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The ngdp framework is intended to provide a base for the data acquisition (DAQ)
system software. The ngdp's design key features are: high modularity and scalability;
usage of the kernel context (particularly kernel threads) of the operating systems
(OS), which allows one to avoid preemptive scheduling and unnecessary memory-
to-memory copying between contexts; elimination of intermediate data storages on
the media slower than the operating memory like hard disks, etc. The ngdp, having
the above properties, is suitable to organize and manage data transportation and
processing for needs of essentially distributed DAQ systems.
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1. INTRODUCTION

Modern experimental physical setups can produce extremely large data vol-
umes very quickly Å faster, than it can be transferred through single 10 Gbit/s
Ethernet link, so they require more than one link used in parallel. It means that
such setups should be equipped with essentially distributed (between many com-
puters) data acquisition (DAQ) systems. On the other hand, the whole dataset
belonging to some physical event should appear at some stage on a single com-
puter for full event building. This requirement is necessary for each event.
Consequently, this system should contain more than one Event Builders (EvB) in
principle. This fact requires to solve tasks related with data streams organization
and management:

• to merge different data of data �ows;
• to split the identical streams or duplicate them at another stages;
• to provide intermediate buffers and delays, etc.
Software for this DAQ system should contain some kind of the data trans-

portation and processing system able to organize and manage these data �ows.
The system should provide maximal performance and throughput practically
reachable on the generic computer and network hardware, at least, faster than
1 GB/s. For the software system it means that it should be as lightweight and fast
as possible: it uses the corresponding design not to consume an essential resource
fraction for execution of its own code. For the used operating system (OS) it
means that the network service itself should not consume an essential resource
fraction either, for example, execution of TCP/IP stack and Ethernet interface
interrupt handlers, etc. We should localize overall systems ®bottleneck¯ in the
network as the slowest system's element to preserve the major fraction of com-
puter resources for needs of the data processing itself. The above requirements
for the software side can be achieved by the following means:

• elimination of intermediate storage on slow media (hard disks, etc.);
• minimization of memory-to-memory copying where possible (in particular,

elimination of copying between the user and kernel contexts);
• execution in the almost real-time mode (by means of kernel context imple-

mentation based on the kernel threads);
• the data in the user context should be presented in the form of streams or

memory objects (but not ˇles).
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The proposed system should be reasonably modular, easy in implementa-
tion, maintenance and usage, based as much as possible on the existing freely
distributable software packages and technologies.

Through the presented text the references to terms are highlighted as boldface
text, ˇle and software package names Å as italic text, C and other languages
constructions Å as typewriter text. Reference to the manual page named
®qwerty¯ in the 9th section is printed as qwerty(9), reference to the sections in this
paper Å as ®Subsec. 3.2.2.¯. Note also verbal constructions like ®accept(2)ed¯
and ®rmhooking¯, which means ®accepted by accept(2)¯ and ®hook removing
by rmhook¯. Subjects of substitution by actual values are enclosed in the angle
brackets: <num_of_packets>, while some optional elements are given in the
square brackets: [ ng_filter →]. All mentioned trademarks are properties of
their respective owners.

2. OVERVIEW

First of all, we should choose a computing environment: hardware architec-
ture, OS, programming language(s) and corresponding instrumental software Å
to design, implement, maintain and use our DAQ software.

On the one hand, we have no special requirements to computers hardware Å
other than performance. On the other hand, a big DAQ system can require from
tens to some hundreds of units of such hardware with corresponding maintenance,
etc. So, we should choose the most standard and generic hardware reasonably
cheap due to a great volume of production. This architecture called AMD64/EM64T,
previously known also as x86-64 and IA-32e, should be used currently and in
the near future.

The operating system used on the online computer determines the DAQ sys-
tem design and organization, consequently the inadequate OS selection are sure to
strongly complicate implementation, maintenance, and using of the DAQ system.
The OS itself should have adequate technical abilities for easy multiple instal-
lations, remote maintenance and backup, read-only boot ˇlesystem and diskless
boot, boot without input and output devices, etc.

UNIX-like OSs are optimal for the above requirements. UNIX is a multi-
process and multiuser OS with powerful mechanisms for interprocess and inter-
computer communications, a very advanced virtual memory subsystem, support of
sophisticated networking and graphics interfaces, extended tools for the software
design. Costs for UNIX working itself are rather modest and negligible. Free
sources distributions availability of UNIX-like OSs is a mandatory requirement
in our case. After all, high portability of UNIX programming and approximately
unlimited quantity of the existing software are also very attractive.
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To achieve the reasonable performance, we should choose C programming
language (or C++ Å only in such cases, where we cannot avoid an object-oriented
design and implement it on C) and ultimately avoid interpreted languages like
Perl or CINT.

Let us brie�y remind the basic principles used by qdpb framework [1] which
are still important for the presented design, too:

• Distributed (between CPUs and computers) DAQ system is unavoidably
split into software modules interconnected with experimental data streams.

• A modular design allows one to separate code pieces dependent of the
experimental setup hardware, experimental data contents and layout from other
®invariant¯ modules.

• ®Invariant¯ modules are grouped into some universal framework suitable
for using again and again during construction and upgrade of DAQ systems. The
®invariant¯ modules are intended mostly for data streams management.

• Experimental data are represented in the uniˇed form by packets (sequences
of bytes) contain the packet header followed by the packet body.

Å Packet header has a ˇxed size and format and contains at least the fol-
lowing ˇelds: packet identiˇer, packet length, packet type, packet serial number,
packet creation time and packet check sum (CRC). The packet identiˇer is iden-
tical for all packets. Packets of different types have separate serial numeration.

Å Packet body is experimental data of a single event (trigger) itself, encap-
sulated into the packet for transportation purposes, and has the known length. The
packet length is not coupled with the packet type Å in other words, the bodies
with different length are permitted for the same packet type. The packet size is
limited by the PACK_MAX value. Additionally to data packets the control pack-
ets and packets of response to control packets (the so-called ®answer packets¯)
should be implemented, too.

• Streams of such packets can
Å be transferred locally (on single computer) and/or
Å remotely (between different computers through network);
Å cross the context boundaries from the kernel space to the user one and

vice versa;
Å be buffered, copied, ˇltered, merged in a different manner, etc.
Note, all these activities are carried out exclusively in the memory. Interme-

diate storages on slow media like hard disks (HDD) are eliminated.
• Software modules can be implemented as processes in the user context and

as the so-called loadable kernel modules (KLD) Å in the kernel context.
• Packet streams between processes are implemented by unnamed pipes lo-

cally and by socket pairs Å remotely.
However, more than ten years of computing technologies progress after early

qdpb variants implementing, has allowed us to use the following in our design:
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• Modern kernels allow one to execute some code pieces in the kernel
context Å the so-called ®kernel threads¯ Å autonomously like processes in the
user context in contrast with traditional kernels, whose code can be executed only
in the result of external events: system call by process, interrupt request (IRQ),
etc. Note, such threads are not subjects for preemptive scheduling and voluntarily
release CPU. Due to the kernel threads we can fulˇl most of the packet processing
as fast as possible and in the same kernel context where the packets originate from
hardware drivers or network sockets.

• So, we need tools for packet stream management within the kernel. Fortu-
nately, these tools already exist, and one of them is the netgraph(4) package, after
which our framework is named ngdp Å netgraph based data processing. Orig-
inally netgraph(4) was used to distribute network packets between some nodes
to implement the network protocol layers. Let us cite from the corresponding
manual pages: ®The netgraph system provides a uniform and modular system
for the implementation of kernel objects which perform various networking func-
tions. The objects, known as nodes, can be arranged into arbitrarily complicated
graphs. Nodes have hooks which are used to connect two nodes together, form-
ing the edges in the graph. Nodes communicate along the edges to process data,
implement protocols, etc... All nodes implement a number of predeˇned methods
which allow them to interact with other nodes in a well-deˇned manner. Each
node has a type, which is a static property of the node determined at node cre-
ation time¯. In the netgraph(4) the data are �owing along the graph edges while
control messages are delivered directly from the source to destination.

• From the object oriented programming (OOP) point of view, the node types
are classes, nodes are instances of their respective class, and interactions between
them are carried out via well-deˇned interfaces.

• The modular design of the proposed basic framework allows us to easy
maintain the essentially distributed software system due to high scalability of the
netgraph(4). On each computer we can produce an arbitrary number of instances
of some node type limited only by the available memory.

The netgraph(4) package provides the following entities of our interest:
• socket ng ksocket(4) for the remote data transfer by IP protocol (TCP or

UDP);
• socket ng socket(4) for data and control messages interchange between the

kernel context graph and the user context process;
• netgraph(3) library to simplify control over ng socket(4) and transfer

through it for the user context processes;
• means for building the graph itself: infrastructure in the kernel Å netgraph

KLD module, Å and ngctl(8), nghook(8) utilities;
• service nodes for data �ow managing: ng tee(4), ng one2many(4), ng split(4);
• nodes for debugging: ng source(4), ng hole(4), ng echo(4).

4



Let us assume that a big DAQ system will split into logical levels of data
processing along the data �ow as follows:

• FEM (Front-End Modules) level Å standalone computers and/or processor
modules in crates of read-out electronics. FEM level implements at least a queue
of ready data fragments satisfying the trigger conditions;

• SubEvB (SubEvent Builders) level Å data preprocessing computers grouped
by detector subsystems. SubEvB level implements at least requests of ready data
fragments from the FEM level, building of subevents (events belonging to each
detector subsystem), queue of ready subevents, software ˇlters for subevents
rejection;

• EvB (Event Builders) level Å full events building computers. EvB level
implements at least requests of ready subevents from SubEvB level, building of
full events, queue of ready full events, software ˇlters for full events rejection;

• pool level Å data postprocessing computers. Pool level implements at least
requests of a subset of ready events from EvB level, events conversion from a
native binary format to representation by some class of the ROOT package [2],
circle buffer of ROOT events provided to clients for online analysis and visual-
ization, histogramming and so on of ROOT events, a number of these histograms
provision to clients for online analysis and visualization;

• storage level parallel to pool level Å computers, which realize requests of
ready events from EvB level and writing these events into intermediate storage.
The storage level consists of some identical computer groups, switchable while
data taking in such a way, that one group obtains the events from EvB level
when other groups transfer these data from the intermediate into the ˇnal storage,
possibly, slower than HDD.

In addition, some computer groups can be outside of the data stream:

• Slow Control group Å computers, which implement HV and LV con-
trol and user interface, initial software downloading into the read-out and other
electronics;

• DAQ Operator group Å computers, which fulˇl control and user interface
for DAQ software components;

• FEM Control group Å computers, which realize the software part of the
trigger;

• online visualization group Å clients of the pool level.

In the present paper we limit our consideration by ngdp key elements only
due to publishing requirements, and pend up the following issues to the next
publication: user context utilities, events representation for the ROOT package,
control subsystem, work with CAMAC and VME hardware, simpliˇed ®self�ow¯
variants of some nodes, ng mm(4) as alternative to ng socket(4), test and debug
nodes, possible netgraph(4) additionals, etc.
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3. DESIGN AND IMPLEMENTATION

Let us consider our requirements to the infrastructure proposed above.
• Queue on the FEM level supports First Input First Output (FIFO) dis-

cipline, which minimally allows us to put the data packet into the end of the
queue, to get the data packet possibly of the requested type from the head of
the queue in response to the CTRL_NG_GETPACK control packet obtaining, to per-
form the queue full clear in response to the CTRL_NG_CLEAR control packet or
clear control message obtaining. This queue should be implemented by the
corresponding netgraph(4) node type. This node type provides a server function-
ality for the downstream (SubEvB) level from which it obtains CTRL_NG_GETPACK
and CTRL_NG_CLEAR control packets (see also the Table), and responds to
CTRL_NG_GETPACK by the data packet if it is possible or Å by ANSW_NG_GETPACK

answer packet if it is not. This node type interacts with FEM-controller by inter-
face unspeciˇed here, which should, however, allows one to obtain information
in some pieces to be encapsulated into the data packets, which could be put into
the queue end.

• Queue on the SubEvB level supports the discipline, which allows at least as
follows: to put the data packet into the queue end; to get the data packet (possibly
of the deˇned type) from the queue head (in response to CTRL_NG_GETPACK

control packet obtaining); to get an arbitrary data packet (possibly of the deˇned
type) from the queue by its number (in response to CTRL_NG_GETNTHPACK control
packet obtaining); to perform the queue full clear (in response to CTRL_NG_CLEAR

control packet or clear control message obtaining). The corresponding node type
provides a server functionality for the downstream (EvB) level, from which it
obtains CTRL_NG_GETPACK, CTRL_NG_GETNTHPACK and CTRL_NG_CLEAR control
packets and responds to the former two of them by the data packet if it is possible
or Å by ANSW_NG_GETPACK and ANSW_NG_GETNTHPACK answer packets. At the
same time, SubEvB level functions as a client∗ relatively to the upstream (FEM)
level by sending the CTRL_NG_GETPACK and CTRL_NG_CLEAR control packets.

• Queue on the EvB level supports the discipline, which allows at least as fol-
lows: to put the data packet into the queue end; to get the data packet (possibly of
the deˇned type) from the queue head (in response to CTRL_NG_GETPACK control
packet obtaining); to get one of each N th data packets (possibly of the deˇned
type) without removing it from the queue (in response to CTRL_NG_COPY1OFN

control packet obtaining); to perform the queue full clear (in response to
CTRL_NG_CLEAR control packet or clear control message obtaining). The corre-

∗This is an essential feature of the proposed design Å each intermediate level behaves as a
server for the downstream level and as a client for the upstream level. This approach simpliˇes
algorithms of inter-level interactions, which will be reduced to the ones only between neighbour
levels.
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sponding node type provides a server functionality for the downstream (pool/
storage) level, from which it obtains CTRL_NG_COPY1OFN/CTRL_NG_GETPACK,
CTRL_NG_CLEAR control packets and responds to the former ones by the data
packet if it is possible or Å by ANSW_NG_COPY1OFN/ANSW_NG_GETPACK answer
packets. At the same time, EvB level operates as a client relatively to the up-
stream (SubEvB) level by sending the CTRL_NG_GETPACK, CTRL_NG_GETNTHPACK
and CTRL_NG_CLEAR control packets.

• The pool level behaves as a client relatively to the upstream (EvB) level
by sending the CTRL_NG_COPY1OFN control packets. At the same time, the pool
level provides a server functionality for computers of the online visualization
group. This server converts each data packet into ROOT representation of the
full event (let us name it class Event) by means of a special constructor (or
member function) of such a class. After that the pool server can:

Å maintain the circle buffer of such Events and provide each Event in the
form of ROOT TMessage class instance by the client request, or

Å send each Event as soon as possible (without bufferization) in the form
of TMessage to each currently connected visualization client, or to discard the
corresponding data packet, if such clients are absent, or

Å ˇll some ROOT histogram(s) with each Event data or collect some sta-
tistics in another way, discard Event itself and provide only statistics in the form
of TMessage by the client request.

As we can see, at least three levels can contain the same node type with
slightly variated (by compiled-in or runtime conˇguration) functionality, let us
name it as ng ˇfo(4) (see Subsec. 3.2.2). For example, CAMAC FEM level can
be implemented as shown in Fig. 1: ng_camacsrc → ng_fifo. At the same
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Realistic queue disciplines for different data processing levels

Functionality, control/answer packet type Supported on level:
and body contents, letter for legend FEM SubEvB EvB
Get the packet from the queue head:
CTRL_NG_GETPACK with zero body (®n¯) + + +
Answer for the above: ANSW_NG_GETPACK with
uint16_t error code(s) (EMPTY only) in the body + + +

Get the packet of the deˇned type from
the queue head: CTRL_NG_GETPACK with + + +
uint16_t packet type in the body (®N¯)
Answer for the above: ANSW_NG_GEPACK with
uint16_t error code(s) (EMPTY, NUMNOTFOUND, + + +
TYPENOTFOUND) in the body
Get an arbitrary packet of the deˇned type from
the queue by its number: CTRL_NG_GETNTHPACK − + −
with uint32_t packet number and
uint16_t packet type in the body (®G¯)
Answer for the above: ANSW_NG_GETNTHPACK with
uint16_t error code(s) (TYPENOTFOUND, − + −
NUMNOTFOUND, NUMNOTALREADY) in the body
Get one of each N th packets of the deˇned
type without removing it from the queue: − − +
CTRL_NG_COPY1OFN with uint16_t N (period)
and uint16_t packet type in the body (®O¯)
Answer for the above: ANSW_NG_COPY1OFN with
uint16_t error code(s) (EMPTY, NUMNOTFOUND, − − +
TYPENOTFOUND) in the body

time, SubEvB and EvB levels perform building of (sub)events, their function-
ality can be implemented by the same ng em(4) (after qdpb's event merger)
node type (see Subsec. 3.2.3) with conˇgurated requests behaviour and (sub)event
building rules. Optionally, SubEvB and EvB levels can contain software ˇlters
for (sub)event rejection, which reasonably could be implemented by the same
ng ˇlter(4) node type (see Subsec. 3.3.2) with conˇgurated rejection rules. So,
the typical level layout (see Fig. 2) can look approximately the following way:
ng_em → [ ng_filter → [. . .]] ng_fifo.

ng_em launches ng defrag(4) (see Subsec. 3.2.1) nodes on each conˇgured
input channel, while ng_defrag launches client ng_ksocket, which connect()s

to server ng_ksocket of the upstream level. After that ng_em launches kthread(9)
to send the data requests (in the control packet form) to the upstream level
according to the conˇgured requests mode, and to proceed (sub)events merging
in accordance with the conˇgured building rules.
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ng_fifo launches server (listen()ing) ng_ksocket and handles
accept()ing ng_ksocket(s) as needed to serve requests from the down-
stream level.

The pool level client can be ng_em in some specialized mode (see also
Subsec. 3.2.3), or some separated multiplexer node ng pool(4) (see Subsec. 3.3.1).

The pool level ˇlter can be a node ng ˇlter(4) with assistance of the user
context process∗ b2r(1) (see also Sec. 3.3), or only this process. Anyway this
ˇlter should produce ROOT Event class instance for each full event data packet
obtained, and convert each Event into the so-called sequential (or serialized)
form using the corresponding Streamer() function(s). Technically speaking,
b2r(1) should use the ROOT TBufferFile class instance to do so. After
that the sequential form of Event has length fBufCurÄfBuffer returned by
TBufferFile::Length() function, should be read at TBufferFile::fBuffer
location, prepended by packet header, and injected into netgraph again.

So, the pool level server can be a usual ng_fifo node which works with seri-
alized Events as with usual data packets, while the typical level layout (see Fig. 3)
can approximately look as follows: ng_pool → [ ng_filter → [. . .]] ng_fifo.

∗Because it is very problematic to link into kernel a C++ code in general and ROOT classes
with their dictionaries in particular.
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Of course, we should note two additional crossings of context boundaries in
this scheme: from the kernel to the user context and back again, which can be
impractical due to too high CPU and memory consuming.

3.1. qdpb Inspired Entities and Imported Elements. Some ngdp ideas
and entities (see also [3]) are inspired by the ones previously designed for the
qdpb [1]. We import also the packet implementation and packet type support
from qdpb and redesign them in some aspects. qdpb's writer(1) utility for the
packet stream writing into a regular ˇle(s) on HDD can be used ®as is¯ Å if it
is recompiled to be aware of such changes. Let us note that in principle any user
context utilities previously implemented for qdpb, are still usable under ngdp, too,
until they satisfy the same condition.

3.2. Transport Subsystem. As has been experimentally checked, a datagram
size large enough for (local) atomic transfer through netgraph(4) system can be
tuned easily. However, due to TCP/IP∗ and Ethernet∗∗ network nature the sender
side unavoidably fragments our packets, so, we should reassemble (defragment)

∗We can't use UDP/IP for many reasons, the most important of which is the following: UDP/IP
does not support datagram fragmentation while the atomic datagram size is limited by IP packet size
(64 kbytes) which generally is too small for our purposes.

∗∗Ethernet has a standard frame length mtu = 1500 bytes.
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them after ng ksocket(4) on the receiver side. For this defragmentation it is
enough to have information from the packet header. Generally speaking, we have
the following options to implement a packet defragmenter:

1) to compile/link the same reassembling code in many places (practically in
each of node types, discussed in Secs. 3.2, 3.3);

2) to provide special KLD module with kernel-wide implementation of the
reassembling code for the nodes mentioned above;

3) to provide special node type ng defrag(4).
The latter option is the most straightforward and in a modular netgraph(4)

style, it does not waste memory by the duplicated code, and introduces neither
additional defragmenter interface nor KLD dependencies.

3.2.1. ng defrag(4) node. According to one of the packet defragmenter im-
plementation options (see above) we implement the ˇrst version of the packet
defragmenter code using the node of the type, which obtains data through input

hook; accounts their size (octets) and number of data messages (frames);
defragments they into packets; accounts a size (bytes) and number of result-
ing packets (packets) as well as reassemble failures (fails) and bytes re-
jected during failures (rejbytes); stores completed packets and fragment of
the last one into the circle buffer; synchronously sends the completed pack-
ets through the optional hook output (if exists) or discards them. In case of
the output counterpart slower than the input one, the node drops the packet(s)
and accounts the number of drop(s) occurred (droppacks). This node under-
stands the generic set of control messages and the following speciˇc control
messages as well:

getclrstats Å returns the current statistics (values of octets, frames,
bytes, packets, fails, rejbytes and droppacks) and clears it;

getstats/clrstats Å returns/clears the current statistics (the same
values);

flush Å tries to send all the packets not sent yet from the circle buffer.
The node supports only one hook named input and only one hook named

output simultaneously, and performs shutdown after all the hooks are detached.
The node is transparent in the counterstream direction Å the data arrived through
the output hook are sent ®as is¯ through the input hook.

Later we have improved this node to launch client ng_ksocket, to connect()

it to server ng_ksocket of the upstream level, and to attach it to the input hook.
This ng defrag(4) node understands two additional control messages:

connect <struct sockaddr addr> Å supplies IP address/port (in the same
format as understood by ng ksocket(4) node) of the server to connect() with;

needchknum <int8_t flag> Å (re)sets flag, which means to apply
checknum() for each reassembled packet if the flag is nonzero, otherwise it
is not applied.
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3.2.2. ng ˇfo(4) prototype. In order to implement node ng ˇfo(4) with buffer
disciplines, described in Sec. 3, as a ˇrst step we implement some prototype,
which is able to

• spawn listen()ing ng_ksocket at startup;

• spawn accept()ing ng_ksocket(s) at each connection request (up to the
conˇgured maximum) from the known host(s)/port(s), and/or accept the hook
connect from the local netgraph ng_socket(s);

• emit each data packet obtained on the input hook (or internally generated
if such hook is absent) in response to request∗ (in the form of the control packet)
obtaining through only the same accept()ing ng_ksocket or local ng_socket;

• close accept()ing ng_ksocket at EOF notiˇcation obtaining or connection
losing.

Such functionality does not require kernel thread usage, however can neither
respawn listen()ing ng_ksocket in case of its shutdown due to some external
or accidental reasons, nor handle nontrivial internal errors during listen()ing
ng_ksocket initialization. The reason is impossibility of using (at least with
macroscopic timeouts) msleep(9) in the context, where netgraph(4) code is exe-
cuted (usually one of the swi(9) software interrupt threads). So, this additional
error handling requires kthread(9) usage and can be implemented without ideo-
logical or technical problems.

The prototype supports universal queue discipline ®nNGO¯ (see the Table),
which is suitable for FEM, SubEvB, EvB and pool level bufferization simultane-
ously and provides all queue access kinds, which required to support
CTRL_NG_CLEAR (with and without ptype argument), CTRL_NG_GETPACK (with
and without ptype argument), CTRL_NG_COPY1OFN(period, ptype), and
CTRL_NG_GETNTHPACK(pnum, ptype) control packet types. We implement this
universal queue ˇrst of all as the user context model tbuf nNGO.c and debug such
model strongly, to be sure that this implementation is working now.

The ANSW_* packet bodies contain one of the following error codes as
uint16_t value (see the Table) to provide more information to client nodes
(ng em(4), ng pool(4), etc.) to make up a decision:

EMPTY (®n¯, ®N¯ and ®O¯ buffer operations∗∗) Å buffer is empty now;

TYPENOTFOUND (all buffer operations) Å requested packet type not yet ob-
tained;

NUMNOTFOUND (all buffer operations) Å requested packet number not yet
obtained;

∗Let us call such output policy as LAZY in contrast with ASAP (As-Soon-As-Possible).
∗∗Here only realistic (with ptype argument) buffer operations ®nNGO¯ (see the Table) are

mentioned.
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NUMNOTALREADY (®G¯ buffer operation) Å requested packet number already
dropped from the buffer.

To simplify mkpeering in some situations, the ng ˇfo(4) node supports the
creat hook, which can be removed after the input or listen hook appears,
however the input hook can be used for mkpeering, too, if this is convenient.
The prototype understands the generic set of control messages as well as the
following speciˇc ones:

start/stop Å allows/denies getting packets from the queue;
lstnaddr Å sets IP address and port to bind() our listen()ing

ng_ksocket;
addaddr/deladdr Å adds/deletes network IP address and port from which

connection requests should be accept()ed by our ng_ksocket;
getclrstats Å returns the current statistics (numbers of packets_out,

bytes_out and fails, elapsed and pure times) and clears it;
getstats/clrstats Å returns/clears the current statistics (the same values).
3.2.3. ng em(4) prototype. In order to implement a node with ng em(4)

functionality, described in Sec. 3, as a ˇrst step we implement some prototype,
which is able to

• launch ng_defrag node at each conˇgured input channel, which launches
client ng_ksocket node to connect() to the upstream server corresponding to
the channel;

• send requests in the form of control packets according to the working mode
(one of ®SubEvBt¯ or ®EvBt¯) that has been conˇgured;

• merge packets obtained on the input channels according to the merging
rules which have been conˇgured.

Generally (with some simpliˇcations) speaking, in the SubEvBt working
mode the prototype makes one loop over the conˇgured merging rules (and
corresponding requests) array and launches the kernel thread (see kthread(9)) for
each conˇgured index, so each thread serves only its ®own¯ request. Each thread
emits CTRL_NG_GETPACK(ptype) control packets (see also the Table) through the
hooks of the involved input channels. After that each thread waits for responses
in the form of the data packets (always means positive response) and/or answer
packets (always means negative response) up to obtaining all the required packets
or corresponding (regular) timeout expiration. If the answer packet(s) is obtained,
the thread analyses the error code(s) and either cleans the input channel storages
and sends the full request again, or repeats request(s) in the failed input channel(s)
(after either the same or increased regular timeout). If some input channel(s) does
not respond at all before regular timeout expiration, the thread analyses the state of
the responded channels and either repeats request(s) in the failed input channel(s),
or cleans the input channel storages and sends the full request again. The regular
timeout can be increased up to the limit only. If all the required data packets are
obtained, the prototype merges them into a resulting packet and sends it to the
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output hook (if any). After that the thread sets a regular timeout to the nominal
value, sends the full request again, and so on.

In the EvBt working mode the prototype makes one loop over the conˇgured
requests array and launches the kernel thread to serve each conˇgured index, too.
Each request has the so-called trigger input channel and is handled in two phases.
In the ˇrst (Trig) phase each thread emits CTRL_NG_GETPACK(ptype) control
packet (see also the Table) through the hook of the trigger input channel and waits
for a positive or negative response up to obtaining one or corresponding (trigger)
timeout expiration. If the answer packet is obtained, the thread analyses the error
code and repeats the request after either the same or increased trigger timeout.
If the trigger input channel does not respond at all before the trigger timeout
expiration, the thread repeats the request and waits during the increased trigger
timeout. The trigger timeout can be increased up to the limit only, too. If the data
packet from the trigger server is successfully obtained, the prototype extracts N
number∗ from its body and goes to the second phase, which for each request index
is handled by the same thread as the ˇrst phase. In the second (afterTrig) phase
the thread emits CTRL_NG_GETNTHPACK(N, ptype) control packets (see also the
Table) through the hooks of the involved input (other than trigger) channels
using N mentioned above and waits for positive and/or negative responses up to
obtaining all the required packets or regular timeout expiration. After that the
algorithm behaves as it is described above for the SubEvBt mode.

Note that all these working modes require servers (ng_fifo nodes) with the
support of the corresponding queue disciplines (as described in Sec. 3).

Duties between the kernel thread(s) and synchronous parts of the prototype
are separated as follows: each rcvdata() execution processes single packet,
possibly calls evmerge() or evclean(), and either sets a special �ag kth_need

and wakes the thread up, or not. So, the thread can be waken up by the external
event (ngdp packet or netgraph(4) control message arriving, etc.) or after the
timeout expiration. In the ˇrst case the thread performs some actions according to
kth_need �ag value, and sets the transition state �ag kth2state. In the second
case it performs some actions according to the kth2state �ag value and sets
it again. In both cases the thread possibly calls sendreq() and evmerge() or
evclean(), and ˇnally goes to msleep(9) with the corresponding timeout again.

We implement such nontrivial ng em(4)'s algorithm as single source able
to be compiled for both the kernel context using kthread(9) Å for production
purposes, and the user context using pthread(3) Å for debug purposes.

The scheme of the packet requests assumes that only the packets with equal
numbers can be merged. Later we generalize this approach and introduce id

∗T type is also extracted and checked against the resulting type of the corresponding merging
rule.
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mark Å some entity from the packet header to be compared (really subtracted)
for each two candidates for being merged. Up to MAX_ID of these id marks can be
conˇgured. The ˇrst added id mark is compared ˇrst. Comparison functions of
all the conˇgured ids should return zero to permit merging. In the current packet
header implementation it is reasonable to choose the following header ˇelds as id
marks:

the packet number Å id mark named "num", function cmp_num() returns
zero for equal packet numbers;

the time stamp Å id mark named "tv", function cmp_tv() returns zero if
time stamps are closer than the supplied function argument arg (in mks).

The "num" id mark is added at startup (in the node constructor) to provide
the expected node behaviour by default.

To simplify mkpeering in some situations, the ng em(4) node supports the
creat hook, which can be removed after input<N> or output hook appearing,
however the output hook can be used for mkpeering, too, if this is convenient.
The prototype understands the generic set of control messages as well as the
following speciˇc ones:

getclrstats <char *inchan> Å returns the current statistics (values of
packets_in, bytes_in and reqs) and clears it for the input channel named
<inchan>;

getstats <char *inchan>/clrstats <char *inchan> Å returns/clears
the current statistics (the same values) for <inchan>;

getclrostats Å returns the current statistics (values of packets_out,
bytes_out and fails) and clears it for the output hook;

getostats/clrostats Å returns/clears the current statistics (the same val-
ues) for the output hook;

flush Å marks buffers of all the input channels as empty;
inchan <struct ng_em_cfgentry> Å adds conˇguration entry to intro-

duce new input channel according to supplied <ng_em_cfgentry> members:
name of the input channel char *name, trigger bit int8_t trig for it (for
SubEvBt mode means nothing), IP address struct sockaddr addr to connect,
number of the request entry int8_t idx, request entry conˇguration
struct emtbl (see below), Å and mkpeers needed ng_defrag nodes;

getinchan <char *inchan> Å returns conˇguration of the <inchan> input
channel;

addcfg <struct ng_em_tblentry> Å adds the request entry to the al-
ready existing input channel according to the supplied <ng_em_tblentry> mem-
bers: name of the input channel char *name, trigger bit int8_t trig for it
(for SubEvBt mode means nothing), number of the request entry int8_t idx,
request entry conˇguration struct emtbl tbl with the uint16_t in_type,
uint16_t out_type, u_char order, and u_char number mandatory members;
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delcfg <struct ng_em_tblentry> Å deletes the already existing request
entry of the input channel <name> by <idx> or (for <idx> equals to -1) by
tbl.in_type;

getreq <int8_t idx> Å returns conˇguration of the full request with num-
ber <idx>;

delreq <int8_t idx> Å deletes conˇguration of the full request with num-
ber <idx> (equivalent to do delcfg for each input channel involved into such
request);

connect <char *mode> Å checks the already supplied input channels and
request entries conˇguration to operate in <mode> (valid are "SubEvBt" or
"EvBt"), removes the unused input channels (if any) and connects the not yet
connected ng_defrag(s) to servers according to the current conˇguration;

start <int64_t num_of_reqs> Å starts request sending by thread(s) up
to the <num_of_reqs> requests will be issued;

stop Å immediately stops the request sending;
addcmp <struct ng_em_addcmp> Å adds id mark comparison function de-

scribed by structure <ng_em_addcmp>, which supplies the function name
char *name and arguments array union arg arg_arr[];

delcmp <char *name> Å deletes id mark comparison function named
<name>;

clrcmp Å clears whole id mark(s) conˇguration;
getcmp Å returns the full current id mark(s) conˇguration;
gettrig Å returns the full current conˇguration of the trigger input channels

(for SubEvBt mode means nothing);
setsubnames <struct ng_em_subnames> Å sets naming style for

ng_defrag subnodes as deˇned by int8_t mode structure member, which can
be equal to the following values #defined in ng em.c:

SUBNAMES_NONE (does not name subnodes at all),
SUBNAMES_TYPICAL (names by corresponding inchan name Å startup

default),
SUBNAMES_UNIQUE (uses the unique node ID in name),
SUBNAMES_PREF (prepends by the supplied string),
SUBNAMES_SUFF (appends by the supplied string),

where the char *str member is a preˇx or sufˇx used by the last two modes;
setsubtype <char *type> Å sets node type is welcomed to connect as

input channel(s): default is "defrag", empty string "" means any type can
be connected, node types other than "defrag" are not launched automatically by
inchan control message, so it should be followed by the explicit connect control
message;

getsubtype Å returns the current subnode type;
settimo <struct ng_em_settimo> Å sets the timeout conˇguration ac-

cording to the supplied <struct ng_em_settimo> members: number of request
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entry int8_t idx, base timeout value int32_t t_timo (in ms) and the time-
out increasing limit factor int32_t t_f for the Trig phase (in SubEvBt mode
means nothing), the same for the afterTrig phase Å int32_t r_timo (in ms)
and int32_t r_f, limit for the number of request failures int32_t r_max;

gettimo Å returns the current timeout conˇguration as <struct

ng_em_settimo> for each existing request entry.
The ng em(4) prototype supports only one hook named output simultane-

ously, and is transparent in the counterstream direction for debug purposes Å the
data arrived through the output hook are sent ®as is¯ through the hook, which
corresponds to the input channel with zero number.

3.3. Data Processing Subsystem. Let us consider the ngdp elements used
for some data transformations.

1. Pool of events Å has the following implementation options:
• Possible pool level layout can be described by the following graph:

ng pool
↗ ng filter

↓↑
b2r

↘
ng fifo

where ng pool(4) is ng em(4) in some specialized working mode, or some sepa-
rately implemented node with a very similar functionality. This approach is im-
possible without assistance of the user context process(es) b2r(1), which converts
each obtained packet into ROOT representation of the full event
(class Event) and serializes them using class TBufferFile instances. Buffer-
ization of the serialized Events done by ng ˇfo(4) node. Additional double data
copying from the kernel to the user context and back again should be noted.

• Some server (user context process), which obtains the data packets from a
single input stream multiplexed by ng pool(4)∗, converts each packet into ROOT
representation of the full event (class Event), maintains the memory based
®pool¯ of such events, and sends the events in the form of TMessage ROOT
class instances at client requests. This pool could be a circle queue with two
possible update policies: lazy Å by last reader, or contemporary Å by data
appearing on EvB.

2. ng ˇlter(4) Å node provides the software ˇlter functionality for (sub)events
rejection, possibly located between ng em(4) and ng ˇfo(4) on SubEvB/EvB
level.

3.3.1. ng pool(4) prototype. Currently we decide to implement the pool level
functionality by ng pool(4) node separately from the very similar ng em(4). The
ˇrst stage prototype is able to

∗It issues the corresponding control packets to request data from the upstream (EvB) level.
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• launch the ng_defrag node at each conˇgured input channel, this node in
its turn launches the client ng_ksocket node, which connect()s to the upstream
server corresponding to this channel;

• send requests in the form of control packets;
• transmit all packets, accepted in input channel(s) according to the conˇgured

rules, through the output hook.
The prototype makes one loop over the requests array and launches the

kernel thread for each conˇgured index. Through the hook of each involved
input channel each thread emits CTRL_NG_COPY1OFN(ptype) control packet (see
also the Table) and waits for positive or negative responses in the form of data
or answer packet until the packet is obtained or the corresponding timeout is
expired. If the thread obtains the answer packet in some input channel, it marks
such channel to be requested again after the timeout expiration. If some input
channel does not respond in any form during the full timeout, the thread performs
the request in this channel again. If the prototype obtains the data packet in some
input channel, it sends this packet without changes to the output hook (if any),
and emits the request in this channel again.

Of course, servers (ng_fifo nodes) with the support of the corresponding
queue discipline (as described in Sec. 3) are required.

The algorithm described above like the one from ng em(4) (see Subsec. 3.2.3)
essentially requires to use kthread(9). Using the same approach as mentioned for
ng em(4) we can compile a single source for both the kernel context and the
user context. After a strong debug sessions in both contexts we are sure to have
worked out ng pool(4) algorithm implementation now. The prototype understands
the generic set of control messages as well as the following speciˇc ones:

getclrstats <char *inchan> Å returns the current statistics (values of
data_packs, data_bytes, answ_packs, answ_bytes, fails, refus and reqs)
and clears it for the input channel named <inchan>;

getstats <char *inchan>/clrstats <char *inchan> Å returns / clears
the current statistics (the same values) for <inchan>;

getclrostats Å returns the current statistics (values of packets_out,
bytes_out and fails) and clears it for the output hook;

getostats/clrostats Å returns/clears the current statistics (the same val-
ues) for the output hook;

addcfg <struct tbl>/delcfg <struct tbl> Å adds/deletes the request
entry;

getconf Å returns the full current request conˇguration;
inchan <struct ng_pool_cfgentry> Å adds the conˇguration entry to

introduce a new input channel and mkpeers needed ng_defrag node;
connect Å connects ng_defrag(s) to servers and launches/terminates threads

according to the current conˇguration of the input channels and request entries;
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delinchan <char *name> Å disconnects (if needed) and deletes the input
channel named <name> (node should be in the stop state);

start <struct ng_pool_start> Å starts request sending by thread(s)
with supplied <idx> up to the <num_of_reqs> requests will be issued, <idx>
equals to -1 activates all conˇgured thread(s);

stop <int8_t idx> Å immediately stops the request sending by thread
with <idx>;

allow <disposition> Å (re)sets allow/deny disposition of the input chan-
nels according to the supplied <disposition> array of int8_t: positive values
mean to allow the packet obtaining, negative Ä to deny, zero Ä not to change;

getallow Å returns the current allow/deny disposition for all the conˇgured
input channels;

settimo <struct ng_pool_timo>/gettimo Å sets/returns the nominal time-
out (in ms) and multiplier values.

The ng pool(4) prototype supports only one hook named output simultane-
ously. The ng pool(4) prototype transparent in the counterstream direction for
debug purposes Å the data arrived through the output hook are sent ®as is¯
through the hook, corresponding to the input channel with zero number.

3.3.2. ng ˇlter(4) prototype. As a ˇrst step of implementation a node with
ng ˇlter(4) functionality described in Sec. 3.3, some prototype is released, which
is able to

• insert itself between two already connected foreign hooks, using two own
hooks, in and out;

• restore the situation before insertion;
• stay without any hooks to allow another insertion(s);
• connect external ˇlter implementation Å (pipe of) user context process(es)∗

or (chain of) netgraph node(s) Å using two additional hooks, subout and subin;
• ˇlter nothing (dummy internal ˇlter procedure).
For initial mkpeering of ng ˇlter(4) a specialized hook creat should be

used, which will be removed automatically after successful insertion (or can be
removed manually at any time). The prototype supports the following speciˇc
control messages:

getclrstats Å returns the current statistics (in_packets, out_packets,
in_bytes, out_bytes values) and clears it for each of in, subout, subin and
out hooks;

getstats/clrstats Å returns/clears the current statistics (the same values);
insert "<path1>/<path2>" Å breaks the existing connection and connects

the own in hook to hook, represented by <path1>, and the own out hook Å to
<path2>;

∗E.g., ngget filter subout | b2r -O | ngput filter subin .
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bypass Å removes itself and reconnects peer hooks as it was before the last
insertion.

At the same time, the in (out) hook can be created separately from the
out (in) hook during the usual mkpeer or connect procedures. Note, however,
that rmhooking of the in (out) hook leads to removing the out (in) hook,
too, without peer hooks reconnection∗, that is why ng ˇlter(4)'s hook removing
should be avoided. In contrast, ng ˇlter(4)'s shutdown sequence performes such
reconnection graciously before the node is over.

As the next step we implement some kind of ®plug-in¯ mechanism which
allows us to load and unload the internal ˇlter procedures implemented as KLD
modules during the ng ˇlter(4) node runtime. Namely, the ˇlter procedure under
the name xxx should be by convention in the KLD module named flt xxx

stored in the ˇle �t xxx.ko. This module should contain a void *flt xxx ptr

variable which points to struct ng filter flt flt xxx arr[] Å container for
one or more ˇlter function∗∗ pointer(s) as well as argument(s), name(s) and some
�ags. So after fresh mkpeering the ng ˇlter(4) node instance appears without
any ˇlter procedures. After that any ˇlter procedure(s) can be registered by the
addflt control message (see below) at any time. This leads to corresponding
KLD module loading (if not yet) and ˇlter adding (if not yet) at the end of the
ˇlter procedure chain. For each netgraph(4)'s item obtained from the in hook
each chain member will be applied sequentially, starting from the beginning of
the chain, up to the ˇrst nonzero procedure return or chain end. In the former
case the item is freed, in the latter it passes through the out (or subout, if any)
hook. Each item from the subin hook (if any) passes untouched through the out
hook. Any ˇlter procedure can be deregistered by the delflt control message
(see below) at any time, which leads to ˇlter deleting from the ˇlter procedure
chain and the corresponding KLD module unloading (if no longer referred to by
anybody).

The following speciˇc control messages were added:
addflt <struct ng_filter_addflt> Å adds the ˇlter procedure with

supplied name <char *name> as the last procedure of the ˇlter chain and ˇlls
the array of its arguments from the supplied <union arg arg_arr[]>;

delflt <char *name> Å removes the ˇlter procedure named <name> (if
any) from the ˇlter chain and unloads the corresponding KLD module if no longer
used by other instance(s) of ng ˇlter(4);

getflt Å returns the array of <struct ng_filter_addflt> (the full ˇlter
chain conˇguration);

clrflt Å clears the whole ˇlter chain.

∗Due to netgraph(4)'s nature of the hook disconnection.
∗∗Prototyped as int (*fltfunc t)(item p, union arg*).
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As has already been mentioned, the user context process participation in
ˇltering will be unavoidable in some cases (e.g., events conversion to ROOT
representation). To allow a more efˇcient way for the packets to cross the
context boundaries twice Å from the kernel to the user and back again Å the
ng mm(4) node can be applied. This node can be connected to ng ˇlter(4) subout
and subin hooks by its in and out hooks, correspondingly. A user context
process can map the both buffers (for raw and converted packets) into the own
address space by mmap(2) mechanism, supported by ng mm(4)'s /dev/mmr<N>
and /dev/mmc<N> devices. After that the process can directly communicate∗ with
these buffers as with regular pieces of memory. Of course, some synchronization
is required and can be done by calling ioctl(2) to such devices before and after
the buffer reading and writing.

3.4. User Context Utilities. To simplify the data exchange between the
user and kernel context entities of the ngdp system, the ngget(1) and ngput(1)
utilities are implemented. A standard netgraph(4)'s way to do such exchange is
to communicate through ng socket(4) node, which at the same time is a socket
in the speciˇc domain. However, for speed reasons we have also implemented
ng mm(4) node, which at the same time is a UNIX device with support of the
mmap(2) mechanism. This provides us the option to read the packets from
the circle buffers allocated in the kernel directly and write them there, instead
of �owing the packets through a number of layers of the socket machinery.
The ngget(1) and ngput(1) are able to use both ng socket(4) and ng mm(4)
mechanisms. The ngget(1) reads the packets from the kernel graph and writes
them to the standard output. The ngput(1) reads the packets from the standard
input and writes them to the kernel graph.

4. CONCLUSIONS

Using the netgraph(4) system we have demonstrated a possibility of imple-
menting the data transportation and processing framework ngdp for the DAQ
system building. The ngdp is as modular, lightweight and fast as possible un-
der an ordinary UNIX-like OS. Several kernel context modules and user context
utilities for the ngdp system have been designed, implemented and debugged.
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