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The solution of time-dependent Hartree—-Fock—-Bogoliubov equations by the
Wigner function moments method leads to the appearance of low-lying modes whose
description requires accurate knowledge of the anomalous density matrix. It is shown
that calculations with the Woods—Saxon potential satisfy this requirement.
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INTRODUCTION

The problem of the spatial dependence of the pairing field is at the moment
the object of the highest interest of nuclear theorists [1-3] because of the necessity
to explain the properties of nuclei disposed far from the beta-stability line. We
met this problem when studying the nuclear scissors mode. It is known [4,5] that
one must take into account pair correlations to describe correctly nuclear scissors,
therefore Time-Dependent Hartree—Fock—Bogoliubov (TDHFB) equations should
be the natural instrument to work with. We apply the method of Wigner Function
Moments (WFM), or phase space moments, for their solution. To this end we
write TDHFB equations in phase space and calculate their various second rank
moments which serve as the collective variables of the method. In such a way
one derives dynamical equations for quadrupole moments, angular moments and
other neutron and proton variables. The relative motion of neutron and proton
angular moments generates the scissors mode.

Along with isovector excitations (scissors and the Isovector Giant Quadrupole
Resonance (IVGQR)) the derived equations describe also isoscalar modes — the
IsoScalar Low-Lying Excitation (ISLLE) and giant quadrupole resonance. The
appearance of ISLLE is quite interesting, because it is originated only by quantum
corrections to the semiclassical limit of TDHFB equations, that says about their
complicate structure. Naturally, one cannot use semiclassical expressions for the
anomalous density and pairing field to describe such excitations — one needs
quantum mechanical expressions, which can be found by solving static HFB
equations, which is the subject of this paper.

1. PAIRING

Pair correlations are taken into account by working with TDHFB equations.
Their detailed form is

ihp = hp — ph — AiT + RAT,
—ihk = —hik — Rh* 4+ A — Ap* — pA,
—ihp* = h*p* — p*h* — Atk 4+ RTA,
—ihkt = Rt + &Th — AT + Atp + prAT, (1)



where p and % are normal and abnormal density matrices, respectively, A is the
pairing gap. We work with the Wigner transformation [6] of these equations. For
example, the first one reads

: ih ih

ihf = ih{h, f} — AR+ A" — %{A, K'Y+ %{m, A*) -

h2
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where functions h, f, A, and x are Wigner transforms of fz, 0 A, and k&,

respectively, {f, g} is the Poisson bracket of functions f(r, p) and g(r, p); the
dots stand for terms proportional to higher powers of A.

To study the quadrupole collective motion with K™ = 17 in axially symmet-

ric nuclei, it is necessary to calculate moments of Eq. (2) (+ three other equations)
with the weight functions:

W =xz, pzDsy, 2Dy +ap, = f), and zp, —ap, = fy.

This procedure yields 16 equations for collective variables [ d®p [ d3rW f and
[ d®p [ d*rWk. However, due to symmetry considerations 8 of them turn out
trivial. Applying the approximation [5] dk(r, p) < dk_(r, p), one is able to
reduce the problem to a set of only six dynamical equations (strictly speaking,
12 ones: 6 for protons and 6 for neutrons). Making the standard approximation [5]
to decouple isovector and isoscalar subsets, we find that in the case of harmonic
oscillator with QQ interaction the isovector subset has two integrals of motion
allowing one to reduce the eigenvalue problem to a quadratic equation. Its two
solutions

Ei =D, + \/Du% - [SAA@ + 4(hw)26?)(1 — a) + 24am0Akoh4/m2 3)

describe the energy E of the IVGQR and the energy E_ of scissors. Here
e = n?0*(1+ %), @ = w/(1+ 26), w — an oscillator frequency, ko — the
isoscalar strength constant of QQ interaction, ko = 4 [ d®p [ d&*rx°(r, p)/(27h)3,
k°(r, p) — the ground state anomalous density, « is the parameter connecting

isovector and isoscalar strength constants (k1 = akyg), D, = 2AA + 62(2 - ),

28 = Vol I,
A o 2 0
) = 2o [ W0 ) ool
— 4% o (2ypp!) | e P2y, (4)
—2/4R2, do(z) = —sh(z), da(r) = —[(1+ 2)sh(x) — Sch(z)]
Y= D ) 0 — z 3 2 — 373 372 z 3



r, and Vp are parameters of the pair interaction v(|p — p’|) = —|Vo|(rpv/7)3 x
e~ PP/ 1t is worth noting that contrary to the case without pairing [7]
the energy E_ does not go to zero for deformation § = 0. The calculation of
transition probabilities shows that this mode of a spherical nucleus can be excited
by an electric field and it is not excited by a magnetic field.

In the isoscalar case we have two solutions:

B2 =204 + @ £/ (208 + @) + 24roAkoht /m?, 5)

E, = Ei being the energy of the isoscalar giant quadrupole resonance and
E_ = FEig1, being the energy of the ISLLE. It is important to note that the very
existence of the ISLLE relies on two factors: 1) pair correlations and 2) quantum
correction. As it is seen, the value of Eigr, is strongly dependent on the value
of integral kg, which, in its turn, is completely determined by the properties of
the anomalous density x°(r, p), so it would be natural to study these properties
before starting the systematic calculations of Frgr..

2. ANOMALOUS DENSITY MATRIX

The anomalous density matrix is defined [6] as

K(r1, 515 T2, 82) = > upvr[dr(r1, $1)05(r2, s2) — @p(r1, 51)dk(ra, 52)], (6)

k>0

where k = n, [, j, m is the set of shell model quantum numbers and k is that
of the time conjugate state. Bogoliubov coefficients u, v are defined in a usual

1 €L
2 2 2 i =
way: v = 5 [ 1 = ——== |, u{ =1 — v} with Ap = — > Upp o Un/ Vg s
2 ( \/6i+Ai> )
Vijmn = Vijmn — Vijnm and € = €, — A, ¢y, is a single-particle energy and A\ is
a chemical potential. Inserting expressions for u, v into the formula for A, one
finds the set of gap equations:
1 Ay
Ak - — = Z @k'];' k! —— (7)
; /Z2 1T A2
2 k'>0 € T AL
The solution of these equations for the test nucleus **Ba is shown in Fig. 1.
Matrix elements v ;5 of the Gaussian pair interaction v(ry, rz) =

—Voe"’“’”';}/ "> were calculated with the Woods—Saxon single-particle wave
functions [9], the values V; = 23 MeV and r, = 1.7 fm being used.

This nucleus was chosen because it is the lightest one (with the smallest
deformation) of the deformed nuclei where the scissors mode is observed. As-
suming artificially its deformation 6 = 0, we can compare our results with the
numerous results of other authors for '208n.
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Fig. 1. A, for ***Ba and for *°Sn [2] and [8]

As it is seen, our results are in very good agreement with that of the paper [2]
obtained with the realistic interaction Argonne vig (see also [8]). Comparison
with the results of calculations with surface density-dependent delta interaction [2]
demonstrates rather good agreement in the vicinity of the Fermi Surface (FS) and
strong disagreement below FS (which, naturally, does not have any meaning).

Having Ay, one can calculate k(r1, s1; r2, s2). A square of the anomalous
density |x(R, s)|?, averaged over angle between R = (r1+r3)/2 and s = r; —ro,
is shown in Fig.2 as a function of R and s.

(R, 5)]2 B B

B

Fig. 2. |s(R, s)|? for '3*Ba; scale has been multiplied by a factor of 10*



This picture is in good agreement with that of the paper [1] calculated
for 120:1288n We have exactly the same characteristic structure with three pikes,
the highest one being disposed at the point R = r = 0. The second in height pike
is on the nuclear surface and the lowest one is in between. The width of these
pikes in s direction, which is associated with the size of Cooper pairs, is 2-3 fm,
that agrees with the results of [1]. It is interesting to look on the angular (angle 6
between R and s) dependence of x2. To this end we have calculated x2 at § = 0°
and 0 = 66° (Fig.3), # = 78° and 6 = 90° (Fig.4).
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Fig. 3. k*(R, s, 0) for 6 = 0° (a) and 6 = 66° (b) for '3'Ba; scale has been multiplied
by a factor of 10*
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Fig. 4. k*(R, s, ) for 6 = 78° (a) and 0 = 90° (b) for '3*Ba; scale has been multiplied
by a factor of 10*



The structure of the function x2(R, s, § = 0°) (Fig.3) is quite similar to that
of the angle-averaged function x2(R, s) (Fig.2): the same three-pike structure in
the vicinity of R axis (0 < s < 3) and small deviation at large s. It is interesting
that practically the same picture is observed at § = 66° and § = 78° — only
at § = 78° the width of pikes increased a little bit. Principally another picture is
observed at § = 90° (Fig.4). Here there is no pronounced concentration of x?2
along the R axis, that says about strong anisotropy of the abnormal density.

So, in the area 0 < 6 < 78° the function |k(R,s,0)|? is changed very
slowly, conserving approximately the same shape as it has at § = 0°. Beginning
from 6 ~ 80° it is changed very
quickly, receiving finally the shape shown
é 1.5 A 1 in Flg4 (9 = 900).

5 Therefore, it is not surprising, that af-
<10 - 1 ter averaging over 6 one gets the picture
reminding very much that of at 8 = 0°.

0.5 1 T It turns out that three-pike structure,
observed in the x?(R, s) behaviour is re-
O 1 2 3 4 5 ¢ 7 s peated in the behaviour of the pairing
R, fm field calculated in the local approximation
Fig. 5. The pairing field Ay, calculated ~ (Fig.5):
in the local approximation for '**Ba

2.0

Awc(R) = AR, pr(R)), ph =2m(\ = V(R)).

Such a behaviour of Aj,. is in excellent qualitative agreement with the
result of [2] calculated with Gogny force and with the results of [8] calculated
with Argonne v14, low-momentum interaction Vjowj and density-dependent delta
interaction. The pike on the surface was predicted by semiclassical calculation [6].
However, the appearance of the very high pike in the center of nucleus is rather
unexpected. Obviously, it is the shell effect explained by the strong influence of

1 . .
355 state (see analogous remark in [1] concerning '20-128Sp).

Finally, we calculated the so-called coherence length

([ 'R (R, 5)[ds)!/?

)= aln(R, s)Pas) 7

®)

which is shown in Fig. 6.

We obtained the typical curve with minimum at the nuclear surface, which
agrees very well with the results of [1,2, 8] calculated with various realistic
interactions. The only substantial difference is seen in the absolute value of ¢ at
the point of minimum on the nuclear surface. Our result is approximately two
times bigger than that of other authors. Inside of nucleus all results are similar.



We suspect that such a difference is
connected with different mean fields:
Woods—Saxon in our case and the
self-consistent well obtained from var-
ious two-body forces in other cases.
Being more or less similar inside of
nucleus these mean fields can differ
substantially in the surface area that
can lead to big differences for coher-
ence length. It would be interesting to
study this problem performing the de-
tailed comparison of abnormal densi-
ties obtained with various mean fields. Fig. 6. Coherence length £(R) for **'Ba
It will be done in the forthcoming pa- (um — the numerator of expression (8),
pers. We want to discuss the coher- den — the denominator of (8))

ence length behaviour outside of nucleus. The growing curve far outside of
nuclear surface, practically in the empty space, looks suspicious. To understand
the situation we have shown the numerator and denominator of expression (8) in
the same figure.

Both curves fall quickly with R increasing. Their behaviour in the vicinity
of the nuclear surface (7 < R < 8 fm) is determined by the tails of single-particle
wave functions. However, at R > 8 fm their values are determined mainly by
numerical errors and there is no sense to speak about any physics in this area.

CONCLUSION

We have demonstrated that calculations of the abnormal density and the pair
field (gap) with the Woods—Saxon mean field potential are able to reproduce very
well the results obtained in the self-consistent calculations with realistic interac-
tions. As we understand, the lack of self-consistency is completely compensated
by the proper choice of Woods—Saxon parameters, which are fitted to reproduce
the nuclear single-particle levels near the Fermi surface. These results shall be
used in the calculation of scissors mode.
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