P13-2010-76

С. М. Пиядин^{1,*}, Т. А. Васильев¹, Ю. В. Гурчин¹, А. Ю. Исупов¹, Ю.-Т. Карачук^{1,2}, В. А. Краснов¹, А. К. Курилкин¹, П. К. Курилкин¹, В. П. Ладыгин¹, А. Н. Ливанов¹, Г. Мартинска³, С. Г. Резников¹, А. К. Семенов⁴, А. Е. Туманов⁴, А. Н. Хренов¹, М. Янек^{1,5}

$\Delta E - E$ -детектор для регистрации протонов в реакции безмезонного развала дейтрона на внутренней мишени нуклотрона-м

Направлено в журнал «Письма в ЭЧАЯ»

- ² Исследовательский институт электротехники, Бухарест, Румыния
- ³ Университет П. Й. Шафарика, Кошице, Словакия

¹ Объединенный институт ядерных исследований, Дубна

⁴ Московский государственный институт радиотехники, электроники и автоматики

⁵ Физический факультет, Университет г. Жилина, 010 26 Жилина, Словакия

^{*} E-mail: piyadin@jinr.ru

P13-2010-76

P13-2010-76

Пиядин С. М. и др. $\Delta E - E$ -детектор для регистрации протонов в реакции безмезонного развала дейтрона на внутренней мишени нуклотрона-М

Представлена конструкция $\Delta E - E$ -детектора для изучения реакции развала дейтрона на внутренней мишени нуклотрона-М в интервале энергии дейтрона 300–500 МэВ. Кратко описана система высоковольтного питания ФЭУ-63 на базе модуля Wenzel Electronik, управляемого от компьютера. Рассматривается светодиодная система мониторирования работы $\Delta E - E$ -детектора. Представлены результаты тестирования $\Delta E - E$ -детектора как на космических мюонах, так и на пучках дейтронов нуклотрона.

Работа выполнена в Лаборатории физики высоких энергий им. В. И. Векслера и А. М. Балдина ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна, 2010

Piyadin S. M. et al. $\Delta E - E$ Detector for the Registration of the Protons from the Deuteron Nonmesonic Breakup Reaction at Internal Target at Nuclotron-M

The design of $\Delta E - E$ detector for study of the deuteron breakup reaction at the internal target at Nuclotron-M in the deuteron energy interval 300–500 MeV is presented. The high voltage power system for PMTs-63 that is managed by Wenzel Electronik module with the computer control is shortly described. The light-emitting diode monitoring of the $\Delta E - E$ detector's work is considered. The results of the $\Delta E - E$ detector tests with cosmic muons and deuterons at Nuclotron are presented.

The investigation has been performed at the Veksler and Baldin Laboratory of High Energy Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 2010

введение

Главная цель проекта DSS (Deuteron Spin Structure) — расширение энергетического и углового диапазонов в измерениях различных наблюдаемых для процессов, включающих трехнуклонные системы. Целью экспериментальной программы проекта DSS является получение информации о спинзависимой части трехнуклонных сил из двух процессов: *dp*-упругого рассеяния и *dp*развала с регистрацией двух протонов при промежуточных и высоких энергиях.

Экспериментальные данные по дифференциальному сечению и дейтронным анализирующим способностям для широкого диапазона фазового пространства были получены при энергии 130 МэВ в KVI [1]. Результаты показывают чувствительность поперечного сечения к спиновой структуре трехнуклонных сил. Теоретические расчеты для реакции безмезонного развала дейтрона, выполненные при энергии 400 МэВ [2], предсказывают, что дифференциальное сечение и тензорная анализирующая способность для различных кинетических конфигураций также чувствительны к вкладу трехнуклонных сил.

Целью данной работы была разработка $\Delta E - E$ -детектора на основе пластических сцинтилляторов и ФЭУ для изучения реакции развала дейтрона с энергией до 500 МэВ. В работе приведены конструкция детектора, схема делителя напряжения для ФЭУ-63, а также результаты тестирования детекторов на космических мюонах и пучке.

1. СЦИНТИЛЛЯЦИОННЫЙ $\Delta E - E$ -ДЕТЕКТОР

Для изучения реакции развала дейтрона с регистрацией двух протонов будут использоваться восемь детекторов $\Delta E - E$ -типа. Схематический вид детектора приведен на рис. 1, δ .

Детектор $\Delta E - E$ состоит из двух сцинтилляторов ΔE и E. Первый имеет цилиндрическую форму с высотой 10 мм и диаметром 80 мм. Данный сцинтиллятор просматривается двумя ФЭУ-85, расположенными друг

1

Рис. 1. *а*) Вид пластического сцинтиллятора ΔE -детектора. δ) Общий вид $\Delta E - E$ -детектора для изучения реакции dp-развала. ϵ) Модификация светодиода

напротив друга. Для увеличения площади соприкосновения фотокатода каждого из ФЭУ-85 на сцинтилляторе были сделаны проточки, которые потом были отполированы (рис. 1, *a*). ΔE -сцинтиллятор покрыт белой бумагой. *E*сцинтиллятор также имеет цилиндрическую форму высотой 200 мм и диаметром 100 мм. В качестве светоприемника для *E*-сцинтиллятора был использован ФЭУ-63, обладающий необходимым для эксперимента размером фотокатода (100 мм) и хорошими временными и амплитудными свойствами. *E*-сцинтиллятор также был обернут белой бумагой. Торцевая часть сцинтиллятора, примыкающая к ΔE -сцинтиллятору, была покрыта черной бумагой, чтобы исключить возможность попадания света от одного сцинтиллятора к другому.

Все элементы представленного счетчика расположены в светонепроницаемом металлическом кожухе. Все ФЭУ и делители установлены на пружинах, что позволяет достичь хорошего контакта ФЭУ со сцинтилляторами.

Для достижения надежной корреляции амплитуд ΔE - и E-детекторов необходимо обеспечить стабильность коэффициента усиления ФЭУ и исключить влияние шумов, возникающих в умножителе [3,4].

2. ДЕЛИТЕЛЬ НАПРЯЖЕНИЯ ДЛЯ ФЭУ-63

Для эффективной регистрации сигналов с фотоэлектронного умножителя необходимо обеспечить высокую стабильность напряжений питания катода и динодов ФЭУ. Обычно в схемах питания применяются делители на линейных резисторах или нелинейных элементах (стабилитронах или транзисторах). В случае использования линейных резисторов средняя частота повторения выходных импульсов ограничивается величиной среднего тока динодов на уровне 30–40 от тока делителя [3,5].

Недостатками использования нелинейных элементов является необходимость подбора стабилитронов, а также непропорциональность изменения

Рис. 2. Делитель ФЭУ-63

междинодных потенциалов при регулировке напряжения питания [6]. Кроме этого, если необходимо использовать несколько счетчиков, приходится либо подбирать ФЭУ с одинаковыми режимами, либо ставить их в неоптимальные режимы питания.

Для удобства работы с детекторами $\Delta E - E$ использовался резистивный делитель напряжения ФЭУ-63 без подпитки последних каскадов, приведенный на рис. 2.

300-кОм резистор в цепи катода ФЭУ-63 «гасит» возникающие иногда импульсы большой амплитуды, которые могут вывести из строя входную цепь формирователя. Наличие трех фокусирующих электродов у ФЭУ-63 позволило вывести средний из них на седьмой динод. При увеличении потенциала относительно катода увеличивалась вероятность возникновения генерации ФЭУ.

Резисторы на последних динодах демпфируют паразитные колебательные контуры (улучшают форму импульса). Конденсаторы между последними динодами, используемые в данном делителе, служат только для улучшения формы импульса. Резистор номиналом 1 кОм между анодом и землей предназначен для защиты входной цепи формирователя. Светодиод информирует о наличии тока в делителе.

3. СИСТЕМА ВЫСОКОВОЛЬТНОГО НАПРЯЖЕНИЯ ДЛЯ ФЭУ

Управление высоковольтным напряжением цифровых делителей ФЭУ-85 осуществляется с помощью модуля, соединенного с компьютером через шину RS232. Этот модуль был разработан в ЛФВЭ ОИЯИ [7]. Система

Рис. 3. Блок-схема системы высоковольтного питания ФЭУ-63 на базе модулей «Wenzel Electronik»: ЦАП — 8-канальный 12-разрядный цифроаналоговый преобразователь (8DAC-12). АЦП — 8-канальный 14-разрядный аналого-цифровой преобразователь (8ADC-14)

высоковольтного питания ФЭУ-63 основана на модуле Wenzel Electronik, напряжение которого управляется и контролируется с помощью ЦАП и двух АЦП-модулей КАМАК [8] (рис. 3). Использование двух модулей АЦП позволило контролировать как напряжение, так и ток, проходящий через делитель ФЭУ-63. Для управления и контроля высоким напряжением модуля Wenzel Electronik в режиме on-line был использован пакет MIDAS [9].

4. СВЕТОДИОДНАЯ СИСТЕМА $\Delta E - E$ -ДЕТЕКТОРА

Для мониторирования работы $\Delta E - E$ -детектора в конструкцию счетчика введена светодиодная импульсная система мониторирования работы детекторов на базе генератора ГСД-712. Светодиодный генератор ГСД-712 разработан в ЛФВЭ ОИЯИ. На рис. 4 представлены амплитуды сигналов ФЭУ-63, полученные с помощью светодиода и от космических мюонов соответственно. Можно видеть, что распределения амплитуд импульсов от светодиода и от минимально ионизирующей частицы близки по форме. Для каждого сцинтиллятора был использован индивидуальный светодиод, линза которого была сточена и отполирована для увеличения площади соприкосновения его со сцинтилятором (рис. 1, ε).

С помощью светодиодной системы были измерены вольт-амплитудные зависимости для Φ ЭУ-85 и Φ ЭУ-63 (рис. 5). Данные были получены при изменении напряжения с шагом 10 В для Φ ЭУ-85 и 25 В — для Φ ЭУ-63. Для каждой точки по напряжению полученные распределения амплитуды фитировались распределением Гаусса для определения наиболее вероятного значения амплитуды. На рис. 5, *а* видно, что при значениях напряжения выше 1000 В Φ ЭУ-85 работают в режиме насыщения. Во время набора данных на пучке дейтронов для Φ ЭУ используются напряжения ниже данного значения.

Рис. 4. Амплитуды сигнала ФЭУ-63, полученные с помощью светодиода (a) и от космических мюонов (δ) соответственно

Рис. 5. а) Результаты, полученные на светодиодах для двух ФЭУ-85, б) — для ФЭУ-63

Разработанная светодиодная система эффективно использовалась для настройки и мониторирования стабильности работы $\Delta E - E$ -детектора во время набора данных.

5. ТЕСТИРОВАНИЕ ДЕТЕКТОРОВ $\Delta E - E$ НА КОСМИЧЕСКИХ МЮОНАХ

При тестировании на космических лучах $\Delta E - E$ -детектор был расположен вертикально. Снизу от него был установлен дополнительный детектор со сцинтиллятором цилиндрической формы, диаметр и высота которого составляли 100 и 20 мм соответственно. Для съема информации с данного сцинтиллятора был использован ФЭУ-85. Блок-схема установки для тестирования представлена на рис. 6.

Сформированные сигналы с двух ФЭУ-85 (один из которых является стартом для ВЦП) заведены на одну схему совпадений, сигнал с выхода которой поступает на вход триггерного модуля LT320D. Сигналы с ФЭУ-63 и дополнительного детектора также были заведены на вход схемы совпадений, сигнал с выхода которой поступал на второй триггерный вход модуля LT320D.

Рис. 6. Блок-схема установки для тестирования $\Delta E - E$ -детектора на космических мюонах: Ф — формирователь сигнала 4Ф-115, СС — схема совпадения 2СС-1511. ВЦП — четырехканальный ВЦП-369, АЦП — четырехканальный ЗЦП-397, LT320D — тригтерный модуль

Рис. 7. Результаты тестирования $\Delta E - E$ -детектора на космических мюонах: *a*) амплитуда с одного из ФЭУ-85 $\Delta E - E$ -детектора; *б*) амплитуда с ФЭУ-63; *в*) корреляция этих двух амплитуд; *г*) разница времен прихода сигналов для ФЭУ-85 и ФЭУ-63

6

Модуль LT320D позволяет управлять мажоритарной схемой совпадений в режиме on-line. Данный модуль разработан в ЛФВЭ ОИЯИ. Использование дополнительного детектора позволило полностью избавиться от мюонов, траектория которых проходила через боковую поверхность *E*-сцинтиллятора.

Амплитуды сигналов с ФЭУ-85, ФЭУ-63 и корреляция этих амплитуд, полученные на космических мюонах, представлены на рис. 7.

6. ТЕСТИРОВАНИЕ $\Delta E - E$ -ДЕТЕКТОРОВ НА ПУЧКЕ ДЕЙТРОНОВ

На рис. 8 представлена блок-схема установки для включения $\Delta E - E$ детектора в экспериментах с пучками дейтронов.

В эксперименте использовали два $\Delta E - E$ -детектора, расположенных с внутренней и с внешней стороны ионопровода нуклотрона. В сеансе использовалась система сбора данных стандарта КАМАК, основанная на тригтерном модуле LT320D [10]. Результаты тестирования $\Delta E - E$ -детекторов, полученные на внутренней мишени на пучке дейтронов с энергией 2 ГэВ, представлены на рис. 9.

В 40-м сеансе нуклотрона при импульсе дейтронов 3,5 ГэВ/c на углеродной мишени был проведен набор данных с использованием четырех $\Delta E - E$ -детекторов, расположенных под различными углами друг к другу.

Определение кинематических переменных для реакции развала дейтрона показано на рис. 10. Плоскость XZ — горизонтальная плоскость, в которой находится налетающий дейтрон. Плоскость XY перпендикулярна импульсу налетающего дейтрона. На данном рисунке не изображена траектория вылетающего нейтрона. Θ_1 и Θ_2 являются полярными углами двух протонов в

Рис. 8. Схема съема информации в экспериментах с пучками дейтронов на нуклотроне с $\Delta E - E$ -детектора: Ф — формирователь сигнала 4Ф-115, СС — схема совпадения 2СС-1511, ВЦП — четырехканальный ВЦП-369, АЦП — четырехканальный ЗЦП-397, LT320D — тригерный модуль

Рис. 9. Результаты тестирования $\Delta E - E$ -детектора на пучке дейтронов: *a*) амплитуда с одного из ФЭУ-85; *б*) амплитуда с ФЭУ-63; *в*) корреляция этих двух амплитуд; *г*) разница времен между ФЭУ-85 и ФЭУ-63

Рис. 10. Определение кинематических переменных для реакции развала дейтрона

Рис. 11. Корреляция амплитуд *E*-детекторов для четырех различных кинематических конфигураций $\Delta E - E$ -детекторов. *a*) $\Theta_1 = 19^\circ$, $\Theta_2 = 28^\circ$, $\Phi_{12} = 180^\circ$; *b*) $\Theta_1 = 19^\circ$, $\Theta_2 = 41^\circ$, $\Phi_{12} = 35^\circ$; *b*) $\Theta_1 = 19^\circ$, $\Theta_2 = 55^\circ$, $\Phi_{12} = 142^\circ$; *c*) $\Theta_1 = 28^\circ$, $\Theta_2 = 41^\circ$, $\Phi_{12} = 145^\circ$; *d*) $\Theta_1 = 28^\circ$, $\Theta_2 = 55^\circ$, $\Phi_{12} = 38^\circ$; *e*) $\Theta_1 = 41^\circ$, $\Theta_2 = 55^\circ$, $\Phi_{12} = 107^\circ$

продольной плоскости XZ, а Φ_{12} — угол между $P_{1\perp}$ и $P_{2\perp}$ в поперечной плоскости.

Набор данных осуществлялся с помощью системы сбора данных на базе VME-стандарта. Результаты по корреляциям амплитуд E-детекторов представлены на рис. 11. Наблюдаемая четкая корреляция всех четырех $\Delta E - E$ -детекторов различных кинематических конфигураций свидетельствует о их надежной работе.

ЗАКЛЮЧЕНИЕ

Разработан и создан $\Delta E - E$ -детектор для изучения реакции развала дейтрона.

В конструкции $\Delta E - E$ -детектора использована система светодиодного мониторирования работы счетчика.

Выполнен ряд тестов $\Delta E - E$ -детекторов как на космических мюонах, так и на пучке дейтронов нуклотрона.

Продемонстрирована надежная работа детектирующий аппаратуры для эксперимента по изучению безмезонного развала дейтрона.

Работа была частично поддержана грантом для молодых ученых ОИЯИ и грантами РФФИ (№ 07-02-00102а и № 10-02-00087а).

ЛИТЕРАТУРА

- Kistryn St. et al. Systematic Study of Three-Nucleon Force Effects in the Cross Section of the Deuteron-Proton Breakup at 130 MeV // Phys. Rev. 2005. V. C72. P. 044006.
- Kuros-Zolnierczuk J. et al. Three-Nucleon Force Effects in Nucleon Induced Deuteron Breakup. 1. Predictions of Current Models // Phys. Rev. 2002. V. C66. P. 024003.
- 3. Цитович А. П. Ядерная электроника. М.: Энергоатомиздат, 1984.
- 4. Абрамов А. И., Казанский Ю. А., Матусевич Е. С. Основы экспериментальных методов ядерной физики. М.: Энергоатомиздат, 1985.
- 5. Басиладзе С.Г., Иванов В.И. Питание ФЭУ для работы с частотой 100 МГц. Сообщение ОИЯИ 13-9172, Дубна, 1975.
- 6. Атанасов И.Х., Русанов И.Р. Источник высоковольтного напряжения для питания ФЭУ // Письма в ЭЧАЯ. 2000. № 3[100]. С. 62–67.
- 7. http://hvsys.dubna.ru
- Pilyar A. V. Multichannel High Voltage System for the Detection System of LNS-Project // NEC2009 — XXII International Symposium on Nuclear Electronics and Computing, Varna. E10,11-2010-22, Dubna, 2009. P. 186–191.
- 9. http://midas.psi.ch
- Isupov A. Yu. Upgrade of the DAQ Systems for the LHE Polarimeters to Support Vector-Tensor Polarimeter on the Nuclotron Internal Target // Czech. J. Phys. Suppl. 2006. V. C56. P. 385–392.

Получено 22 июня 2010 г.

Редактор М. И. Зарубина

Подписано в печать 09.08.2010. Формат 60 × 90/16. Бумага офсетная. Печать офсетная. Усл. печ. л. 0,81. Уч.-изд. л. 1,02. Тираж 325 экз. Заказ № 57060.

Издательский отдел Объединенного института ядерных исследований 141980, г. Дубна, Московская обл., ул. Жолио-Кюри, 6. E-mail: publish@jinr.ru www.jinr.ru/publish/