAE can be reduced to the con�uent Heun equation (1.5).

In the late 2006 a program for ˇlling the above gaps in the study of the TME
was started as a natural extension of the articles [14], where a similar approach
was developed for the ReggeÄWheeler equation (RWE). The ˇrst results were
quite stimulating [15], but serious difˇculties came across in both analytical and
numerical studies. This is because the theory of Heun's functions, as well as
numerical tools for calculations with them still are not developed enough.

Here we pay special attention to the polynomial solutions of Eq. (1.5). Ac-
cording to [13], the con�uent Heun function HeunC(α, β, γ, δ, η, z) reduces to
a polynomial of degree N � 0 of the variable z, if and only if the following two
conditions are satisˇed:

δ

α
+

β + γ

2
+ N + 1 = 0, (1.7a)

ΔN+1(μ) = 0. (1.7b)

We call the ˇrst condition (1.7a) a ®δN -condition¯, and the second one (1.7b) Å
a ®ΔN+1-condition¯. An explicit form of the ®ΔN+1-condition¯ in form of
a determinant useful for practical calculations, as well as a novel derivation
of con�uent Heun's polynomials can be found in [16]. A recurrent procedure
for calculation of ΔN+1 (1.7b) and its relation with Starobinsky's constants are
presented in [17].

On the other hand, the so-called algebraically special solutions to the RWE
and TRE were discovered long time ago [18]. These are of a generalized poly-

∗In the present work, we use the Maple-computer-package notation for the Heun functions.
Basically, this notation is borrowed from the two mile-stone articles on modern theory of Heun's
functions by Decarreau et al. in [13]; at present, it seems to be most popular, since the Maple
package is the only one for analytical and numerical work with Heun's functions.
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nomial type. According to the existing literature, these solutions describe pure
incoming or pure outgoing waves. The algebraically special solutions still are
not discussed in terms of Heun's polynomials. To our knowledge, attempts for
application of this class of solutions to real physical problems cannot be found in
the existing literature on gravitational physics. The only exception are the recent
articles [15,19], where one can ˇnd some very preliminary results.

Very recently the algebraically special solutions of the RWE and TME were
proved to be relevant for the study of instabilities of different kind of some more
or less ®exotic¯ solutions to the Einstein equations [20]. Physical manifestation
of the instabilities of the mathematical solutions are the explosions of the corre-
sponding objects. Therefore, it seems natural to look for a perturbative description
of explosions in terms of solutions of the TME, which are stable in the future and
instable in the past. The con�uent Heun functions give a rigorous mathematical
basis for analysis of these problems.

On the other hand, the recently found properties of con�uent Heun's func-
tion [16] show that one can introduce a new subclass of ®δNcon�uent Heun's
functions¯, which obey only the δN -condition Å Eq. (1.7a). In [17] is shown
that such ®δN -solutions¯ of the TRE and TAE deˇne the most general class
of solutions, for which properly generalized TeukolskyÄStarobinsky's identities
exist. Here we study in more detail the δN -solutions to the TRE and TAE. In
particular, we show that the regular solutions to the TAE, which are the only class
of solutions to the TAE, used up to now [2, 3, 6], are precisely nonpolynomial
δN -solutions. In contrast, the polynomial solutions to the TAE of all spins are
shown to be singular ones, at least around one of the poles (θ = 0, π) of the

unit sphere S
(2)
θ,ϕ. This new situation re�ects the properties of the con�uent Heun

function. It is not consistent with our experience, based on the work with hyper-
geometric functions, solving the angular part of the Laplace equation in celestial
and quantum mechanics, or in electrostatics. It is well known that in the last case
solutions regular on both the poles are polynomial.

In the limit a → 0, when the Kerr metric approaches the nonrotating Schwarz-
schild one, there exists a smooth transition from perturbations of the Kerr metric
to perturbations of the Schwarzschild metric in terms of the Weyl scalars, but
a simple transition from the solutions of the TME to the solutions of the RWE
(see [14,17]) is not possible [3]. Nevertheless, the mathematical analogy between
the corresponding solutions becomes quite transparent when the solutions are
represented in terms of the con�uent Heun functions [14, 17]. The limit a → 0
is traced in more detail in Subsec. 4.1.2 Å for the TRE and in Sec. 7 Å for
the TAE.

This way, using con�uent Heun's function, we hope to obtain a more clear
picture of the quite complicated present-day state of the art in the perturbation
theory under consideration and its possible further developments.
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The main purposes of the present work is to report some of the basic results,
obtained for a detailed description of the exact solutions of the TME in terms of
the con�uent Heun function HeunC(α, β, γ, δ, η, z), to introduce a large number
of new classes of such solutions, and to formulate some interesting boundary
problems for the TRE, TAE, and TME in terms of con�uent Heun's functions.

Besides the already stressed new developments, in the present work for the
ˇrst time we introduce and study the differential invariants of the Weyl tensor,
which indicate in an invariant way both the event and Cauchy horizons of the Kerr
metric as singular points of the TRE (Subsec. 2.1), the explicit form of 16 classes
of exact solutions to the TRE in terms of con�uent Heun's functions (Subsec. 2.2),
a new classiˇcation of the solution to the TRE, based on speciˇc properties of
con�uent Heun's functions (Sec. 3), especially, the class of δN -radial solutions
and, in particular, two unknown inˇnite classes of exact solutions with equidistant
complex spectra of frequencies, two novel classes of polynomial solutions to the
TRE (Sec. 4), the explicit form of 16 classes of exact solutions to the TAE in
terms of con�uent Heun's functions (Sec. 5), a new concomitant con�uent Heun's
function and its application to the TAE (Sec. 5), a new classiˇcation of the
solution to the TAE, based on speciˇc properties of con�uent Heun's functions
(Sec. 6), especially, the class of δN -angular solutions, a novel description of the
regular solutions to the TAE in terms of con�uent Heun's functions (Sec. 7), two
classes of singular polynomial solutions to the TAE (Sec. 8), 256 classes of exact
solutions to the TME (Sec. 9), an explicit construction of exact bounded solutions
to the TME with spin 1/2, using the singular kernel, built from the polynomial
solutions to the TAE (Sec. 10), and novel general exact solutions of the TME
in the form of one-way running waves (Sec. 10). Some general conclusions and
perspectives for further developments are outlined in the concluding Sec. 11.

2. EXACT SOLUTIONS TO THE TEUKOLSKY RADIAL EQUATION
IN TERMS OF THE CONFLUENT HEUN FUNCTIONS

2.1. Explicit Form of the TRE and Geometrical Character of Its Singular-
ities. Much like in the case of the Schwarzschild solution, for the Kerr one we
have a complicated space-time structure and a different physical meaning of the
space-time coordinates in the different domains. For example, consider, as usual,
only the real values of r. In the interior of the Kerr metric: 0 � r− < r < r+ Ä
between the zeros r± = M ±

√
M2 − a2, a � M of the function Δ (i.e., between

the Cauchy horizon r− and the event horizon r+), two of the eigenvalues: λt

and λr of the metric in the BoyerÄLindquist coordinates simultaneously change
their signs. Indeed, one pair of eigenvalues is λθ = gθθ = r2 + a2 cos2 θ
and λr = grr = (r2 + a2 cos2 θ)/Δ. The second pair of eigenvalues is the
roots λt, λφ of the equation λ2−(gtt+gφφ)λ+gttgφφ−g2

tφ. Their product equals
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λtλφ = −Δ sin2 θ. The last expression, together with the form of grr proves the
simultaneous change of the signs of the two eigenvalues λt, λr, when the vari-
able r crosses the horizons r±, since the determinant g = −(r2+a2 cos2 θ)2 sin2 θ
of the metric does not vanish there. As a result, between the two horizons r±
the variable tin = x ∈ (−∞, ∞) plays the role of the interior time and the
variable rin = t is the interior radial variable. We use the following Kerr-metric-
tortoise coordinate: x = r + a+ ln |(r − r+)/(r+ − r−)| − a− ln |(r − r−)/(r+ −
r−)| ∈ (−∞,∞), where a± =

r+ + r−
r+ − r−

r±. It is a straightforward generalization

of the tortoise variable for the exterior domain r ∈ (r+, ∞) proposed in [2].
Since our expression is valid in the interior domains, too, the inverse function
deˇnes r = r(tin) when r ∈ (r−, r+). In the second interior domain r < r−
the variables r and t restore their original meaning. For a detailed analysis of
the light cones in the Kerr geometry see [21]. This consideration is necessary
for understanding of the physical meaning of the solutions to the TME in the
different Kerr-space-time domains.

The explicit form of the TRE

d2Rω,E,m

dr2
+ (1 + s)

(
1

r − r+
+

1
r − r−

)
dRω,E,m

dr
+

+

((
ω

(
a2 + r2

)
− am

)2

(r − r−)(r − r+)
− is

(
1

r − r+
+

1
r − r−

) (
ω

(
a2 + r2

)
− am

)
−

− E + s(s + 1) − a2ω2 + 2maω + 4isωr

)
Rω,E,m

(r − r+)(r − r−)
(2.1)

shows that it has three singular points: r = r± and r = ∞. In the present
work, we consider only the non-extremal Kerr metric with real r+ > r− � 0.
Then the ˇrst two are regular singular points, and the third one (the physical
inˇnity r = ∞) is an irregular singular point. The symmetry of Eq. (2.1) under
the interchange r+ � r− is obvious. Thus, we see that the two horizons of the
Kerr metric are singularities for the TRE which are to be treated on equal footing.
Do these singularities have an invariant meaning independent of the coordinate
choice?

The algebraic invariants of the Riemann curvature tensor Rijkl are not able
to indicate the horizons of the Kerr black hole and one usually considers them as
pure coordinate singularities of the metric in the BoyerÄLindquist coordinates. In
contrast, the circle r = 0, θ = π/2 is a singularity of the algebraic invariants of
the Riemann tensor [3]. Since the pure algebraic invariants of the tensor Rijkl do
not ˇx completely the geometry, their consideration is not sufˇcient to recover all
gauge-invariant space-time properties. For this purpose one must consider a large
enough number of high-order differential invariants of the Riemann tensor [22].
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It is not difˇcult to ˇnd differential invariants of the Riemann tensor of
the Kerr metric which are able to distinguish both the horizons r± and the
ergosphere gtt = 0. Indeed, let us consider the following algebraic invariants

of the Weyl tensor Wijkl : I1 =
1
48

WijklWijkl Å the density of the Euler

characteristic class, and I2 =
1
48

Wijkl
∗Wijkl Å the density of the ChernÄ

Pontryagin characteristic class [23]. Let us put (I1 − iI2)1/2 = λ = |λ| exp(iψ).

Then r =
(

M

|λ|

)1/6

cos(ψ/6) and ρ =
(

M

|λ|

)1/6

cos(ψ/6)−1 are obviously

invariants of the Weyl tensor Å nonalgebraic and nondifferential ones. In the

BoyerÄLindquist coordinates one obtains ρ = r +
a2

r
cos θ and gtt = 1 − 2M/ρ.

The differential invariants of the ˇrst order

DI1 = − (∇ ln r)2 =
1
rρ

(
1 − 2M

r
+

a2

r2

)
, (2.2a)

DI2 = (∇ ln ρ)2 − (∇ ln r)2 =
4
ρ2

(ρ

r
− 1

)(
1 − 2M

ρ

)
(2.2b)

indicate the two Kerr black hole horizons, the ergosphere and some other geo-
metrical objects in the Kerr space-time. Thus, the two horizons r± of the Kerr
metric are shown to be invariant objects, being singularities of the same kind in
equation (2.1).

In the limit a → 0 we have ρ → r and the differential invariant in equa-
tion (2.2b) becomes trivial: DI2 → 0. In the same limit, the differential in-
variant (2.2a) produces a nontrivial result (1 − 2M/r) /r2 for the Schwarzschild
metric which is similar to the one derived already in the third of the articles [22],
as well as in the very recent sixth one.

2.2. Explicit Form of the Local Solutions to the TRE. The analytical
study of the solutions to the TRE and TAE was started in [4] and continued by
different approximate methods [5,11] without utilizing of Heun's functions. Using
the con�uent Heun function one can write down 16 exact local Frobenius-type
solutions to the TRE (2.1) in the form:

sR
±
ω,E,m,σα,σβ ,σγ

(r; r+, r−)Δs/2 =

= eσα
α±z±

2 z
σβ

β±
2

± z
σγ

γ±
2

∓ HeunC(σαα±, σββ±, σγγ±, δ±, η±, z±), (2.3)
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which is very similar to the form of the solutions to the RWE [14,17]. Here∗

α+ = sαω,E,m(r+, r−) = 2iω(r+ − r−) = ip ω/Ωa, (2.4a)

β+ = sβω,E,m(r+, r−) = s + 2i (m − ω/Ω−) /p, (2.4b)

γ+ = sγω,E,m(r+, r−) = s − 2i (m − ω/Ω+) /p, (2.4c)

δ+ = sδω,E,m(r+, r−) = α+ (s − iω(r+ + r−)) = α+ (s − iω/Ωg) , (2.4d)

η+ = sηω,E,m(r+, r−) = −E + s2 + m2+

+
2m2Ω2

a − ω2

p2Ω2
a

− (2mΩa − ω)2

p2Ω2
g

− 1
2

(
s − i

ω Ω+

ΩaΩg

)2

, (2.4e)

z+ = z+(r; r+, r−) =
r − r−
r+ − r−

, z− = z−(r; r+, r−) =
r+ − r

r+ − r−
, (2.4f)

z+ + z− = 1, z+z− =
−Δ

(r+ − r−)2
.

The discrete parameters σα, σβ , σγ have values ±1∗∗. In equa-
tions (2.4a)Ä(2.4e) we use the following quantities: the angular velocity of the
event horizon Ω+ =

√
r−/r+

/
(r+ + r−), the angular velocity of the Cauchy

horizon Ω− =
√

r+/r−
/

(r+ + r−), the arithmetically-averaged angular veloc-
ity Ωa = (Ω+ + Ω−) /2 = 1/(2a), the geometrically-averaged angular veloc-
ity Ωg =

√
Ω+Ω− = 1/(2M), and the new dimensionless parameter p =√

r+/r−−
√

r−/r+ =
√

Ω−/Ω+−
√

Ω+/Ω− = (r+−r−)/a = 2
√

M2/a2 − 1.
Note that the inverse relation r± =

√
Ω∓/Ω±

/
(Ω+ + Ω−) permits us to re-

place r± with Ω± wherever it is necessary, thus making transparent the duality
of the parameters r± and Ω±, as well as the behavior of the above quantities
under interchange of the two horizons: r+ � r− ⇒ Ω+ � Ω−, p 
→ −p,
Ωa,g 
→ Ωa,g Å invariant.

The parameters α−, β−, γ−, δ−, η− can be obtained by interchanging the
places of the two horizons: r+ � r− in (2.4a)Ä(2.4e). This procedure may be
substantiated using the known properties of the con�uent Heun function under
changes of parameters [13]. One can check directly that this way we obtain
indeed solutions of equation (2.1).

According to equations (2.3) and (2.4f), the behavior of the solutions

sR
±
ω,E,m,σα,σβ ,σγ

(r; r+, r−) around the corresponding singular points z =

∗Note that the notation z± in Eq. (2.4f) is consistent with the limits z± → ±∞ for r → ∞.
Their relation with the notation of the parameters of the Kerr metric r± is illustrated by the equations
z±(r∓; r+, r−) = 0. The labels ± in the notation R± in Eq. (2.3) are related with the labels of
their arguments z±, not with the labels of the parameters r±.

∗∗Further on, σx = sign(x) denotes the sign of the real quantity x. The only exception is
σ ≡ σs, where we skip the index s.
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z±(r∓; r+, r−) = 0 is deˇned by the dominant factor
(
z±

)σββ±/2
.

All other factors in equation (2.3) are regular around these points. The same solu-
tions are in general singular around the corresponding singular points
z = z±(r±; r+, r−) = 1.

Only two of the sixteen solutions (2.3) are linearly independent. Nevertheless,
it is necessary to know all of them since for different purposes one has to use
different pairs of independent local solutions.

Using the known asymptotic expansion of the con�uent Heun function [13]
we obtain two asymptotic solutions of Tom	e type. These are local solutions of
the TRE around its irregular singular point |r| = ∞ in the complex plane Cr:

sR
±∞
ω,E,m,σα,σβ ,σγ

(r; r+, r−) ∼ eiσαω(r+(r++r−) ln r)×

×
∑
j�0

aj

(
±r+ − r−

r

)j+1+(1+σα)s

, a0 = 1. (2.5)

The notation ±∞ in (2.5) denotes the two directions: r → +∞ and r → −∞ on
the real r axis for approaching the irregular singular point |r| = ∞ in the complex
plane Cr. For the coefˇcients aj = aj,ω,E,m,σα,σβ ,σγ one has a recurrence
relation [13] which shows that they increase together with the integer j. Hence,
the asymptotic series (2.5) is a divergent one.

As seen from (2.4)

sR
−
ω,E,m,σα,σβ ,σγ

(r; r+, r−) = sR
+
ω,E,m,σα,σβ ,σγ

(r; r−, r+).

Hence, one can introduce a new parity property of the solutions and construct
symmetric and antisymmetric (with respect to the interchange r+ � r−) solutions
of the TRE:

sR
SYM
ω,E,m,σα,σβ ,σγ

(r; r+, r−) =

=
1
2

(
sR

+
ω,E,m,σα,σβ ,σγ

(r; r+, r−) + sR
−
ω,E,m,σα,σβ ,σγ

(r; r+, r−)
)

, (2.6)

sR
ASYM
ω,E,m,σα,σβ ,σγ

(r; r+, r−) =

=
1
2

(
sR

+
ω,E,m,σα,σβ ,σγ

(r; r+, r−) − sR
−
ω,E,m,σα,σβ ,σγ

(r; r+, r−)
)

.

Clearly, these solutions are singular at both horizons in the general case. When
one considers the two-singular-point boundary problem [13] on the interval
[r−, r+] in the Kerr black hole interior, the solutions (2.6) may be regular at
one, or at both the ends for some values of the separation constants ω and E.
Since this boundary problem is still not studied, at present we are not able to
make more deˇnite statements about this case.
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3. A NEW CLASSIFICATION OF THE SOLUTIONS TO THE TRE,
BASED ON THE δN -CONDITION.

NOVEL RADIAL δN -SOLUTIONS

For the TRE the δN -condition reads:

sω
±
m,σα,σβ ,σγ

L±
σα,σβ ,σγ

= Ωg

(
M±

m,σα,σβ ,σγ
+ i sN±

σα,σβ ,σγ

)
, (3.1)

where

L±
σα,σβ ,σγ

=
σβΩ± − σγΩ∓

Ω± − Ω∓
− σα,

M±
m,σα,σβ ,σγ

= m(σβ − σγ)
Ωg

Ω± − Ω∓
,

sN±
σα,σβ ,σγ

= N + 1 +
(

σα +
σβ + σγ

2

)
s.

We call radial δN -solutions the solutions deˇned via the δN -condition (3.1).
The calculation of the values of the coefˇcients in equation (3.1) yields two

very different cases:
1. In the ˇrst case L+

±,±,± = L−
±,±,± = 0 and we see that one is not able

to ˇx the frequencies sω
+
m,±,±,± and sω

−
m,±,±,±. Instead, choosing σα = σβ =

σγ = −σ and using (3.1) one ˇxes the non-negative integer N in the form

sN + 1 = 2|s| � 1 for |s| � 1/2. (3.2)

Thus, the degree of the polynomial ΔN+1-condition is ˇxed, too.
2. In the second case the coefˇcients L±

σα,σβ ,σγ
are nonzero and one can ˇx

the values of the frequencies sω
±
m,σα,σβ ,σγ

from equation (3.1). Thus, one obtains
two different types of exact equidistant spectra:

a) For L+
∓,±,± = L−

∓,±,± = ±2, M+
∓,±,± = M−

∓,±,± = 0 and N+
∓,±,± =

N−
∓,±,± = (N +1) the δN -condition (3.1) produces the pure imaginary equidistant

frequencies

sω
+
N,m,∓,±,± = sω

−
N,m,∓,±,± = ±i

N + 1
4M

, N � 0 Å integer. (3.3)

Note that these frequencies depend neither on the spin-weight s and azimuthal
number m, nor on the rotation parameter a. The spectrum is not in�uenced by
the rotation of the waves and of the very Kerr metric. The frequencies (3.3) are
deˇned only by the monopole term in multipole expansion of the metric.
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b) For all other cases the coefˇcients L±
σα,σβ ,σγ

, and M±
σα,σβ ,σγ

are not ˇxed
integers and one obtains the following two similar double-equidistant spectra of
frequencies:

sω
+
N,m,∓,∓,± = sω

−
N,m,∓,±,∓ = mΩ+ ± i

4M

(
1 − r−

r+

)
(N + 1 ∓ s); (3.4a)

N � 0, m Å integers,

sω
+
N,m,±,∓,± = sω

−
N,m,±,±,∓ = mΩ− ± i

4M

(
r+

r−
− 1

)
(N + 1 ± s); (3.4b)

N � 0, m Å integers.

A set of important new mathematical properties of the radial δN -solutions can
be found in [16,17]. In [17] it is shown that these solutions deˇne the most general
class of solutions to the TRE for which the properly generalized TeukolskyÄ
Starobinsky identities exist. The solutions which satisfy the relation (3.2) were
studied in [2, 3] without utilizing the Heun functions and the δN -condition. The
last condition turns to be valid automatically for the solutions to the TRE studied
in [2,3]. The inˇnite series of the solutions with equidistant spectra (3.3) and (3.4)
are introduced and considered for the ˇrst time in the present work.

4. POLYNOMIAL SOLUTIONS TO THE TRE

The δN -condition yields the basic classiˇcation of the solutions described in
the previous Sec. 3. As a result, one obtains two classes of polynomial solutions
to the TRE, imposing in addition the ΔN+1-condition (1.7b). In what follows we
will use the determinant form of the ΔN+1-condition given in [16].

4.1. The First Class of Polynomial Solutions to the TRE. The solutions
of this class correspond to the ˇrst case in Sec. 3 and obey equation (3.2). The
inequality sN = 2|s| − 1 � 0 excludes the existence of scalar perturbations
(|s| = 0) of the ˇrst polynomial class.

4.1.1. The General Case. For brevity, we denote the solutions

sR
±
ω,E,m,−σ,−σ,−σ(r; r+, r−) as sR

±
ω,E,m(r; r+, r−). For them the parame-

ter μ takes the values μ = sμ
±
ω,k,m(r+, r−) k = 1, . . . , 2|s| Å the solutions

of the algebraic equation (1.7b), which now takes the form: Δ±
2|s|(μ) = 0.

Its degree is 2|s| = 1, 2, 3, or 4, depending on the spin of the perturbations
|s| = 1/2, 1, 3/2, 2. Making use of (1.6b), and (2.4a)Ä(2.4e), we obtain for the
separation constant E = sE

±
ω,k,m(r+, r−), k = 1, . . . , 2|s| the expressions

sE
±
ω,k,m(r+, r−)=sμ

±
ω,k,m(r+, r−) + |s|(|s| − 1)−

− aω(aω − 2m) + 2iσ(2|s| − 1)ωr∓. (4.1)
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Applying the explicit expressions for the roots sμ
±
ω,k,m(r+, r−), we obtain

sE
±
ω,m(r+, r−) = −a2ω2 + 2aωm− 1

4
: (4.2)

for |s| =
1
2
;

sE
±
ω,k,m(r+, r−) = −a2ω2 + 2aω

(
m − (−1)k

√
1 − m/aω

)
: (4.3)

for |s| = 1, k = 1, 2.

For the gravitational waves (|s| = 2) one has to ˇnd the quantities

sμ
±
ω,k,m(r+, r−) solving algebraic equation of the fourth degree Δ±

4 (μ) = 0. The
explicit form of its roots is too complicated and not necessary for the purposes of
the present work. It is more instructive to demonstrate here the result, obtained
using the Taylor series expansion of the solutions sμ

±
ω,k,m(r+, r−) around the

zero frequency ω = 0.
Thus, we obtain for |s| = 2, k = 1, 2 the eight values:

sE
±
ω,k,m = 2 − 4

(
m − i(−1)k 3M

2a

)
aω+

+6
(

m2 + i(−1)k2m

(
(m2 − 1)

a

M
+

2M

a

)
+

3M2

a2
− 7

6

)
(aω)2 +O3(aω).

(4.4)

For |s| = 2, m �= 0, k = 3, 4 we have other eight values:

sE
±
ω,k,m = i(−1)k4

√
maω

(
1 + i3

(
1 +

(
3M2

8a2
− 2

3

)
1

m2

)
maω+

+ O2(aω)

)
+ 8maω − 6

(
1 +

(
3M2

a2
− 5

6

)
1

m2

)
(maω)2 + O3(aω). (4.5)

Clearly, these series describe two kinds of solutions with a completely dif-
ferent behavior around the origin ω = 0. In particular, the series (4.4) and (4.5)
have different limits: 2 and 0, respectively, when ω → 0. For the solutions (4.5)
the origin ω = 0 is a branching point, etc.

The independence of the values of sE
±
ω,k,m in (4.4) and (4.5) on the upper

labels (±) is a result of the polynomial character of the solutions, i.e., of the
regularity of the corresponding HeunC-factor simultaneously on both the hori-
zons r±.

For a complete solution of the problem one has to determine the frequency ω.
Hence, one needs an additional relation between the parameters E and ω. This
relation may appear when one solves the TAE (See the next Secs. 5Ä8.).
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The ˇrst class of polynomial solutions to the TRE is introduced and studied
in detail for the ˇrst time in the present work.

4.1.2. The Special Case of the Schwarzschild Metric. For the special
value of the parameter a = 0 we have r− = 0, r+ = 2M . This is the case
of perturbations to the nonrotating Schwarzschild black hole described in terms
of the Weyl scalars. For simplicity, here we use units in which 2M = 1. The
parameters in the solution (2.3) acquire the limiting values

α+ = 2iω, β+ = s, γ+ = s + 2iω, δ+ = 2iω(s− iω), η+ = −E +
s2

2
;

α− = −2iω, β− = s + 2iω, γ− = s, δ− = −2iω(s− iω),

η− = −E +
s2

2
+ 2ω2 + 2isω. (4.6)

These differ from the values of the parameters of con�uent Heun's functions in the
ReggeÄWheeler approach to the perturbations of the Schwarzschild metric [14].

In the limit a → 0 equation (3.1) does not deˇne the frequency ω, if σα =
∓σβ = ±σγ = −σ, because then one obtains L±

−σ,±σ,∓σ = 0. If, in addition,
σ = sign(s), then the δN -condition is fulˇlled for the special polynomial so-
lutions of the ˇrst class denoted as sR

±
ω,E,m(r) = sR

±
ω,E,m,−σ,±σ,∓σ(r; 1, 0).

Equation (3.1) yields the relation sN = |s| − 1 � 0. Scalar perturbations of this
type do not exist.

In the case of integer spins |s| = 1, 2 the roots μ = sμ
±
ω,k,m, k = 1, . . . , |s|

of the equations Δ±
|s|(μ) = 0, (1.6b), and (2.4a)Ä(2.4e) with r+ = 1, r− = 0

and a = 0 produce the following simple expressions for E = sE
±
ω,k,m,

k = 1, . . . , |s|:

sE
±
ω,m = 0 : for |s| = 1, (4.7)

sE
±
ω,k,m = 1 − (−1)k

√
1 − i6σω : for |s| = 2, k = 1, 2. (4.8)

For a complete solution of the problem, one needs an additional relation between
the parameters E and ω. This relation may be found by solving the TAE, see
Secs. 5Ä8.

The above considerations of the limit a → 0 and the corresponding results
for the Schwarzschild black hole in terms of con�uent Heun's functions are new
and obtained for the ˇrst time in the present work.

4.2. Second Class of Polynomial Solutions to the TRE. According to the
results of Sec. 3, the solutions of this class originate from the second case of
the δN -condition and fall into two subclasses: a) and b). The complete def-
inite frequencies sω

±
N,m,σα,σβ ,σγ

Å formulae (3.3) and (3.4), yield algebraic

equations Δ±
N+1(μ) = 0 with (N + 1) roots μ = sμ

±
N,n,m,σα,σβ ,σγ

(r+, r−),

14



n = 0, 1, . . . , N . It seems difˇcult to derive explicit analytic expressions for
these roots, but their numerical values can be easily obtained. Using the val-
ues of sμ

±
N,n,m,σα,σβ ,σγ

(r+, r−) and equations (1.6b), (2.4a)Ä(2.4e) we obtain

complete deˇnite values for the parameter E = sE
±
N,n,m,σα,σβ ,σγ

(r+, r−):
a) In the case of frequencies (3.3) we obtain

sE
±
N,n,m,σ,−σ,−σ = sμ

±
N,n,m,σ,−σ,−σ + |s|(|s| − 1) + aω(3aω − 2m)+

+ 4ω2r2
∓ + 2iσω (2M |s| − r±) . (4.9)

b) In the case of frequencies (3.4a), (3.4b) we have, respectively:

sE
±
N,n,m,+,−,+ − sμ

±
N,n,m,+,−,+ = sE

∓
N,n,m,−,+,− − sμ

∓
N,n,m,+,−,+ =

= ±i2(2aω − m)/p−
(
m2 + 8m

(
1 + M2/a2

)
aω+

+
(
1 + 10r∓/r± + 9(r∓/r±)2 − 4(r∓/r±)3

)
ω2r2

±
) /

p2, (4.10a)

sE
±
N,n,m,+,+,− − sμ

±
N,n,m,+,+,− = sE

∓
N,n,m,−,−,+ − sμ

∓
N,n,m,−,−,+ =

= ±i2
(
m + 2aω

(
1 − 2M2/a2

)) /
p−

− i2psaω − 4
(
m2 + 2m

(
1 − 3M2/a2

)
aω −

(
1 − 5M2/a2

)
(aω)2

) /
p2.

(4.10b)

With ω and E given by equations (3.3), (3.4) and (4.9), (4.10) we have no
more free parameters in the problem at hand. As a result, the corresponding so-
lutions to the TAE are ˇxed unambiguously by the designated group of equations
obtained for the second class of polynomial solutions to the TRE. This situation
is completely new, unexpected and described here for the ˇrst time.

5. EXACT SOLUTIONS TO THE TEUKOLSKY ANGULAR EQUATION
IN TERMS OF THE CONFLUENT HEUN FUNCTIONS

In terms of the variable x = cos θ the TAE has three singular points. Two
of them: x− = −1 (i.e., θS = π Å South (S-)pole) and x+ = 1 (i.e., θN = 0 Å
North (N-)pole) are regular singular points. The third one x∞ = ∞ is an irregular
singular point. It is remarkable that introducing the notation

z+ = z+(θ) = (cos(θ/2))2 , z− = z−(θ) = (sin(θ/2))2 , z+ + z− = 1 (5.1)

and

a± = ±4aω, b± = s ∓ m, c± = s ± m, d± = ±4saω, (5.2)

n± =
m2 + s2

2
∓ 2saω − a2ω2 − E,
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we can write down 16 local solutions of the TAE in the form

sS
±
ω,E,m,σa,σb,σc

=

= eσa
a±z±

2 z
σb

b±
2

± z
σc

c±
2

∓ HeunC(σaa±, σbb±, σcc±, d±, n±, z±), (5.3)

which is very similar to the form of Eq. (2.3).
Following the corresponding properties of the TAE (1.1a) [2], the solu-

tions (5.3) have the symmetries

−sS
±
ω,E,m,σa,σb,σc

(π − θ) = sS
∓
ω,E,m,−σa,−σb,−σc

(θ), (5.4a)

sS
±
−ω,E,−m,σa,σb,σc

(π − θ) = sS
∓
ω,E,m,σa,σb,σc

(θ). (5.4b)

Note that according to Eq. (5.3), the behavior of the solutions sS
±
ω,E,m,σa,σb,σc

around the corresponding singular points z = z+(θS) = z−(θN ) = 0 is deˇned

by the dominant factor
(
z±

)σbb±/2
. All other factors in (5.3) are regular around

these points. The same solutions are in general singular around the corresponding
singular points z = z+(θN ) = z−(θS) = 1. Hence, at this point we have a
complete analogy with the case of TRE.

Only two of the sixteen solutions (5.3) are linearly independent. Nevertheless,
it is important to know all of them, since for various purposes one can use different
pairs of independent local solutions, see below. If one chooses some two linearly
independent solutions, then one can represent the other fourteen using this basis.
Unfortunately, at present the form of the corresponding coefˇcients is completely
unknown.

We can establish simple relations between some of the different solutions (5.3)
in proper domains of the parameters s and m, if we divide the whole plane {s, m}
into four sectors. In each of them we choose the solutions with the same regular
asymptotic behavior around the corresponding pole as follows:

I. Sector s � 0, |m| � |s|:

sS
+reg
ω,E,m(θ) = sS

+
ω,E,m,+++ = sS

+
ω,E,m,−++ = sS

+
ω,E,m,++− =

= sS
+
ω,E,m,−+− ∼

θ→π

(
cos

θ

2

)s−m

, (5.5a)

sS
−reg
ω,E,m(θ) = sS

−
ω,E,m,+++ = sS

−
ω,E,m,−++ = sS

−
ω,E,m,++− =

= sS
−
ω,E,m,−+− ∼

θ→0

(
sin

θ

2

)s+m

. (5.5b)
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II. Sector m � 0, |s| � |m|:

sS
+reg
ω,E,m(θ) = sS

+
ω,E,m,+++ = sS

+
ω,E,m,−++ = sS

+
ω,E,m,++− =

= sS
+
ω,E,m,−+− ∼

θ→π

(
cos

θ

2

)s−m

, (5.6a)

sS
−reg
ω,E,m(θ) = sS

−
ω,E,m,−−− = sS

−
ω,E,m,+−− = sS

−
ω,E,m,−−+ =

= sS
−
ω,E,m,+−+ ∼

θ→0

(
sin

θ

2

)−s−m

. (5.6b)

III. Sector s � 0, |m| � |s|:

sS
+reg
ω,E,m(θ) = sS

+
ω,E,m,−−− = sS

+
ω,E,m,+−− = sS

+
ω,E,m,−−+ =

= sS
+
ω,E,m,+−+ ∼

θ→π

(
cos

θ

2

)−s+m

, (5.7a)

sS
−reg
ω,E,m(θ) = sS

−
ω,E,m,−−− = sS

−
ω,E,m,+−− = sS

−
ω,E,m,−−+ =

= sS
−
ω,E,m,+−+ ∼

θ→0

(
sin

θ

2

)−s−m

. (5.7b)

IV. Sector m � 0, |s| � |m|:

sS
+reg
ω,E,m(θ) = sS

+
ω,E,m,−−− = sS

+
ω,E,m,+−− = sS

+
ω,E,m,−−+ =

= sS
+
ω,E,m,+−+ ∼

θ→π

(
cos

θ

2

)−s+m

, (5.8a)

sS
−reg
ω,E,m(θ) = sS

−
ω,E,m,+++ = sS

−
ω,E,m,−++ = sS

−
ω,E,m,++− =

= sS
−
ω,E,m,−+− ∼

θ→0

(
sin

θ

2

)s+m

. (5.8b)

Note that in each sector the four solutions in the above relations of type (a),
or in the above relations of type (b) are equal, since the local regular solution
around any regular singular point of the TAE is unique.

In the case of integer spin weights s = 0, ±1, ±2 there exists an additional
complication. The con�uent Heun functions HeunC(α, β, γ, δ, η, z) are not
deˇned when β is a negative integer [13]. Therefore, if β = σbb± < 0 is a
negative integer, we must write down the corresponding solutions in the form

sS
±
ω,E,m,σa,σb,σc

=

= eσa
a±z±

2 z
σb

b±
2

± z
σc

c±
2

∓ HeunC (σaa±, σbb±, σcc±, d±, n±, z±). (5.9)
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For this purpose we deˇne the concomitant con�uent Heun function∗

HeunC (α, β, γ, δ, η, z) =

= z−βHeunC (α, −β, γ, δ, η, z)
∫

e−αζζβ−1(1 − ζ)−γ−1

(HeunC (α, −β, γ, δ, η, ζ))2
dζ. (5.10)

This function is well deˇned for negative integer β = σbb± < 0, together with
the con�uent function HeunC (α, −β, γ, δ, η, z). In this case, the function
z−β HeunC (α, −β, γ, δ, η, z) represents the local regular solution to the con-
�uent Heun equation (1.5) around the singular point z = 0 and the concomitant
con�uent function HeunC (α, β, γ, δ, η, z) represents a second linearly indepen-
dent local solution, which is singular around this point.

It can be shown that for negative integer β the concomitant con�uent Heun
function has the form

HeunC (α, β, γ, δ, η, z) =
|β|∑

n=1

cn

zn
+h1(z)+h2(z) ln(z), all cn �= 0. (5.11)

Here h1,2(z) denote two deˇnite functions of the complex variable z which are
analytic in the vicinity of the point z = 0. In the problem at hand |β| = |β±| =
|s ∓ m|. The logarithmic term is present in the concomitant con�uent Heun
function when |β| = 0, too, but then we have no poles in the solution (5.11).
For |β| = 0 its form otherwise is similar to (5.11). One can reach the last results
using general analytical methods described, for example, in [24].

6. A NEW CLASSIFICATION OF THE SOLUTIONS TO THE TAE BASED
ON THE δN -CONDITION.

NOVEL δN -ANGULAR SOLUTIONS

For solutions sS
±
ω,E,m,σa,σb,σc

(5.3) to TAE the δN -condition reads:

0 = ∓m
σb − σc

2
+ N + 1 +

(
σa +

σb + σc

2

)
s. (6.1)

We call angular δN -solutions the solutions deˇned via the δN -condition (6.1).
To some extent these solutions are similar to the radial δN -solutions introduced

∗Note that for any value of the parameter β, when the con�uent Heun function in the right-hand
side of Eq. (5.10) is well deˇned, its left-hand side represents a second, linearly independent solution
of the con�uent Heun equation.
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in Sec. 3. A set of important new mathematical properties of the angular δN -
solutions can be found in [16,17]. In [17] it is shown that these solutions deˇne
the most general class of solutions to the TAE for which properly generalized
TeukolskyÄStarobinsky identities exist.

Comparing equation (6.1) with the corresponding one for the TRE Å (3.1),
we see both essential differences and similarities. For the coefˇcients in equa-
tion (6.1), which are analogous to the ones in (3.1), one obtains

L±
σa,σb,σc

≡ 0, M±
m,σa,σb,σc

= ∓m(σb − σc)
1
2
,

sN±
σa,σb,σc

= N + 1 +
(

σa +
σb + σc

2

)
s.

Hence:
i) The coefˇcients L±

σa,σb,σc
vanish identically, in contrast to the coefˇ-

cients L± in equation (3.1). Consequently, there are no cases in which the
condition (6.1) can ˇx the frequencies ω.

ii) The form of the coefˇcients M± of both equations (3.1) and (6.1) is the
same only for a2/M2 = 1/2.

iii) The coefˇcients N± of both equations are of the same form.
We obtain two different cases depending on the coefˇcient (σb −σc) in front

of the azimuthal number m:
1. The ˇrst class angular δN -solutions with σc = σb and σa = σb = σc

= −σ. As a result, Eq. (6.1) ˇxes the degree of the second polynomial condition
ΔN+1 = 0 in the same form as equation (3.2)∗:

sN + 1 = 2|s| � 1 for |s| � 1/2. (6.2)

Then
A. In the case of half-integer spins 1/2, 3/2 for any value of m we have

angular δN -solutions sS
±
ω,E,m(z±) ≡ sS

±
ω,E,m,−σ,−σ,−σ(z±):

sS
±
ω,E,m(z±) = e∓2σaωz± (z±)

±σm−|s|
2 (z∓)

∓σm−|s|
2 ×

× HeunC

(
∓4σaω, ±σm − |s|, ∓σm − |s|, ±4aωs,

m2 + s2

2
∓ 2saω − a2ω2 − E, z±

)
. (6.3)

∗The alternative case σb = σc = −σa leads to a noninteresting relation N + 1 = 0.
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Hence, one obtains the behavior of solutions (6.3) around the corresponding
singular points z± = 0:

sS
±
ω,E,m(z±) ∼

(
z±

)±σm−|s|
2 for z± → 0. (6.4)

The behavior of the solutions (6.3) around the singular points z± =
1(⇔ z∓ = 0) is more complicated. To study this behavior, we use the expansion
of the solutions (6.3) with respect to the basis of the two linearly-independent
local solutions (5.9) around the points z∓ = 0, well deˇned for |s| = 1/2, 3/2:

sS
±
ω,E,m(z±) = sΓ±

1 (ω, E, m) e±2σaωz∓ (z∓)
∓σm−|s|

2 (z±)
±σm−|s|

2 ×

× HeunC

(
±4σaω, ∓σm − |s|, ±σm − |s|, ∓4σaω|s|, m2 + s2

2
± 2σaω|s|−

− a2ω2 − E, z∓

)
+ sΓ±

2 (ω, E, m)e±2σaωz∓ (z∓)
±σm+|s|

2 (z±)
±σm−|s|

2 ×

× HeunC

(
±4σaω, ±σm + |s|, ±σm − |s|, ∓4σaω|s|, m2 + s2

2
± 2σaω|s|−

− a2ω2 − E, z∓

)
. (6.5)

Note that the ˇrst term in Eq. (6.5) is a δN -solution with value of the integer sN
given by Eq. (6.2), while the second one is not a δN -solution for half-integer
spins.

From Eq. (6.5) one obtains the behavior of the solutions (6.3) around the
corresponding singular points z± = 1:

sS
±
ω,E,m(z±) ∼ sΓ±

1 (ω, E, m) (1 − z±)
∓σm−|s|

2 +

+ sΓ±
2 (ω, E, m) (1 − z±)

±σm+|s|
2 for z± → 1. (6.6)

From Eqs. (6.4) and (6.6) we obtain the following results:
i) Since |s| is a half-integer and m Å an integer, the solutions (6.3) are

regular around the corresponding points z± = 0, if and only if σσm = ±1
(σm = sign(m)) and |m| > |s|, and singular, otherwise.

ii) For |s| Å a half-integer and m Å an integer we have either (∓σm −
|s|) < 0, or (±σm + |s|) < 0. Then the solutions (6.3) are singular around the
corresponding points z± = 1 in the general case, i.e., when sΓ±

1 (ω, E, m) �= 0
and sΓ±

2 (ω, E, m) �= 0.
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iii) The solutions (6.3) are regular simultaneously around the two correspond-
ing singular points z± = 0 and z± = 1, if and only if according to i) σσm = ±1,
|m| > |s| and in addition sΓ±

1 (ω, E, m) = 0.
iv) There exist several cases in which the solutions (6.3) are regular around

one pole and singular around the other one. For brevity, we shall skip here their
detailed description.

B. In the case of integer spins 1, 2 the set of δN -solutions (6.3) consists of
ones with integer parameters β = σbb± of both signs. According to Eq. (5.11),
for integer σbb± < 0 in the solutions we have logarithmic terms. Such solutions
are inˇnitely-valued functions. To avoid this physically not admissible case, one
must impose the additional requirement σbb± � 0. As a result, one obtains
σσm = ±1, σbb± = |m|− |s| � 0 and σcc± = −|m|− |s| < 0. Thus, the angular
δN -solutions of the ˇrst class with integer spin correspond to sectors II (5.6)
and IV (5.8) and acquire the form

sS
±
ω,E,m(z±) = e−2σmaωz± (z±)

|m|−|s|
2

(
z∓

)−|m|−|s|
2 ×

× HeunC

(
−4σmaω, |m| − |s|, −|m| − |s|, 4σmaω|s|, m2 + s2

2
− 2σmaω|s|−

− a2ω2 − E, z±

)
. (6.7)

Applying Eq. (6.4) to this case we see that the solutions (6.7) are regular
around the singular points z± = 0. Their behavior around the singular points
z± = 1(⇔ z∓ = 0) is more complicated. We can study this behavior using
the expansion of the solutions (6.7) with respect to the basis of the two linearly-
independent local solutions (5.9) around the points z∓ = 0, which are well deˇned
for σσm = ±1, σbb± = |m| − |s| � 0 and σcc± = −|m| − |s| < 0:

sS
±
ω,E,m(z±) = sΓ±

1 (ω, E, m)e2σmaωz∓ (z∓)
−|m|−|s|

2 (z±)
|m|−|s|

2 ×

× HeunC

(
4σmaω, −|m| − |s|, |m| − |s|, −4σmaω|s|, m2 + s2

2
+ 2σmaω|s|−

− a2ω2 − E, z∓

)
+ sΓ±

2 (ω, E, m)e2σmaωz∓ (z∓)
|m|+|s|

2 (z±)
|m|−|s|

2 ×

× HeunC

(
4σmaω, |m| + |s|, |m| − |s|, −4σmaω|s|, m2 + s2

2
+

+ 2σmaω|s| − a2ω2 − E, z∓

)
. (6.8)
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Now it is clear that in the general case, when sΓ±
1 (ω, E, m) �= 0, the

solutions (6.7) are singular around the corresponding points z± = 1 and in
addition Å inˇnite valued, because of the poles and of the logarithmic terms
in the concomitant con�uent Heun function in Eq. (6.8), as well as because of

the singular factor (z∓)
−|m|−|s|

2 . One can remove at once all these singularities
imposing the condition sΓ±

1 (ω, E, m) = 0.
Unfortunately, the explicit form of the connection constants sΓ±

1,2(ω, E, m)
is completely unknown. At present, this is one of the main unsolved problems in
the theory of the con�uent Heun functions.

Another way to avoid the logarithmic terms in the solutions (6.7), (6.8)
is to impose the ΔN+1-condition, reducing this way con�uent Heun's func-
tions to polynomials. We consider in detail these two possibilities in the next
Secs. 7 and 8.

2. The second class angular δN -solutions: σb = −σc. Now we obtain

sNm,σa,σb
+ 1 = ±mσb − σas � 1. (6.9)

Then
A. For half-integer spin δN -solutions are sS

±
ω,E,m,σa,σb,−σb

(z±) with m re-
stricted in the semi-inˇnite intervals ±mσb � σas + 1.

B. For integer spins the additional requirement σb(s∓m) � 0 and (6.9) yield
the solutions

sS
±
ω,E,m(z±) = e∓2σaωz± (z±)

|s|∓σm
2 (z∓)

−|s|∓σm
2 ×

× HeunC

(
∓4σaω, |s| ∓ σm, −|s| ∓ σm, ±4σaω|s|, m2 + s2

2
∓ 2σmaω|s|−

− a2ω2 − E, z±

)
, (6.10)

with m restricted in the asymmetric ˇnite intervals 1 − |s| � ±σm � |s| (⇒
|m| � |s|− (1∓σσm)/2 � |s|), which correspond to sectors I (5.5) and IV (5.7).
For brevity, here we will not discuss the behavior of the solutions (6.10) around
the second regular singular points z∓.

As seen, in the case of the TAE the only role of the δN -condition is to relate
the degree N of the ΔN+1-condition with the spin-weight s and the azimuthal
number m and to select the proper solutions.

Note that up to now only regular solutions to the TAE, which obey the
condition (6.2) have been studied and used in the literature [2, 3, 6]. In Sec. 7
we develop a new approach to the regular solutions, based on con�uent Heun's
functions. The nonregular angular δN -solutions, subject to the condition (6.2),
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and the inˇnite series of solutions, subject to the condition (6.9), are introduced
and considered for the ˇrst time in the present work.

7. REGULAR SOLUTIONS OF THE TAE

The spectral condition sΓ±
1 (ω, E, m) = 0 ensures the regularity of the solu-

tions (6.7). It cannot be used directly, since the explicit form of the connection
constant sΓ±

1 (ω, E, m) is not known. Therefore, we are forced to use a round-
about way to ˇnd the regular solutions to the TAE.

Suppose we have a solution sS
+reg
ω,E,m(θ) which is regular around the

S-pole (θS = π) and another solution sS
−reg
ω,E,m(θ) which is regular around the

N-pole (θN = 0). We will have a solution sS
REG
ω,E,m(θ), regular everywhere in

the interval θ ∈ [0, π], if and only if sS
+reg
ω,E,m(θ) = const × sS

− reg
ω,E,m(θ), i.e., if

the Wronskian vanishes: W
[

sS
+reg
ω,E,m(θ), sS

−reg
ω,E,m(θ)

]
= 0. This condition de-

termines the constant E in the form E = E(aω, s, m, l), l being an integer. The
Wronskian will vanish for any θ ∈ [0, π], if it is zero for some θ0 ∈ (0, π).

To utilize this idea for all values of the parameters s and m, we have to divide
the whole plane {s, m} into four sectors and to choose the solutions sS

±reg
ω,E,m(θ)

deˇned by Eqs. (5.5)Ä(5.8).
The spectral condition makes equal the solutions of group (a) and the solu-

tions of group (b) in each sector. It can be written in different equivalent forms
combining in pairs one solution from the group (a) and another one from the
group (b). Below we give the simplest form of this condition in each sector, writ-
ten here for the ˇrst time in terms of con�uent Heun's function HeunC and its
derivative HeunC′. The set of all conditions (7.1) deˇnes the separation constant
in the whole plane {s, m} in the form E = (m2 + s2)/2 − a2ω2 + ε(aω, m, s).
The new parameter ε(aω, m, s) is to be found from the following transcendental
equations:

HeunC′

(
±4aω, s + m, s − m, −4aωs, +2ωas− ε,

(
sin

θ

2

)2
)

HeunC

(
±4aω, s + m, s − m, −4aωs, +2ωas− ε,

(
sin

θ

2

)2
) +

+

HeunC′

(
∓4aω, s − m, s + m, +4aωs, −2aωs− ε,

(
cos

θ

2

)2
)

HeunC

(
∓4aω, s − m, s + m, +4aωs, −2aωs− ε,

(
cos

θ

2

)2
) =

= 0 Å in sector I, (7.1a)

23



HeunC′

(
±4aω, −s − m, s − m, −4aωs, +2ωas− ε,

(
sin

θ

2

)2
)

HeunC

(
±4aω, −s − m, s − m, −4aωs, +2ωas− ε,

(
sin

θ

2

)2
) +

+

HeunC′

(
∓4aω, s − m, −s − m, +4aωs, −2aωs− ε,

(
cos

θ

2

)2
)

HeunC

(
∓4aω, s − m, −s − m, +4aωs, −2aωs− ε,

(
cos

θ

2

)2
) =

= 0 Å in sector II, (7.1b)

HeunC′

(
±4aω, −s − m, −s + m, −4aωs, +2ωas− ε,

(
sin

θ

2

)2
)

HeunC

(
±4aω, −s − m, −s + m, −4aωs, +2ωas− ε,

(
sin

θ

2

)2
) +

+

HeunC′

(
∓4aω, −s + m, −s − m, +4aωs, −2aωs− ε,

(
cos

θ

2

)2
)

HeunC

(
∓4aω, −s + m, −s − m, +4aωs, −2aωs− ε,

(
cos

θ

2

)2
) =

= 0 Å in sector III, (7.1c)

HeunC′

(
±4aω, s + m, −s + m, −4aωs, +2ωas− ε,

(
sin

θ

2

)2
)

HeunC

(
±4aω, s + m, −s + m, −4aωs, +2ωas− ε,

(
sin

θ

2

)2
) +

+

HeunC′

(
∓4aω, −s + m, s + m, +4aωs, −2aωs− ε,

(
cos

θ

2

)2
)

HeunC

(
∓4aω, −s + m, s + m, +4aωs, −2aωs− ε,

(
cos

θ

2

)2
) =

= 0 Å in sector IV (7.1d)
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valid simultaneously for all values of θ ∈ (0, π). Thus, the two-singular-points
boundary problem for the TAE is solved. It yields a countable set of values
E(aω, m, s, l) numbered by some integer l. Due to the symmetries (5.4) of
the solutions to the TAE, the different relations (7.1a) and (7.1c), or (7.1b) and
(7.1d) give similar results. More precisely E(aω, m, −s, l) = E(aω, m, s, l)
and E(−aω, −m, s, l) = E(aω, m, s, l).

An important consequence is that all the regular solutions obtained this way
are angular δN -solutions with the same sN (6.2) in sectors II and IV, or with
the same sNm,σa,σb

(6.9) Å in sectors I and III. This is because between the
solutions (5.6) and (5.8) we certainly have δN -solutions: sS

±
ω,E,m,−−−, for s > 0,

and sS
±
ω,E,m,+++, for s < 0. Between the solutions (5.5) and (5.7) δN -solutions

are sS
−
ω,E,m,∓±∓, for m > 0, and sS

+
ω,E,m,∓±∓, for m < 0. As a result

of uniqueness of the regular solutions with given values of the parameters, all
regular solutions inherit the δN -property. Hence, all regular solutions of the TAE
obey the TeukolskyÄStarobinsly identities [17].

Let us consider the limit aω → 0 of the regular solutions to the TAE. Since

HeunC(0, β, γ, 0, η, z) = (1 − z)β+γ+1+
√

β2+γ2+1−4η ×

× 2F1

(
β + γ + 1 +

√
β2 + γ2 + 1 − 4η

2
,

β + γ + 1 −
√

β2 + γ2 + 1 − 4η

2
; β + 1; z

)
, (7.2)

in this limit the Heun functions in Eqs. (5.5)Ä(5.8) and (7.1) can be reduced to
the Gauss hypergeometric ones. Then, using the well-known properties of the
Gauss hypergeometric function 2F1 one can derive from Eqs. (7.1) with aω =
0 the spectrum E(0, s, l, m) = l(l + 1), l = l(s, m, l̄) = max(|m|, |s|) +
l̄, l̄ = 0, 1, 2, . . . The values of the separation constant E(0, s, l, m) in this
case are real. The numerical analysis of Eqs. (7.1) written directly in terms of
con�uent Heun's functions conˇrms this standard result for the limit aω = 0.
The corresponding regular con�uent Heun functions in sS

REG
ω=0,l,m(θ) in this case

are reduced to Jacobi's polynomials.
The solutions E(aω, s, l, m) for small aω have been studied many times [2,

6] in the form of Taylor's series expansion E(aω, s, l, m) = l(l + 1) +∑∞
j=1 Ej,s,l,m(aω)j without use of Eqs. (7.1) and without utilizing the Heun func-

tions. A little bit surprising thing is that the solutions sS
REG
ω,l,m(θ) with aω �= 0,

regular at both poles, are not polynomial and can be represented as an inˇnite se-
ries with respect to Jacobi's polynomials. Here we describe the regular solutions
to the TAE in terms of con�uent δN -Heun's functions for the ˇrst time.
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8. POLYNOMIAL SOLUTIONS OF THE TAE

The polynomial solutions to the TAE are a special subclass of the angular
δN -solutions studied in Sec. 6, since both of the two conditions (7.1) are valid
for them. Being a polynomial in z, the HeunC-factor is regular at both regular
singular points θ = 0, π. Then the singularities of the polynomial solutions

around the poles are deˇned completely by the factors (z±)σbb±/2 and (z∓)σcc±/2

in Eq. (5.3). Thus:
A. In the case of half-integer spins |s| = 1/2, 3/2 from Eq. (6.3) we see that

the singularities are deˇned by the factors

(
cos

θ

2

)σm−|s|
and

(
sin

θ

2

)−σm−|s|
.

Hence:
For |s| = 1/2 we have two singularities on both poles Å for |m| = 0, or a

singularity only on one of the poles Å when |m| > 0.
For |s| = 3/2 we have two singularities on both poles Å for |m| = 0, 1, or

a singularity only on one of the poles Å when |m| > 1.
B. In the case of integer spins |s| = 1, 2 from Eq. (6.7) we see that the

singularities are deˇned by the factors

(
cos

θ

2

)±|m|−|s|
and

(
sin

θ

2

)∓|m|−|s|
.

Hence:
For |s| = 1 we have two singularities on both poles Å for |m| = 0, or a

singularity only on one of the poles Å when |m| > 0.
For |s| = 2 we have two singularities on both poles Å for |m| = 0, 1, or a

singularity only on one of the poles Å when |m| > 1.
As a result, we see that in any case the polynomial solutions are singular at

least around one of the poles.
Using relations (1.6b) and (5.2) we obtain the general formula for the con-

stant E in the form

E± = μ± − aω2 ∓ 2σa (1 ∓ σbm + (σa + σb)s) aω+

+
σb − σc

2
m (σbm ∓ 1) +

σb + σc

2
s (σbs + 1) . (8.1)

Further analysis shows that we have again two classes of polynomial solutions
to the TAE, as in the cases of the TRA, but their structure in some cases may be
different.

8.1. First Class of Polynomial Solutions to the TAE. These are the solutions

sS
±
ω,E,m,−σ,−σ,−σ. For them the condition (6.2) is fulˇlled independently of the

values of the integer m, but for integer |s| the speciˇc requirement σbb± � 0
yields the restriction |m| � |s|. As in the case of the ˇrst class polynomial
solutions to the TRA Å Sec. 4, the value s = 0 is eliminated by (6.2). Hence,
we have an inˇnite series of the ˇrst class polynomial solutions to the TAE
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for all admissible values of s and m. Preserving the style accepted in the
previous sections we denote the polynomial solutions to TAE of the ˇrst class as

sS
±
ω,E,m = sS

±
ω,E,m,−σ,−σ,−σ.

For them the ΔN+1-condition reads Δ2|s|(μ) = 0 and has 2|s|-in-number
solutions sμ

±
ω,k,m. From formulae (8.1) one obtains

sE
±
ω,k,m = sμ

±
ω,k,m + |s|(|s| − 1) − aω(aω − 2m) ∓ 2σ(2|s| − 1)aω, (8.2)

where k = 1, . . . , 2|s|, s = ±1/2, ±1, ±3/2, ±2 and for integer |s| in addition
|m| � |s|.

Solving the ΔN+1-condition, we obtain for the different values of |s|:

sE
±
ω,m = −a2ω2 + 2aωm − 1

4
: for |s| =

1
2
; (8.3)

sE
±
ω,k,m = −a2ω2 + 2aω

(
m − (−1)k

√
1 − m/aω

)
: (8.4)

for |s| = 1, |m| � 1, k = 1, 2.

The values (8.3) and (8.4) of the separation constant E obtained for the
ˇrst class polynomial solutions to the TAE are the same as the corresponding
values (4.2) and (4.3) for the ˇrst class polynomial solutions to the TRE. Important
consequences of this unexpected fact are considered in a separate article [25].

For the gravitational waves (|s| = 2) the quantities sμ
±
ω,k,m are solutions of

the algebraic equations of the fourth degree Δ±
4 (μ) = 0. We do not need here

the exact form of these roots. It is quite complicated. Below we present only
the form of the separation constant E for the TAE obtained making use of the
Taylor series expansions of the roots around the point aω = 0.

Thus, we obtain for |s| = 2 and k = 1, 2 the following eight values:

sE
±
ω,k,m = 2 − 4maω − i(−1)k12

√
(m − 1)m(m + 1)(aω)3/2+

+ 6
(

m2 − 7
6

)
(aω)2 + O5/2(aω), (8.5)

and for |s| = 2, m �= 0, k = 3, 4 another eight values:

sE
±
ω,k,m = −(−1)k4

√
maω

(
1 +

(
3m − 2

m

)
aω + O2(aω)

)
+

+ 8maω − 6
(

m2 − 5
6

)
(aω)2 + O3(aω). (8.6)

As seen, for gravitational waves of the ˇrst polynomial class the values (8.5)
and (8.6) of the corresponding constants E differ substantially from the analogous
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values (4.4) and (4.5) of the constants E obtained for the TRE in Subsec. 4.1.1.
This is in sharp contrast to the case of neutrino waves (|s| = 1/2) of the ˇrst
polynomial class and to the case of electromagnetic waves (|s| = 1) of this kind.

It can be shown that this phenomenon re�ects the difference between the
Starobinsky constants for solutions with spin 2 to the TAE and for solutions with
the same spin 2 to the TRE [2,3, 17]. The solutions to the TAE and to the TRE
with the same spin 1/2 or 1 have the same Starobinsky constants.

Despite the above essential difference, the ˇrst class polynomial solutions to
the TAE and to the TRE with spin 2 have similar qualitative properties, discussed
at the end of Subsec. 4.1.1.

8.2. Second Class of Polynomial Solutions to the TAE. We have a ˇnite
number of second class polynomial solutions to the TAE for which the relation
σc = −σb holds. For brevity, we list here only the ones of integer spin 1 and 2.
For them the conditions N � 0 and σbb± � 0 must be satisˇed simultaneously,
yielding the requirement |m| � |s|− (1∓σσm)/2 � |s| Å almost opposite to the
analogous requirement |m| � |s| for the polynomial solutions of the ˇrst class.
Altogether there exist only the following 24 polynomial solutions of the second
class sS

±
ω,E,m,∓,±,∓ with spin 1 and 2:

sS
+
ω,E,m,−,+,− : s = +2, m = −1, 0, 1, 2; s = +1, m = 0, 1;

sS
+
ω,E,m,+,−,+ : s = −2, m = −2, −1, 0, 1; s = −1, m = −1, 0;

sS
−
ω,E,m,−,+,− : s = +2, m = −2, −1, 0, 1; s = +1, m = −1, 0;

sS
−
ω,E,m,+,−,+ : s = −2, m = −1, 0, 1, 2; s = −1, m = 0, 1.

(8.7)

The relation between the constants E and ω follows from (8.1), when μ in it
is replaced by the solutions of the ΔN+1-condition in the form Δ±

|s±m|(μ) = 0.
Here we omit these relations.

9. THE 256 CLASSES OF EXACT SOLUTIONS
TO THE TEUKOLSKY MASTER EQUATION

AND THEIR SINGULARITIES

Combining solutions to the TRE and to the TAE studied in the previous
sections we can construct the following 256 classes of exact solutions to the
TME

sK±,±
ω,E,m,σα,σβ ,σγ ,σa,σb,σc

(t, r, θ, ϕ) =

= e−iωteimϕ
sR

±
ω,E,m,σα,σβ ,σγ

(r; r+, r−)sS
±
ω,E,m,σa,σb,σc

(θ). (9.1)
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For speciˇc physical problems one has to impose speciˇc additional condi-
tions, like stability conditions, boundary conditions, casuality conditions, speciˇc
ˇxing of the in-out properties, regularity conditions, etc. Thus, one selects some
speciˇc combinations of solutions to the TRE and to the TAE in Eq. (9.1) and
derives the spectrum of the separation constants ω and E in the given problem.

For example, choosing solutions to the TRE which enter both the event
horizon and the 3D-space inˇnity we study the Kerr black holes [2, 3]. If in
addition we choose regular solution to the TAE, we will obtain the standard
QNM of the Kerr black holes. Choosing other solutions to the TRE and/or to the
TAE in Eq. (9.1) we may hope to describe other physical objects and phenomena,
see, for example, [15,19].

The solutions (9.1) do not necessarily have a direct physical meaning. Instead,
some linear combination of the speciˇc solutions, which obey proper boundary
conditions, is to describe the Nature. In general the solutions (9.1) have to be con-
sidered as auxiliary mathematical objects Å (maybe singular) kernels of integral
representations (1.3) of the physical solutions. The choice of the correspond-
ing amplitudes sAω,E,m,σα,σβ ,σγ ,σa,σb,σc will ˇx completely the physical model
and can ensure the convergence of the integrals and discrete sums to physically
acceptable solutions. We will study this complicated issue in the next Sec. 10.

10. CONSTRUCTION OF BOUNDED LINEAR COMBINATIONS
OF POLYNOMIAL SOLUTIONS TO THE TAE

We have seen in Sec. 8 that the polynomial solutions to the TAE are sin-
gular and unbounded with respect to the angle θ around the N- and S-poles.
These solutions produce a singular kernel in the integral representation (1.3).
It is important to know whether it is possible to have bounded with respect to
the angle θ ∈ [0, π] solutions sΨ(t, r, θ, ϕ) deˇned by Eq. (1.3), despite the
singular character of the kernel in it. The answer to this question is a quite
nontrivial issue. Here we reach a positive answer for perturbations of spin 1/2 in
several steps.

Let us consider the simplest case of double polynomial solutions of the
ˇrst class to the TME with spin 1/2 and s = σ/2. For them we have an
essential simpliˇcation, since according to Eqs. (3.2) and (6.2) sN = 0. Hence,
the HeunC-factors in both the radial and the angular polynomial solutions are

equal to const ≡ 1. The value of the separation constant E = −a2ω2+2aωm− 1
4

is uniquely deˇned in both cases by Eqs. (4.2) and (8.3). Hence, the integration
over the constant E in (1.3) produces only one term with this ˇxed value. As a
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result, the corresponding singular kernel (9.1) is∗:

σ
2
Kω,E,m(t, r, θ, ϕ) = δ

(
E + a2ω2 − 2maω + 1/4

)
Δ

1+σ
4 e−iωTσ

(Wσ)m

√
sin θ

,

(10.1)

where Tσ = t + σ (r∗ − ia cos θ), Wσ = eiφσ cot
θσ

2
, φσ = ϕ +

σ

p
ln

∣∣∣∣r − r+

r − r−

∣∣∣∣,
and θσ = θ, if σ = +1, or θσ = π − θ, if σ = −1. The complex variable Wσ

deˇnes a stereographic projection of the two-sphere S
(2)
φσ ,θσ

on the compactiˇed

complex plane C̃Wσ . Its use is critical for further analysis of the problem.
Taking the trivial integral on the variable E, one obtains from the represen-

tation (1.3) and Eq. (10.1)

σ
2
Ψ(t, r, θ, ϕ) = Δ(r)−

1+σ
4

√
(|Wσ | + |Wσ|−1) /2×

×
∞∑

m=−∞

⎛
⎝ 1

2π

∫
Lω

dωe−iωTσ σ
2
Aω,m

⎞
⎠ (Wσ)m . (10.2)

Since in this case we have no other restriction on the frequencies ω, different from
the stability requirement �(ω) < 0, the otherwise arbitrary integration contour
Lω ∈ Cω in (10.2) must lie in the lower complex half-plane. Suppose that the
amplitudes σ

2
Aω,m and the contour Lω are chosen in such way that for all m ∈ Z

there exist well-deˇned integrals

1
2π

∫
Lω

dωe−iωTσ σ
2
Aω,m = σ

2
Am(Tσ). (10.3)

Then

σ
2
Ψ(t, r, θ, ϕ) = Δ(r)−

1+σ
4

√
(|Wσ | + |Wσ|−1) /2×

×
∞∑

m=−∞

σ
2
Am (Tσ) (Wσ)m

. (10.4)

∗To simplify formula (10.1), we have omitted some constant factors in the corresponding
solutions to the TRE and TAE, which do not depend continuously on the real variables r and θ, but
may have different values outside the event horizon, in the domain between the event horizon and the
Cauchy horizon and inside the Cauchy horizon. This is a legal operation, since one can include these
factors in the amplitudes sA... in the representation (1.3).
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Suppose, in addition, that in some ring domain |Wσ| ∈ (|W |′, |W |′′),
0 < |W |′ < |W |′′ < ∞ the sum

∑∞
m=−∞ σ

2
Am (Tσ) (Wσ)m = σ

2
A (Tσ, Wσ)

represents a convergent Laurent series of some analytic function σ
2
A (Tσ, Wσ).

For this purpose the coefˇcients σ
2
Am (Tσ) in Eq. (10.3) for m > 0 and, indepen-

dently, for m < 0 must satisfy some of the well-known criteria for convergence
of the corresponding series. Thus, we ˇnally obtain a solution to the TME with
spin 1/2 which depends on an arbitrary analytic function σ

2
A (Tσ, Wσ) of the

two variables Tσ and Wσ:

σ
2
Ψ(t, r, θ, ϕ) = Δ(r)−

1+σ
4

√
(|Wσ| + |Wσ|−1) /2 σ

2
A (Tσ, Wσ) . (10.5)

Returning to the BoyerÄLindquist variables one can check directly that (10.5)
is indeed a general solution to TME with spin 1/2. The explicit form of the
variable Tσ shows that outside the event horizon these solutions describe one-
way-running waves: outgoing to space inˇnity running waves Å for σ = −1 and
incoming from space inˇnity running waves Å for σ = +1.

Now it is easy to remove the singularities from the z axis, i.e., on the poles

θ = 0, π. For example, let us choose σ
2
A (Tσ, Wσ) = 1/

√(
Wσ + W−1

σ

)
/2.

Then σ
2
Ψ(t, r, θ, ϕ) = Δ(r)−

1+σ
4 /

√
1 − sin2 φσ sin2 θσ has no singularities on

the poles θσ = 0, π, but this way we have worked out two new singular lines

φσ = ϕ + σ
p ln

∣∣∣∣r − r+

r − r−

∣∣∣∣ = ±π/2 on the equatorial plane θ = π/2. Hence,

this way the singular line of the solution has been only deformed and translated
to a new position. The same happens if we choose the more general function

σ
2
A (Tσ, Wσ) = 1/

√(
a(Tσ)Wσ + b(Tσ)W−1

σ + c(Tσ)
)
/2. In this case, the sin-

gular z axis will be deformed, translated and doubled to the non-static singular

lines φσ = ϕ +
σ

p
ln

∣∣∣∣r − r+

r − r−

∣∣∣∣ = φ1,2 = arg(W1,2) on the (in general) moving

cones θ = θ1,2 = arctan
(
|W1,2|−1

)
, where W1,2 are the two roots of the equa-

tion a(Tσ)Wσ + b(Tσ)W−1
σ + c(Tσ) = 0. Here we have chosen a special form of

the function σ
2
A (Tσ, Wσ) which yields ˇnite nonzero values of the solution on

the poles θ = 0, π.
It is possible to chose the function σ

2
A (Tσ, Wσ) with the denominator which

is a sum of polynomials of higher degree with respect to variables Wσ and W−1
σ .

Then the solution (10.5) equals zero at the N- and S-poles and we can work out
an arbitrary number of singular lines of the solution related to the zeros of the
denominator. At ˇrst glance, this possibility may not seem to be interesting for
the physical applications, since on the singular lines the linear perturbation theory
in use is not applicable. We mention it here just to have a clear mathematical
picture. It is interesting to study the same situation in the whole nonlinear theory
and to know whether in it the singular lines may be replaced by regular ones. If
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so, the perturbation theory under consideration indicates a possible complicated
structure of the exact radiation ˇeld on the Kerr background.

The most important question for a correct application of the linear pertur-
bation theory under consideration, is whether one can ˇnd a regular analytical
function σ

2
A (Tσ, Wσ) without singularities in the complex plane CWσ/{0, ∞},

i.e., with the points Wσ = 0 and Wσ = ∞ punctured and which, in addition,
can remove the unbounded increase of the solutions due to the singularities of
the factor

√
(|Wσ| + |Wσ|−1) /2 in (10.5). We give a positive answer to this

question constructing two explicit examples:

1. Using the basic equality
∞∑

m=−∞
WmIm(z) = exp

(
1
2

(
W + W−1

)
z

)
for

the modiˇed Bessel functions Im(z) [26] we choose the coefˇcients in (10.4) in

the speciˇc form σ
2
Am (Tσ) = exp

(
− σ̄

2
ω2T 2

σ

)
Im(ωTσ), where ω = ωR + iωI

is a ˇxed frequency and σ̄ = sign (|ωR| − |ωI |). Then

σ
2
Ψω(t, r, θ, ϕ) = Δ(r)−

1+σ
4

√
(|Wσ | + |Wσ|−1) /2×

× exp
(
− σ̄

2
ω2T 2

σ

)
exp

(
1
2

(
Wσ + W−1

σ

)
ωTσ

)
(10.6)

is a stable solution, since by construction it goes to zero when t → +∞. It is not
difˇcult to obtain its limit when θσ → 0, π in the form

lim
θσ→0,π

(
σ
2
Ψω(t, r, θ, ϕ)

)
= Δ(r)−

1+σ
4 exp

(
− σ̄

2
ω2T 2

σ;0,π

)
×

× lim
θσ→0,π

(
1√
sin θ

exp

(
|ω|

√
(t + σr∗)2 + a2

sin θ
eiΥωσ;0,π

))
. (10.7)

Here

Υω,σ;0,π = ±
(

ϕ +
σ

p
ln

∣∣∣∣r − r+

r − r−

∣∣∣∣−
−σ arctan

(
a

t + σr∗

))
+ arg(ω), for θ = 0, or π (10.8)

is the limit of the total phase of the term
1
2

(
Wσ + W−1

σ

)
ωTσ and Tσ;0,π =

t + σ(r∗ ∓ ia). In Eq. (10.8) the sign (+) corresponds to the limit θσ → 0
and the sign (−) Å to the limit θσ → π. Formula (10.7) shows that when

Υω,σ;0,π ∈
(
−π

2
,

π

2

)
the solution σ

2
Ψω(t, r, θ, ϕ) is bounded everywhere in the

interval θ ∈ [0, π], since in this case lim
θσ→0,π

(
σ
2
Ψω(t, r, θ, ϕ)

)
= 0. Otherwise

this limit diverges and the solution is singular and unbounded around the poles.
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Actually, the value of the parameter Υω,σ;0,π is not deˇned from a geometrical
point of view, because the value of the angle ϕ is completely arbitrary on the
poles θσ = 0, π. As a result, we can choose any value of the parameter Υω,σ;0,π

without changing the geometrical points associated with the N- and S-poles of the

sphere S
(2)
θ,ϕ. Since the different values of this parameter yield different solutions

of the TAE, we see that under the boundary conditions at hand the corresponding
differential operator is not self-adjoint [27], but its self-adjoint extensions do
exist and can be ˇxed by suitable ˇxing of the free parameter Υω,σ;0,π. An
analogous phenomenon is well known for the potentials V (x) ∼ 1/x2, or 1/r2

in quantum mechanics [27]. Note that around the poles θσ = 0, π the potential in
the TAE (1.1) has precisely the same behavior: sWω,E,m(θ) ∼ 1/θ2 for θ → 0,
and sWω,E,m(θ) ∼ 1/(θ−π)2 for θ → π. In our case, the ˇxing of the parameter

Υω,σ;0,π ∈
(
−π

2
,

π

2

)
makes the solutions (10.7) to the TME for spin 1/2 smooth

and bounded everywhere in the interval θ ∈ [0, π], i.e., physically acceptable.
2. Another solution, which is ˇnite everywhere in the interval θ ∈ [0, π]

but has an inˇnite number of bounded oscillations around the poles θ = 0, π
can be obtained using the following equality for the Bessel functions Jm(z):

∞∑
m=−∞

(−1)mW 2m (Jm(z))2 = J0

((
W + W−1

)
z
)

[26]. Now we choose the

coefˇcients in (10.4) in the speciˇc form σ
2
A2m (Tσ) = (−1)m exp

(
− σ̄

2
ω2T 2

σ

)
×

(J2m(ωTσ))2 and σ
2
A2m+1 (Tσ) = 0 using the same notation as in the previous

example. Then

σ
2
Ψω(t, r, θ, ϕ) = Δ(r)−

1+σ
4

√
(|Wσ | + |Wσ|−1) /2×

× exp
(
− σ̄

2
ω2T 2

σ

)
J0

((
Wσ + W−1

σ

)
ωTσ

)
(10.9)

is a stable solution to the TME with spin 1/2. Taking into account the asymptotic

expansion of the Bessel function J0(z) ∼
√

2
πz

cos (z − π/4) we obtain in the

limits θσ → 0, π:

lim
θσ→0,π

(
σ
2
Ψω(t, r, θ, ϕ)

)
= Δ(r)−

1+σ
4 exp

(
− σ̄

2
ω2T 2

σ;0,π

) 1√
πωTσ;0,π

×

× lim
θσ→0,π

(
cos

(
2|ω|

√
(t + σr∗)2 + a2

sin θ
eiΥωσ;0,π

))
. (10.10)

As seen from Eq. (10.10), there exist only two choices of the free parameter:
Υω,σ;0,π = 0, π, for which the solutions (10.9) are ˇnite everywhere in the in-
terval θ ∈ [0, π] Å a critical property for the use of the linear perturbation
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theory. Approaching these poles the solutions oscillate inˇnitely many times with
bounded ˇnite amplitudes. In this sense, the N- and S-poles remain singular-
ities of the bounded solutions (10.9). Moreover, the gradients of the bounded
solutions (10.9) are unbounded around the poles.

Obviously, superpositions of solutions (10.6), or (10.9) with different com-
plex parameters ω, running in some (discrete or continuous) sets in Cω, describe
more general bounded solutions to the TAE with spin 1/2.

One more remark. In the case σ = +1 the solutions (10.5) are unbounded on
the horizons r± due to the factor Δ(r)−1/2. These stationary singularities cannot
be removed by any choice of the function σ

2
A (Tσ, Wσ), since it depends on the

two variables Tσ and Wσ , not on the single one r. The variables t, r, θ enter
in Tσ and the variables ϕ, r, θ enter in Wσ in a complex way. As a result, the
variable r cannot be disentangled from the the function σ

2
A (Tσ, Wσ) and one is

not able to compensate the singularity due to the factor Δ(r)−1/2 which does not
depend neither on the time t, nor on the angles ϕ and θ.

11. CONCLUSION

In the present work, we have demonstrated that the con�uent Heun functions
are an adequate and natural tool for a uniˇed description of the linear perturbations
to the gravitational ˇeld of the Kerr metric outside the horizons, as well as in the
interior domains. These functions give us an effective tool for exact mathematical
treatment of different boundary problems and corresponding physical phenomena.
The same approach works, too, for the Schwarzschild metric [14,17].

Large classes of exact solutions to the perturbation equations of the Kerr
metric were described here for the ˇrst time. All possible types of solutions
were classiˇed uniformly in terms of con�uent Heun's functions and con�uent
Heun's polynomials, using their speciˇc properties. As we saw, the variety of
the different solutions and possible spectra is much reacher than, for example, the
variety of the corresponding solutions and spectra of the Hydrogen problem in
quantum mechanics [27], solved in terms of the Gauss hypergeometric functions.

We have to stress especially the newly obtained singular polynomial solutions
to the Teukolsky angular equation. These solutions can describe in the most
natural way the collimation of radiated ˇelds of all spins in the Kerr metric,
using the perturbation theory. For spin 1/2 we have proved that the singular
kernels, constructed from polynomial solutions, can produce bounded solutions
of the TME with very interesting physical properties: These solutions are able to
describe correctly collimated one-way-running waves.

For spin 1 one can reach similar results in a more complicated way, since there
we meet a new physical phenomenon Å the electromagnetic super-
radiance [2, 3, 28]. For spin 2 we have no continuous spectrum of the TME
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and the problem needs a special treatment, too. We shall consider these impor-
tant cases separately.

The solutions of some of the remaining basic mathematical problems, as
well as some preliminary attempts for new speciˇc physical applications of the
obtained results can be found in [15Ä17,19,25].
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