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The solution of time-dependent HartreeÄFockÄBogoliubov equations by the
Wigner function moments method leads to the appearance of low-lying modes whose
description requires accurate knowledge of the anomalous density matrix. It is shown
that calculations with the WoodsÄSaxon potential satisfy this requirement.
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INTRODUCTION

The problem of the spatial dependence of the pairing ˇeld is at the moment
the object of the highest interest of nuclear theorists [1Ä3] because of the necessity
to explain the properties of nuclei disposed far from the beta-stability line. We
met this problem when studying the nuclear scissors mode. It is known [4,5] that
one must take into account pair correlations to describe correctly nuclear scissors,
therefore Time-Dependent HartreeÄFockÄBogoliubov (TDHFB) equations should
be the natural instrument to work with. We apply the method of Wigner Function
Moments (WFM), or phase space moments, for their solution. To this end we
write TDHFB equations in phase space and calculate their various second rank
moments which serve as the collective variables of the method. In such a way
one derives dynamical equations for quadrupole moments, angular moments and
other neutron and proton variables. The relative motion of neutron and proton
angular moments generates the scissors mode.

Along with isovector excitations (scissors and the Isovector Giant Quadrupole
Resonance (IVGQR)) the derived equations describe also isoscalar modes Å the
IsoScalar Low-Lying Excitation (ISLLE) and giant quadrupole resonance. The
appearance of ISLLE is quite interesting, because it is originated only by quantum
corrections to the semiclassical limit of TDHFB equations, that says about their
complicate structure. Naturally, one cannot use semiclassical expressions for the
anomalous density and pairing ˇeld to describe such excitations Å one needs
quantum mechanical expressions, which can be found by solving static HFB
equations, which is the subject of this paper.

1. PAIRING

Pair correlations are taken into account by working with TDHFB equations.
Their detailed form is

i� ˙̂ρ = ĥρ̂ − ρ̂ĥ − Δ̂κ̂† + κ̂Δ̂†,

−i� ˙̂κ = −ĥκ̂ − κ̂ĥ∗ + Δ̂ − Δ̂ρ̂∗ − ρ̂Δ̂,

−i� ˙̂ρ∗ = ĥ∗ρ̂∗ − ρ̂∗ĥ∗ − Δ̂†κ̂ + κ̂†Δ̂,

−i� ˙̂κ† = ĥ∗κ̂† + κ̂†ĥ − Δ̂† + Δ̂†ρ̂ + ρ̂∗Δ̂†, (1)
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where ρ̂ and κ̂ are normal and abnormal density matrices, respectively, Δ̂ is the
pairing gap. We work with the Wigner transformation [6] of these equations. For
example, the ˇrst one reads

i�ḟ = i�{h, f} − Δκ∗ + κΔ∗ − i�

2
{Δ, κ∗} +

i�

2
{κ, Δ∗}−

− �
2

8
[{{κ, Δ∗}} − {{Δ, κ∗}}] + . . . , (2)

where functions h, f , Δ, and κ are Wigner transforms of ĥ, ρ̂, Δ̂, and κ̂,
respectively, {f, g} is the Poisson bracket of functions f(r, p) and g(r, p); the
dots stand for terms proportional to higher powers of �.

To study the quadrupole collective motion with Kπ = 1+ in axially symmet-
ric nuclei, it is necessary to calculate moments of Eq. (2) (+ three other equations)
with the weight functions:

W = xz, pxpz, zpx + xpz ≡ L̂, and zpx − xpz ≡ Îy.

This procedure yields 16 equations for collective variables
∫

d3p
∫

d3rWf and∫
d3p

∫
d3rWκ. However, due to symmetry considerations 8 of them turn out

trivial. Applying the approximation [5] δκ+(r, p) � δκ−(r, p), one is able to
reduce the problem to a set of only six dynamical equations (strictly speaking,
12 ones: 6 for protons and 6 for neutrons). Making the standard approximation [5]
to decouple isovector and isoscalar subsets, we ˇnd that in the case of harmonic
oscillator with QQ interaction the isovector subset has two integrals of motion
allowing one to reduce the eigenvalue problem to a quadratic equation. Its two
solutions

E2
± = Dω ±

√
D2

ω − [8ΔΔ̃ε2 + 4(�ω̄)4δ2](1 − α) + 24ακ0Δ̃k0�4/m2 (3)

describe the energy E+ of the IVGQR and the energy E− of scissors. Here
ε2 = �

2ω̄2(1 + δ
3 ), ω̄ = ω/(1 + 2

3δ), ω Å an oscillator frequency, κ0 Å the
isoscalar strength constant of QQ interaction, k0 = 4

∫
d3p

∫
d3rκ0(r, p)/(2π�)3,

κ0(r, p) Å the ground state anomalous density, α is the parameter connecting
isovector and isoscalar strength constants (κ1 = ακ0), Dω = 2ΔΔ̃ + ε2(2 − α),
2Δ̃ = |V0|IκΔ

pp ,

IκΔ
pp (r, p) =

r3
p√

π�3
e−γp2

∫
κ0(r, p′)

[
φ0(2γpp′)−

− 4γ2p′4φ2(2γpp′)
]
e−γp′2

p′2dp′, (4)

γ = r2
p/4�

2, φ0(x) =
1
x

sh(x), φ2(x) =
1
x3

[(1 +
3
x2

)sh(x) − 3
x

ch(x)],
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rp and V0 are parameters of the pair interaction v(|p − p′|) = −|V0|(rp
√

π)3 ×
e−|p−p′|2/r2

p . It is worth noting that contrary to the case without pairing [7]
the energy E− does not go to zero for deformation δ = 0. The calculation of
transition probabilities shows that this mode of a spherical nucleus can be excited
by an electric ˇeld and it is not excited by a magnetic ˇeld.

In the isoscalar case we have two solutions:

E2
± = 2ΔΔ̃ + ε2 ±

√
(2ΔΔ̃ + ε2)2 + 24κ0Δ̃k0�4/m2, (5)

E+ ≡ Eis being the energy of the isoscalar giant quadrupole resonance and
E− ≡ EISL being the energy of the ISLLE. It is important to note that the very
existence of the ISLLE relies on two factors: 1) pair correlations and 2) quantum
correction. As it is seen, the value of EISL is strongly dependent on the value
of integral k0, which, in its turn, is completely determined by the properties of
the anomalous density κ0(r, p), so it would be natural to study these properties
before starting the systematic calculations of EISL.

2. ANOMALOUS DENSITY MATRIX

The anomalous density matrix is deˇned [6] as

κ(r1, s1; r2, s2) =
∑
k>0

ukvk[φk(r1, s1)φk̄(r2, s2) − φk̄(r1, s1)φk(r2, s2)], (6)

where k ≡ n, l, j, m is the set of shell model quantum numbers and k̄ is that
of the time conjugate state. Bogoliubov coefˇcients u, v are deˇned in a usual

way: v2
k =

1
2

(
1 − ε̃k√

ε̃2k + Δ2
k

)
, u2

k = 1 − v2
k with Δk = −

∑
k′>0

v̄kk̄,k′k̄′uk′vk′ ,

v̄ij,mn = vij,mn − vij,nm and ε̃k = εk −λ. εk is a single-particle energy and λ is
a chemical potential. Inserting expressions for u, v into the formula for Δ, one
ˇnds the set of gap equations:

Δk = −1
2

∑
k′>0

v̄kk̄,k′k̄′
Δk′√

ε̃2k′ + Δ2
k′

. (7)

The solution of these equations for the test nucleus 134Ba is shown in Fig. 1.
Matrix elements vkk̄,k′k̄′ of the Gaussian pair interaction v(r1, r2) =

−V0e−|r1−r2|2/r2
p were calculated with the WoodsÄSaxon single-particle wave

functions [9], the values V0 = 23 MeV and rp = 1.7 fm being used.
This nucleus was chosen because it is the lightest one (with the smallest

deformation) of the deformed nuclei where the scissors mode is observed. As-
suming artiˇcially its deformation δ = 0, we can compare our results with the
numerous results of other authors for 120Sn.
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Fig. 1. Δnlj for 134Ba and for 120Sn [2] and [8]

As it is seen, our results are in very good agreement with that of the paper [2]
obtained with the realistic interaction Argonne v18 (see also [8]). Comparison
with the results of calculations with surface density-dependent delta interaction [2]
demonstrates rather good agreement in the vicinity of the Fermi Surface (FS) and
strong disagreement below FS (which, naturally, does not have any meaning).

Having Δk, one can calculate κ(r1, s1; r2, s2). A square of the anomalous
density |κ(R, s)|2, averaged over angle between R = (r1+r2)/2 and s = r1−r2,
is shown in Fig. 2 as a function of R and s.

Fig. 2. |κ(R, s)|2 for 134Ba; scale has been multiplied by a factor of 104
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This picture is in good agreement with that of the paper [1] calculated
for 120,128Sn. We have exactly the same characteristic structure with three pikes,
the highest one being disposed at the point R = r = 0. The second in height pike
is on the nuclear surface and the lowest one is in between. The width of these
pikes in s direction, which is associated with the size of Cooper pairs, is 2Ä3 fm,
that agrees with the results of [1]. It is interesting to look on the angular (angle θ
between R and s) dependence of κ2. To this end we have calculated κ2 at θ = 0◦

and θ = 66◦ (Fig. 3), θ = 78◦ and θ = 90◦ (Fig. 4).

Fig. 3. κ2(R, s, θ) for θ = 0◦ (a) and θ = 66◦ (b) for 134Ba; scale has been multiplied
by a factor of 104

Fig. 4. κ2(R, s, θ) for θ = 78◦ (a) and θ = 90◦ (b) for 134Ba; scale has been multiplied
by a factor of 104
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The structure of the function κ2(R, s, θ = 0◦) (Fig. 3) is quite similar to that
of the angle-averaged function κ2(R, s) (Fig. 2): the same three-pike structure in
the vicinity of R axis (0 � s < 3) and small deviation at large s. It is interesting
that practically the same picture is observed at θ = 66◦ and θ = 78◦ Å only
at θ = 78◦ the width of pikes increased a little bit. Principally another picture is
observed at θ = 90◦ (Fig. 4). Here there is no pronounced concentration of κ2

along the R axis, that says about strong anisotropy of the abnormal density.
So, in the area 0 � θ � 78◦ the function |κ(R, s, θ)|2 is changed very

slowly, conserving approximately the same shape as it has at θ = 0◦. Beginning

Fig. 5. The pairing ˇeld Δloc calculated
in the local approximation for 134Ba

from θ ∼ 80◦ it is changed very
quickly, receiving ˇnally the shape shown
in Fig. 4 (θ = 90◦).

Therefore, it is not surprising, that af-
ter averaging over θ one gets the picture
reminding very much that of at θ = 0◦.

It turns out that three-pike structure,
observed in the κ2(R, s) behaviour is re-
peated in the behaviour of the pairing
ˇeld calculated in the local approximation
(Fig. 5):

Δloc(R) ≡ Δ(R, pF (R)), p2
F = 2m(λ − V (R)).

Such a behaviour of Δloc is in excellent qualitative agreement with the
result of [2] calculated with Gogny force and with the results of [8] calculated
with Argonne v14, low-momentum interaction Vlowk and density-dependent delta
interaction. The pike on the surface was predicted by semiclassical calculation [6].
However, the appearance of the very high pike in the center of nucleus is rather
unexpected. Obviously, it is the shell effect explained by the strong in	uence of

3s
1
2

state (see analogous remark in [1] concerning 120,128Sn).

Finally, we calculated the so-called coherence length

ξ(R) =
(
∫

s4|κ(R, s)|2ds)1/2

(
∫

s2|κ(R, s)|2ds)1/2
, (8)

which is shown in Fig. 6.
We obtained the typical curve with minimum at the nuclear surface, which

agrees very well with the results of [1, 2, 8] calculated with various realistic
interactions. The only substantial difference is seen in the absolute value of ξ at
the point of minimum on the nuclear surface. Our result is approximately two
times bigger than that of other authors. Inside of nucleus all results are similar.
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Fig. 6. Coherence length ξ(R) for 134Ba
(num Å the numerator of expression (8),
den Å the denominator of (8))

We suspect that such a difference is
connected with different mean ˇelds:
WoodsÄSaxon in our case and the
self-consistent well obtained from var-
ious two-body forces in other cases.
Being more or less similar inside of
nucleus these mean ˇelds can differ
substantially in the surface area that
can lead to big differences for coher-
ence length. It would be interesting to
study this problem performing the de-
tailed comparison of abnormal densi-
ties obtained with various mean ˇelds.
It will be done in the forthcoming pa-
pers. We want to discuss the coher-
ence length behaviour outside of nucleus. The growing curve far outside of
nuclear surface, practically in the empty space, looks suspicious. To understand
the situation we have shown the numerator and denominator of expression (8) in
the same ˇgure.

Both curves fall quickly with R increasing. Their behaviour in the vicinity
of the nuclear surface (7 < R < 8 fm) is determined by the tails of single-particle
wave functions. However, at R > 8 fm their values are determined mainly by
numerical errors and there is no sense to speak about any physics in this area.

CONCLUSION

We have demonstrated that calculations of the abnormal density and the pair
ˇeld (gap) with the WoodsÄSaxon mean ˇeld potential are able to reproduce very
well the results obtained in the self-consistent calculations with realistic interac-
tions. As we understand, the lack of self-consistency is completely compensated
by the proper choice of WoodsÄSaxon parameters, which are ˇtted to reproduce
the nuclear single-particle levels near the Fermi surface. These results shall be
used in the calculation of scissors mode.
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