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INTRODUCTION

It was the paper by A. Siegman [1] published in the magazine Optics &
Photonics News (OPN) that inspired us for this work. In [1] it was claimed
that re�ectivity at total internal re�ection (TIR) is less than unity for both cases
of lossy and gainy re�ecting media. Below we will show that it is not true.
Some comments on this were already published in [2], though OPN rejected
detailed explanation of our disagreement. During preparation of the paper with
careful analysis of re�ectivities from lossy or gainy media we were stricken by
an idea that this matter can be easily checked by an experiment, if one uses
multiple re�ections of light in whispering gallery mode (WGM) in a glass sphere
immersed in an active medium. In that case the intensity of WGM light will grow
up with number of re�ections exponentially. At the same time, bearing in mind
a model of the ball lightning [3], as a spherical bubble with thin walls ˇlled with
photons, we found that such an experiment can be a ˇrst step to investigation of
such a model.

Below we remind the elements of Maxwell electrodynamics and of electro-
magnetic waves, show how re�ection and refraction amplitudes for an interface
between two dielectric media are obtained, show why the claims of [1] cannot
be true, and estimate outcome of the proposed experiment. We also add some
comments on spherical harmonics analysis and on usual deˇnition of energy �ux
with the help of the Pointing vector.

1. MAXWELL EQUATIONS AND ELECTROMAGNETIC WAVES

Light re�ection from an interface between two media is determined by the
wave equation and the boundary conditions, which follow from Maxwell's equa-
tions. We consider Maxwell's equations in media without free charges, with zero
conductivities σ and time-independent permittivities ε, μ:

−[∇× E(r, t)] = μ
∂

∂t
H(r, t), (1)
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[∇× H(r, t)] = ε
∂

∂t
E(r, t), (2)

∇ · εE(r, t) = 0, ∇ · μH(r, t) = 0. (3)

In a homogeneous medium the parameters ε and μ are constant in space, and the
last two equations simplify to

∇ ·E(r, t) = 0, ∇ ·H(r, t) = 0. (4)

With the help of (1), (2) and (4) we can obtain the wave equations for the ˇelds
E(r, t) and H(r, t) as follows.

The time derivative of both parts of (2), taking into account (1), gives

−[∇× [∇× E(r, t)]] = με
∂2

∂t2
E(r, t), (5)

which, with the help of (4), is reduced to the well-known wave equation for the
electric ˇeld E(r, t):

ΔE(r, t) = −με
∂2

∂t2
E(r, t). (6)

Similarly, the time derivative of both parts of (1) along with (2) and (4) gives
wave equation for the magnetic ˇeld H(r, t):

ΔH(r, t) = −με
∂2

∂t2
H(r, t). (7)

Both equations have solutions in the form of a plain wave

E(r, t) = E exp (ikr − iωt), H(r, t) = H exp (ikr − iωt). (8)

By placing these solutions into the wave equations we ˇnd that k2 = εμω2 =
ω2/c2, where c = 1/

√
εμ is the speed of light in the medium.

The two wave equations are independent, and for a given frequency and
direction of propagation, the total electromagnetic ˇeld is representable by the
wave function

ψ(r, t) = (E + H) exp (ikr − iωt). (9)

However, the wave equations are derived from Maxwell's equations, and substi-
tution of (8) for E(r, t) into (1) shows that

H =
1

μω
[k × E], (10)

or similarly, substitution of (8) for H(r, t) into (2) gives

E = − 1
εω

[k × H]. (11)
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Therefore, E and H are not independent and are orthogonal to k and to each
other. Moreover, if |E| = 1, the length of H is |H| =

√
ε/μ = 1/Z, where

Z =
√

μ/ε is called a medium impedance.
In the next section we consider the re�ection of the light wave from an

interface between two media, when the re�ecting medium is lossy or gainy, ˇnd
peculiarities of the re�ection amplitudes, prove that the TIR re�ection coefˇcient
for gainy re�ecting medium is larger than unity and propose an experiment for
strong enhancement of light ˇeld.

2. WAVE REFLECTION AND REFRACTION AT AN INTERFACE

If space is not completely homogeneous but consists of two halves with
different ε and μ, we cannot replace (3) with (4), because the permittivities now
depend on the coordinates. However, each half is homogeneous and each part
has its own wave equation with its own plain wave solution. The transmission
through an interface is similar to travelling through a border between two countries
where certain rules are imposed. In case of two media, the rules are imposed by
Maxwell's equations. According to these rules, the transmission is allowed only
if (according to (2) and (1)) components E‖(r, t), H‖(r, t) of the ˇelds E(r, t),
H(r, t) parallel to the interface are the same, and (according to (3)) the products
ε(n · E(r, t)), μ(n · H(r, t)), where n is a unit vector normal to the interface,
are the same on both sides of the border/interface. Because of these restrictions
only a fraction (refracted, or transmitted) of the incident wave is permitted to go
through the border, and the remaining part (re�ected) is ordered to go back. So,
before starting our journey we should calculate how much of the incident wave (9)
is transmitted and how much is re�ected at an interface between the half-space
1 at z < 0 and the half-space 2 at z > 0, which have different electromagnetic
constants ε1,2 and μ1,2. We can expect that the total wave function in the presence
of the interface is

ψ(r, t) = Θ(z < 0)(exp (ik1r − iωt)ψ1 + exp (ikrr− iωt)ψrρ)+
+ Θ(z > 0) exp(ik2r − iωt)ψ2τ, (12)

where the term exp (ik1r − iωt)ψ1 with the wave vector k1 describes the plain
wave incident on the interface from medium 1, factors ψi = Ei +Hi (i = 1, r, 2)
denote sum of electric and magnetic polarization vectors, kr,2 are wave vectors
of the re�ected and transmitted waves, ρ, τ are the re�ection and transmission
amplitudes respectively, and Θ(z) is the step function, which is equal to unity
when inequality in its argument is satisˇed, and to zero otherwise.

The wave vectors kr,2 of the re�ected and refracted waves are completely
determined by the wave vector k1 of the wave incident on the interface from
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medium 1. It is determined uniquely by the constants εi, μi, and by the fact
that the frequency ω and the part k‖ of the wave vectors parallel to the interface
must be identical for all the waves. In the following we assume that medium 1
is lossless, i.e., ε1μ1 is real. In this case, all the components of the wave vector
k1 are also real.

Frequency of all the waves is the same because re�ection and refraction are
elastic scattering processes. Vector k‖ is constant because the space along the
interface is homogeneous and there are no points where k‖ could change. Thus,
the length of the refracted wave vector is |k2| = ω

√
ε2μ2, which can also be

written as

|k2| = ω
√

ε1μ1

√
ε2μ2

ε1μ1
= k1n = k1

√
ε, (13)

where n is the relative refractive index,

n =
√

ε2μ2

ε1μ1
(14)

and where ε = n2.
Because k‖ is the same for all the waves, and medium 1 is isotropic, the

re�ection is specular. Therefore, the normal component of the re�ected wave

vector is kr⊥ = −k1⊥ = −
√

k2
1 − k2

‖. The normal component of the refracted

wave vector, when the re�ecting medium is also isotropic, can be represented as

k2⊥ =
√

ε2μ2ω2 − k2
‖ =

√
ε1μ1ω2 − k2

‖ − (ε1μ1 − ε2μ2)ω2 =

=
√

k2
1⊥ − (ε1μ1 − ε2μ2)ω2, (15)

or

k2⊥ =
√

εk2
1 − k2

‖. (16)

From the last expression it follows that for lossless media when 0 < ε < 1 is real,
the incident wave, for which k‖ is within nk1 � |k‖| � k1, is totally re�ected
from the interface. This happens because

k2⊥ = iK ′′
2⊥ ≡ i

√
k2
‖ − εk2

1 , (17)

the factor exp (ik2⊥z) = exp (−K ′′
2⊥z) of the wave exp(ik2r) exponentially

decays, and the refracted wave becomes an evanescent one. Therefore, the energy
does not �ow inside medium 2, and due to energy conservation it must be totally
re�ected back into medium 1.
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If medium 2 is lossy or gainy, the constant ε is a complex quantity ε =
ε′ ± iε′′, with positive ε′ and ε′′. In this case, far outside the total internal
re�ection (TIR) region (|k‖|2 � ε′k2

1) for small ε′′ (ε′′k2
1 � ε′k2

1−|k‖|2) we have

k2⊥ =
√

ε′k2
1 − |k‖|2 ± iε′′k2

1 = k′
2⊥ ± ik′′

2⊥, (18)

where

k′
2⊥ ≈

√
ε′k2

1 − |k‖|2, k′′
2⊥ ≈ ε′′

k2
1

2k′
2⊥

. (19)

The sign of the square root in (18) is positive, because k′
2⊥ must be positive to

describe propagation of the refracted wave away from the interface. At the same
time we see that for lossy media the imaginary part should have positive sign to
get the exponential decay of the refracted wave; and for gainy media it should
have negative sign to get exponential growth of the refracted wave. In this case,
the exponential growth is determined by value of the gain ε′′.

At the TIR regime, k′
2⊥ in (18) transforms into iK ′′

2⊥, where K ′′
2⊥ ≈√

|k‖|2 − ε′k2
1 , and k′′

2⊥ in (19) transforms to

k′′
2⊥ → −iK ′

2⊥ = ε′′
k2
1

2iK ′′
2⊥

. (20)

Therefore, at TIR

k2⊥ =
√
−(|k‖|2 − ε′k2

1) ± iε′′k2
1 = ±K ′

2⊥ + iK ′′
2⊥, (21)

where

K ′
2⊥ = ε′′

k2
1

2K ′′
2⊥

, K ′′
2⊥ ≈

√
|k‖|2 − ε′k2

1 . (22)

Because of (12) the refracted wave function becomes

∝ exp (ik‖r‖) exp (−K ′′
2⊥z ± iK ′

2⊥z). (23)

The sign before the square root in (21) deˇnes the exponential decay of the
refracted wave away from the interface for both lossy and gainy media cases.
However, the real parts of k2⊥ have opposite signs. The positive value of K ′

2⊥
for lossy medium means that the re�ection coefˇcient at TIR is less than one,
because part of the energy �ux proportional to K ′

2⊥ enters medium 2 and decays
there. The negative value of K ′

2⊥ for gainy medium means that the re�ection
coefˇcient at TIR is larger than one, because part of the energy �ux proportional
to K ′

2⊥ exits medium 2 and adds to the TIR wave.
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Here we can show what is not correct in [1]. For gainy media A. Siegman
instead of (21) took

k2⊥ =
√
−(|k‖|2 − ε′k2

1) − iε′′k2
1 = K ′

2⊥ − iK ′′
2⊥, (24)

because he suggested that K ′
2⊥ gives the �ux inside the medium, and this �ux

exponentially increases in the gainy medium. However, exponential growth
exp (K ′′

2⊥z) of the ˇeld does not depend on value of ε′′, and even for inˇnitesimal
ε′′ the refracted wave function at a distance ∼ 1 mm from the re�ecting interface
for light with wave length ∼ 1 μm becomes of the order ∼ exp (103) 
 10100

which is astronomically large and completely violates the energy conservation law.
2.1. Re�ection and Refraction Amplitudes. The procedure for calculating

the re�ection amplitude in general case is well explained in [4], so here we
only brie�y recall it. The polarization E1 of the incident wave can be arbitrary
(except it must be perpendicular to the wave vector k1). It can be decomposed
as E = E1s + E1p, where E1s is the component parallel to the interface and
perpendicular to the plane of incidence (plane of vectors k1 and the normal n to
the interface), and where E1p lies in the plane of incidence. Re�ection of each
component is different and can be found independently.

Let's ˇnd the re�ection of the wave E1s. It is usually called s-wave or
TE wave. The ˇeld E1s is accompanied by the ˇeld H1p, which lies in the
incidence plane. The total wave function of the TE wave according to (12) can
be represented as exp(ik‖r‖ − iωt)ψ(z), where

ψ(z) = Θ(z < 0)[ψ1s exp (ik1⊥z) + ψrsρs exp (−ik1⊥z)]+
+ Θ(z > 0)ψ2sτs exp (ik2⊥z), (25)

and for i = 1, r, 2 we introduced notations

ψis = E1s + Hip, Hip =
1

μiω
[ki × E1s], μr = μ1. (26)

The corresponding wave vectors are

k1 = k‖ + nk1⊥, kr = k‖ − nk1⊥, k2 = k‖ + nk2⊥. (27)

Maxwell's equations require continuity of the electric ˇeld Es at the interface,
which leads to the equation 1 + ρs = τs. The same requirement for the com-
ponent H‖p of the magnetic ˇeld parallel to the interface leads to the equation
(1 − ρs)k⊥1/μ1 = τsk⊥2/μ2. The third requirement for the continuity of the
quantity μ(n · Hp) leads to the same equation 1 + ρs = τs as the one obtained
from the continuity of Es. Therefore, we have only two independent equations,
from which we obtain the well-known Fresnel formulas

ρs =
μ2k1⊥ − μ1k2⊥
μ2k1⊥ + μ1k2⊥

, τs =
2μ2k1⊥

μ2k1⊥ + μ1k2⊥
. (28)
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Similar considerations of the TH wave with E1p polarization gives the other
two expressions

ρp =
ε2k1⊥ − ε1k2⊥
ε2k1⊥ + ε1k2⊥

, τp =
2ε2k1⊥

ε2k1⊥ + ε1k2⊥
. (29)

For simplicity, we limit ourselves only to TE case and assume that μ2 = μ1, so
the formulas (28) are reduced to

ρs =
k1⊥ − k2⊥
k1⊥ + k2⊥

, τs =
2k1⊥

k1⊥ + k2⊥
. (30)

Substitution of (21) for the gainy medium shows that at TIR the re�ection coef-
ˇcient from a gainy medium is larger than one, and it increases with gain. The
growth of the re�ection coefˇcient is the result of the induced by the evanes-
cent ˇeld emission of photons toward the interface. The induced photon at TIR
regime cannot propagate inside the re�ecting medium for the same reasons as
the refracted photon cannot propagate in it. Therefore, the increase in the re-
�ected �ux is due to the sub-barrier induction of the photon, which tunnels from
the gainy medium into medium 1 and coherently adds to the re�ected primary
photon. The larger is the gain, the larger is the probability of such a process.

3. AN EXPERIMENT TO STRONGLY ENHANCE THE LIGHT TRAPPED
IN A GLASS SPHERE

Schematics of the experiment

The increase of the re�ection coefˇcient at TIR
from a gainy medium can be used to develop a curi-
ous experiment for storage and ampliˇcation of light.
Imagine a glass sphere with a coupler P , as shown
in the ˇgure. The sphere has thin walls (it is also
possible to use a homogeneous glass sphere) and is
surrounded by an excited gas (or other active media).
The ray of light, shown by the thin line, enters the
glass walls through the coupler and then undergoes
TIR multiple times. At every re�ection the light is
ampliˇed according to the analysis in the previous
section. In the end the ray escapes the sphere, as
shown by the thick line. The ampliˇcation depends on the number of re�ections
and on the gain coefˇcient of the active medium. The number of the re�ections
is very sensitive to the angle of the incident ray. If the overall ampliˇcation is
sufˇciently high, the glass will melt into a liquid bubble with a thin skin ˇlled
with the light, similar to the ball lightning [3,5].
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We can estimate the magnitude of the light enhancement in such a sphere.
Assume that the outside gas has ε2 ≈ 1− iα, and ε1 of the glass has a real value.
We suppose that radius R of the sphere is much larger than the wave length of
the light, so we can neglect curvature of the surface at the re�ection points and
use plane geometry for calculation of re�ectivity. For the TE mode, the re�ection
amplitude at TIR according to (30) can be written as

ρs =
k1⊥ − i

√
(ε1 − 1 + iα)k2 − k2

1⊥
k1⊥ + i

√
(ε1 − 1 + iα)k2 − k2

1⊥
≈ k1⊥ − iK2⊥ + αk2/2K2⊥

k1⊥ + iK2⊥ − αk2/2K2⊥
, (31)

where K2⊥ =
√

(ε1 − 1)k2 − k2
1⊥, and the last equality is valid for small α.

From (31) it follows that the re�ectivity is

|ρs|2 =
[k1⊥ + αk2/2K2⊥]2 + K2

2⊥
[k1⊥ − αk2/2K2⊥]2 + K2

2⊥
≈ 1 + 2α

k1⊥k2

K2⊥(k2
1⊥ + K2

2⊥)
=

= 1 + 2α
k1⊥

K2⊥(ε1 − 1)
. (32)

For the TH mode,

ρp =
ε2k1⊥ − ε1k2⊥
ε2k1⊥ + ε1k2⊥

≈ (1 − iα)k1⊥ − iε1K2⊥ + αε1k
2/2K2⊥

(1 − iα)k1⊥ + iε1K2⊥ − αε1k2/2K2⊥
, (33)

and

|ρp|2 =
[k1⊥ + αε1k

2/2K2⊥]2 + (αk1⊥ + ε1K2⊥)2

[k1⊥ − αε1k2/2K2⊥]2 + (αk1⊥ − ε1K2⊥)2
≈

≈ 1 + 2αε1
k1⊥
K2⊥

k2 + 2K2
2⊥

k2
1⊥ + ε21K

2
2⊥

. (34)

For estimating purposes we can assume that each re�ection ampliˇes the light
by ≈ 1 + 2α. It means that after n re�ection the intensity will increase
∝ (1 + 2α)N ≈ exp (2Nα). In sphere of radius R the �ight time of light
between 2 consecutive collisions with the wall is t1 = 2R sin θ/c, where θ is the
grazing angle. Therefore, the exponential growth exp (2Nα) of intensity I of the
light can be also represented as

I/I0 = exp [(tc/R)α/ sin θ] = exp (t/τ), (35)

where I0 is the primary intensity, and 1/τ = cα/R sin θ.
The following analysis is used to estimate α. Enhancement of a laser wave

along a path l inside a gainy media is described by the exponent exp (2k′′l), where
k′′ is the imaginary part of the wave number of the wave, and value g = 2k′′ is
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called the gain coefˇcient. In medium with ε = 1 − iα, the gain coefˇcient is
g ≈ αk = 2πα/λ, where λ is the wavelength. For N2,CO2 gas lasers, the gain
coefˇcient is approximately 10−2 cm−1 [6]. For λ/2π � 10−4 cm we obtain
α = 10−6. Therefore, the number of the re�ections off the interface should be
larger than N = 106 to obtain any practical light ampliˇcation.

In the past, many experiments were performed with the whispering gallery
mode resonators (WGMR) of small dimensions (R ∼ 1 mm) and large Q-factors
(up to Q ∼ 1010) [7], where light undergoes large number N ∼ Q total internal
re�ections. If a sphere of radius R = 10 cm is submerged into an active medium
with α ∼ 10−7, then at θ = 0.1 we obtain 1/τ = 3 · 103 s−1 in (35). Therefore,
the initial energy of say 10−19 J after t = 20 ms will grow up to 10 MJ. The
stored photons will heat and melt the resonator, but the electrostriction will hold
the melted substance together. One can expect to see many interesting nonlinear
phenomena in such systems.

3.1. Derivation of the Energy Increase with the Help of Spherical Harmon-
ics. In [7,8] and many other works with microspheres an analysis with spherical
harmonics is used. It means that TE or TH ˇeld in and out of the sphere is
represented by

ψ(r, t) = exp (−iωt)Yl,m(θ, φ)Fl(r), (36)

where Yl,m(θ, φ) are the usual spherical harmonics, and the radial function Fl(r)
can be represented as

Fl(r) = Θ(r < R)jl(nk0r) + Θ(r > R)
jl(nk0R)

h
(1)
l (n′k0R)

h
(1)
l (n′k0r), (37)

where jl(kr), h
(1)
l (k′r) are spherical Bessel and Hankel functions respectively,

n, n′ are refraction indices inside and outside the sphere, k0 = ω/c and the factor

before h
(1)
l (n′k0r) provides continuity of the function Fl(r) at r = R.

The second boundary condition, say, for TE ˇeld is

d

dr
jl(nk0r)r=R =

jl(nk0R)

h
(1)
l (n′k0R)

d

dr
h

(1)
l (n′k0r)r=R. (38)

This condition determines values of k0 for which solution in the form (37) is
possible.

However, such an approach is not appropriate for trapped light, because
outside function must be evanescent, while spherical Hankel functions are not.
For description of the trapped light in WG mode, which is distributed closely to
the sphere radius R and corresponds to l 
 1, we can use expansion [9]

l2

r2
≈ l2

R2
− 2(r − R)

l2

R3
, (39)
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treat the linear term as a perturbation, and then in the simplest approximation the
radial equation becomes

(
d2

dr2
+ εk2 − l2

R2

)
Fl(r) = 0. (40)

Its solution is

Fl(r) = Θ(r < R) sin (krr) + Θ(r > R) sin (krR) exp (−Kr(r − R)), (41)

where kr ≈
√

εk2
0 − l2/R2, Kr =

√
(ε − ε′)k2

0 − k2
r . To get WGM we should

have ε′ < ε, and sufˇciently large l for arguments of both square roots to be
positive.

The second boundary condition analogous to (38) will give limitations (or
quantization) for k2

0 . If the medium outside the sphere is gainy one, then ε′

contains negative imaginary part −iε′′, and the second boundary condition will
make k2

0 or ω complex numbers with positive imaginary part iω′′. It means that
the factor exp (−iωt) in (36) provides exponential growth ∼ exp (ω′′t).

We do not follow this way, because approximation (40) is equivalent to
re�ection in plane geometry, and representation of wave function in the form (36)
means that distribution of ˇeld in the sphere is periodic or all the rays in WG
mode are closed. In general, it is not so like for the rays shown in the ˇgure.
Therefore, if Rk0 
 1, the analysis of trapped light in WG mode with spherical
harmonics is not appropriate.

3.2. On Deˇnition of the Energy Flux. We want to note here that the widely
spread belief that the energy �ux is given by the Pointing vector J = [E× H] is
in general not correct. The energy �ux at least in isotropic media is given by

J = c
k
k

εE2 + μH2

8π
, (42)

i.e., it is equal to energy density times the light speed, and it has a direction along
the wave vector k. For a plain wave in isotropic media this deˇnition coincides
with the Pointing vector. However, the latter can be deˇned for wider variety of
vectors E and H, including stationary ˇelds and evanescent waves where it has
no relation to the energy �ux.
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