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Important Remarks on the Problem of Neutrino Passing
through the Matter

It is supposed that resonance enhancement of neutrino oscillations in the matter
appears while a neutrino is passing through the matter. It is shown that Wolfenstein's
equation, for a neutrino passing through the matter, has a disadvantage (it does not
take into account the law of momentum conservation; i.e., it is supposed that in
the matter the neutrino energy changes, but its momentum does not). It leads, for
example, to changing the effective mass of the neutrino by the value 0.87 · 10−2 eV
from a very small value of energy polarization of the matter caused by the neutrino,
which is equal to 5 · 10−12 eV. After removing this disadvantage (i.e., taking into
account that neutrino momentum also changes in matter) we have obtained a solution
to this equation. In this solution a very small enhancement of neutrino oscillations in
the solar matter appears due to the smallness of the energy polarization of the matter
caused by the neutrino. Two possible solutions to this equation are also given for
the limiting cases.

The investigation has been performed at the Veksler and Baldin Laboratory of
High Energy Physics, JINR.
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1. INTRODUCTION

The suggestion that, in analogy with K0, K̄0 oscillations, there could be
neutrinoÄantineutrino oscillations (ν → ν̄) was made by Pontecorvo [1] in 1957.
It was subsequently considered by Maki et al. [2] and Pontecorvo [3] that there
could be mixings (and oscillations) of neutrinos of different 	avors (i.e., νe → νμ

transitions).
The ˇrst experiment [4] on the solar neutrinos has shown that there is a

deˇcit of neutrinos; i.e., the solar neutrinos 	ux detected in the experiment was
few times smaller than the 	ux computed in the framework of the Sun Stan-
dard Model [5]. The subsequent experiments and theoretical computation have
conˇrmed the deˇcit of the solar neutrinos [6].

The short base reactor and accelerator experiments [7] have shown that there
is no neutrino deˇcit, then this result was interpreted as an indication that the neu-
trino vacuum mixing angle is very small (subsequent experiments have shown [8]
that this vacuum angle is big and near the maximal value). Then the ques-
tion arises: what is the deˇcit of the solar neutrinos related with? In 1978 the
work by L. Wolfenstein [9] appeared where an equation describing a neutrino
passing through the matter was formulated (afterwards that equation was named
Wolfenstein's). In the framework of this equation the enhancement of neutrino
oscillations in the matter arises via weak interactions (for critical remarks on
this equation, see [10]). This mechanism of neutrino oscillations enhancement in
the matter attracted the attention of neutrino physicists after publications [11] by
S. P. Mikheyev and A. Ju. Smirnov where it was shown that in the framework
of this equation the resonance enhancement of neutrino oscillations in the matter
would take place. Also it is clear that the adiabatic neutrino transitions can arise
in the matter if effective masses of neutrinos change in the matter [12].

This work is devoted to discussion of neutrino oscillations in the matter by
using the Wolfenstein-type equation.

2. THE NEUTRINO (PARTICLE) PASSING THROUGH THE MATTER

Before consideration of a neutrino (particle) passing through the matter, it
is necessary to gain some understanding of the physical origin of this mecha-
nism. While the neutrino is passing through the matter there can proceed two
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processes Å neutrino scattering and polarization of the matter by the neutrino.
Our interest is related with neutrino elastic interactions in the matter, namely with
neutrino forward elastic scattering, i.e., polarization of the matter by the passing
neutrino. The neutrino passing through the matter at its forward scattering can be
considered by using the following Wolfenstein's equation [9]:

i
dνph

dt
= (Ê + Ŵ )νph ≡

(√
p2I + M̂2 + Ŵ

)
νph, (1)

where p, M̂2, Ŵi are, respectively, the momentum, the (nondiagonal) square mass
matrix in vacuum, and the matrix, taking into account neutrino interactions in the
matter,

νph =
(

νe

νμ

)
, Î =

(
1 0
0 1

)
,

(2)

M̂2 =
(

m2
νeνe

m2
νeνμ

m2
νμνe

m2
νμνμ

)
, Ŵ =

(
Ŵe 0
0 Ŵμ

)
.

This equation has a standard solution found by S. P. Mikheyev and A. Ju. Smir-
nov [11] which leads to resonance enhancement of neutrino oscillations in the
matter. We consider this solution below.

2.1. The Standard Mechanism of Resonance Enhancement of Neutrino
Oscillations in the Matter and Some Critical Remarks. In the ultrarelativistic

limit

(
E � pÎ +

M̂2

2p

)
, the evolution equation for the neutrino wave function

νph in the matter has the following form [9,11]:

i
dνph

dt
=

(
pÎ +

M̂2

2p
+ Ŵ

)
νph. (3)

Since the neutrino has relativistic velocity, taking into account that at obtaining
Eq. (1) it is supposed that the neutrino momentum in the matter does not change
(then the neutrino mass has to change), we can write the expression for neutrino
energy Ê′ = Ê + Ŵ in the matter in the following form:

Ê′ =
√

p2 + M̂ ′2 � p +
M̂ ′2

2p
,

hence M̂ ′2 = M̂2 + 2pŴ . The expression for W is W =
√

2GF ne [9, 11].
If we suppose that neutrinos in the matter behave analogously to the photon in

the matter (i.e., the polarization appears while the neutrino is passing through the
matter) and the neutrino refraction indices are deˇned by the following expression
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(in case of antineutrino W < 0 and therefore it is of no interest since in this case
n < 1 and the resonance effect cannot arise):

ni = 1 +
2πN

p2
Re fi(0) = 1 + 2

πWi

p
, (4)

where i is a type of neutrinos (e, μ, τ), N is density of the matter, fi(0) is a real
part of the forward scattering amplitude, then Wi characterizes the polarization of
the matter by neutrinos (i.e., it is the energy of the matter polarization). In reality,
as we will see below, there is a fundamental difference: the photon is a massless
particle, while the neutrino is a massive particle, and this distinction is basic.

The electron neutrino (νe) in the matter interacts via W±, Z0 bosons and
νμ, ντ interact only via Z0 boson. These differences in interactions lead to the
following differences in the refraction coefˇcients of νe and νμ, ντ :

Δn =
2πNe

p2
Δf(0),

Δf(0) =
√

2
GF

2π
p, (5)

Eeff =
√

p2 + m2 + 〈eν|Heff |eν〉 ≈ p +
m2

2p
+
√

2GF Ne,

where GF is the Fermi constant.
The energy of the matter polarization E is

E ≈ W =
√

2GF Ne, W = 7.6
(

Ne

n0

)
· 10−14 eV, (6)

where Ne is the electron density in the matter, n0 is Avogadro number.
For the Sun

E Sun ≈ 10−13Ä10−11 eV. (7)

Therefore, the velocities (or effective masses) of νe and νμ, ντ in the matter
are different. And at the suitable density of the matter this difference can result
in resonance enhancement of neutrino oscillations in the matter [9, 12]. The
expression for sin2 2θm in the matter has the following form:

sin2 2θm = sin2 2θ

[(
cos 2θ − L0

L0

)2

+ sin2 2θ

]−1

, (8)

where sin2 2θm and sin2 2θ characterize neutrino mixings in the matter and vac-
uum, L0 and L0 are lengths of neutrino oscillations in vacuum and neutrino
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refraction length in the matter:

L0 =
4πEν�

Δm2c3
, L0 =

√
2π�c

GF Ne
, (9)

where Eν is neutrino energy, Δm2 = m2
2 − m2

1 is difference between squared
neutrino masses, c is light velocity, � is Planck constant.

The probability of νe → νμ neutrino transitions is given by the following
expression (E � pc):

P (E, t, . . .) = 1 − sin2 2θm sin2 2πct

Lm
, (10)

where Lm =
sin 2θm

sin 2θ
L0.

At resonance

cos 2θ ∼=
L0

L0
, sin2 2θm

∼= 1, θm
∼=

π

4
. (11)

The expression (11) for resonance condition can be rewritten in the following form:

√
2GF Ne =

Δm2

2Eres
νe

cos 2θ, (12)

or

Eres
ν =

Δm2 cos 2θ

2W
→ Δm2 − 2Eres

ν W

cos 2θ
= 0. (13)

If we consider νe → νμ and use KamLAND data [13]

tan2θ12 = 0.56(+0.10,−0.07)(stat.)(+0.1,−0.06)(syst.), θ = 36.8◦,
(14)

Δm2
12 = 7.58(+0.14,−0.13)(stat.) ± 0.15(syst.) · 10−5 eV2,

then at ne = 65.8n0 the energy W Sun of neutrino polarization is W Sun =
5 · 10−12 eV and for Eres

ν we obtain

Eres
ν = 2.14 · 106 eV = 2.14 MeV. (15)

The expressions (11)Ä(15) mean that when the electron neutrino with energy Eν =
2.14 MeV is passing through the Sun matter, the effective mass of the electron
neutrino becomes equal to the muon neutrino mass (see below the expressions (16)
and (17)) and as a result there is a resonance transition of electron neutrinos into
muon neutrinos. In this case the change in the squared mass of neutrino ν1 is
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Δm2
12 = 7.58 · 10−5 eV2 (we suppose that m2 > m1), i.e., the effective mass of

neutrino ν1 is

m2
1,eff � m2

1 + 7.58 · 10−5 eV2, (16)

and (in reality mmatt
νe

� mνμ [10])

m2
1,matt ≈ m2

2. (17)

We see that this additional big mass arises at polarization of the matter by the
neutrino with energy W = 5 · 10−12 eV. It is a very strange result! A primary
ultrarelativistic electron neutrino having energy Eν = 2.14 · 106 eV interacts
with the matter with the energy W = 5 · 10−12 eV and as a result we obtain
the mass increase by δm ≈

√
7.58 · 10−5 = 0.87 · 10−2 eV. We know that the

matter polarization has to move with the velocity equal to that of the neutrino
which generates this polarization. Then the energy of the electron neutrino has to
increase by

ΔEν ≈ δmγ, (18)

where γ =
Eν

mν
and neutrino velocity v � c. Why have we arrived at this result

when solving this equation? It is a consequence of the above approach when
we included the full energy of the matter polarization in the neutrino mass. It is
possible only at a serious violation of the law of energy-momentum conservation.
We can suppose that increase in the neutrino effective mass is accompanied by
decrease in the neutrino velocity; i.e., the energy is conserved, but it does not
save the situation since the mass increase is

δm ≈
√

7.58 · 10−5 = 0.87 · 10−2 eV, (19)

while the energy of matter polarization is W = 5 · 10−12 eV. It means that the
mechanism of resonance enhancement of neutrino oscillations in the matter can
be realized at violation of the law of energy-momentum conservation.

Now we consider a general case where the total energy of the matter polar-
ization is included in the neutrino kinetic energy and mass.

2.2. The General Case of the Neutrino Passing through the Matter. In [14]
(Dirac's theory of direct interaction) a general method was developed to avoid the
paradox similar to the above one when a huge mass change arises from very small
energy. The example we consider is very simple; therefore, it will be sufˇcient to
take into account the law of momentum conservation besides the law of energy
conservation.

Above we have considered the case when the full energy of the matter
polarization caused by the neutrino is included in the mass. If the particle
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(neutrino) interaction with the matter is the left-right symmetric one, then the
mass can be generated there (as in strong and electromagnetic interactions). In
this case we have to share the full energy of the matter polarization caused by the
particle (neutrino) between the kinetic and mass parts of the particle (neutrino)
energy. We will suppose that the weak interactions are the left-right symmetric
ones and then we will not consider the problem of mass generation in the weak
interactions.

To solve this problem, it is necessary to compute the full energy W of the
matter polarization and then, taking into account the law of energy-momentum
conservation in the vacuum (p, M ) and in the matter (p′, M ′), to distribute this full
energy of polarization between the kinetic and mass parts of the particle (neutrino)
energy. It coincides with the problem of polaron for a certain interaction (for
references see Wikipedia). So in the matter

E′ = E + W, (20)

and (pW = Wvν )

p′ = p + pW , (21)

since p2 
 M2 the neutrino is an ultrarelativistic particle and vν � c (c is the
light velocity), then with pW � W

p′ � p + W. (22)

The expression for neutrino energy E′ in the matter (after taking into account the
expression (22)) will then have the following form:

√
p2 + M2 + W =

√
p′2 + M ′2 → p2 + M2 + 2W

√
p2 + M2 + W 2 =

= M ′2 + p′2 ≡ M ′2 + p2 + 2pW + W 2, (23)

where p′ � p+W . Then using the expressions (20), (22) and taking into account
that p2 
 M2, from the expression (23) we obtain

M ′2 − M2 � Wp

(
M2

p2

)
→ M ′2 � M2 + Wp

(
M2

p2

)
. (24)

If one takes into account that p2 
 M2 and W ≈ 10−12, then

M ′2 � M2 + Wp

(
M2

p2

)
� M2. (25)

In this case Wolfenstein's equation has the same form as Eq. (1) since the term W
originated from the left-right symmetric interaction is inserted into this equation
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with the left-right symmetric wave function

i
dνph

dt
= (

√
p′2 + M ′2νph), (26)

then using that
√

p′2 + M ′2 �
(

p′Î +
M̂ ′2

2p′

)
and the expression (24), we obtain

i
dνph

dt
=

⎛
⎜⎜⎝p′Î +

M̂2 + Wp

(
M2

p2

)
2p′

⎞
⎟⎟⎠ νph, (27)

or taking into account the expression (25) or that the term Wp

(
M2

p2

)
is very

small, we come to the following expression:

i
dνph

dt
=

(
p′I +

M2

2p′

)
νph, (27′)

where p′ = (p + W ). The expression for the neutrino transition probability in
this case has the form

P (E′, t, . . .) = 1 − sin2 2θ′ sin2 πct

L′′
0

, (28)

where E′ � p′c and L′′
0 =

sin 2θ′

sin 2θ
L′

0; since M ′2 � M2, one obtains sin θ � sin θ′,

L′′
0 � L′

0:

L′
0 =

4πE′
ν�

Δm2c3
, sin2 2θ′ � sin2 2θ. (29)

So, since the change in the neutrino effective mass is very small, the change in
the neutrino transition probability arises only owing to the neutrino momentum
change. It is necessary to take into account that p 
 W , then this change will
also be very small. We have arrived at the following conclusion: Taking into
account not only the law of neutrino energy conservation but also the law of
neutrino momentum conservation, the neutrino transition probability in the matter
change is very small and no noticeable enhancement of the neutrino oscillations
in the solar matter appear (i.e., the condition (17) cannot be fulˇlled). We see
that the term which generates the huge change in the neutrino effective mass and
leads to the resonance enhancement of neutrino oscillations in the solar matter
appears since the law of momentum conservation was not taken into account in
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the original Wolfenstein's equation (as a matter of fact it is necessary to include
this term in the neutrino momentum, but not in the neutrino mass).

However, it is necessary to remark that at very high matter densities (for

example, in super new stars) the term Wp
M2

p2
can lead to resonance enhancements

of neutrino oscillations.
2.3. Other Solutions to Wolfenstein's Equation. Besides the above solution

to Wolfenstein's equation, there can be two particular solutions. Now turn to
their consideration.

2.3.1. The First Case (Nonrelativistic Case). Consider the case when the full
energy of matter polarization is included in the neutrino mass. The expression
for neutrino energy will then have the form

√
p2 + M2 + W =

√
p2 + M ′2 → M ′2 = M2 + 2W

√
p2 + M2 + W 2; (30)

taking into account that p2 
 M2, p2 
 W 2, we obtain

M ′2 � M2 + 2Wp. (31)

Wolfenstein's equation can then be written in the form

i
dνph

dt
=

√
p2I + M ′2νph → i

dνph

dt
=

(
p +

M2 + 2Wp

2p

)
νph; (32)

i.e., we exactly come to Eq. (1). But as is shown above, in this equation the
law of momentum conservation is violated. Then the following question arises:
Under what condition can such a type of equation be realized? It is clear that the
approach used should work in a nonrelativistic case when p2 � M2, but not in
the ultrarelativistic case.

The expression for neutrino energy will then have the following form:√
p2 + M2 + W =

√
p2 + M ′2 → M ′2 = M2 + 2W

√
p2 + M2 + W 2. (33)

Taking into account that p2 � M2, W 2 � M2, we obtain

M ′2 � (M + W )2. (34)

By using the expression (34) Wolfenstein's equation (1) can be written as

i
dνph

dt
=

√
p2I + M ′2νph → i

dνph

dt
=

(
M̂ ′ +

p̂2

2M ′2

)
νph, (35)

where M ′2 is given by the expression (35).
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We see that at low energies we can include the full energy W of the matter
polarization in the neutrino mass and the expressions (8)Ä(17) will be replaced
by the expressions (33)Ä(35). By diagonalization of the mass matrix M ′ we then
obtain that the neutrino mixing angle changes and under appropriate conditions
(at enough large value of W ) the resonance enhancement of neutrino oscillations
in the matter will take place. It is necessary to remark that the full energy of
solar matter polarization ESun ≈ 10−13Ä10−11 eV, which arises in the passage
of the electron neutrino through the Sun, is too small to generate the resonance
enhancement of neutrino oscillations. Above we supposed that masses can be
generated in the framework of standard weak interactions, i.e., there is no problem
with mass generation.

As was stressed above, this approach becomes physically realizable only
when p2 � M2 and then the full energy of the matter polarization is transformed
into the neutrino mass, but we have to keep in mind that the neutrinos produced
in weak interactions are ultrarelativistic since the neutrino masses are very small.
So, since the solar neutrinos are ultrarelativistic, this case will be realized with a
very small probability.

2.3.2. The Second Case (the Case When Weak Interactions Do Not Generate
Masses). In the framework of the electroweak model [15] the weak interactions
are chiral-invariant and the masses of quarks, leptons, and gauge bosons are zero
and the masses are generated by using Higgs mechanism [16]. So, the Lagrangian
of standard weak interactions is chiral-invariant [15]; therefore, these interactions
cannot generate masses. In that case it is perfectly warrantable to include all
neutrino polarization energy W in the kinetic energy of the neutrino and to leave
the neutrino mass without change (p2 
 M2):

√
p2 + M2 + W =

√
p′2 + M2 → p′2 = p2 + 2W

√
p2 + M2 + W 2, (36)

or

p′ =

√
p2 + 2Wp + W 2 +

WM2

p
.

If one neglects the forth term which is much smaller than the second term since
p2 
 M2, then the expression for p′ gets the following simple form:

p′ = p + W. (37)

Wolfenstein's equation in this case looks like

i
dνph

dt
= (

√
p′2I + M̂2νph. (38)
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In the ultrarelativistic limit

(√
p′2I + M̂2 � p′Î +

M̂2

2p′

)
, this evolution equation

for the neutrino wave function νph in the matter gets the following form:

i
dνph

dt
=

(
p′Î +

M̂2

2p′

)
νph. (39)

From Eq. (39) we obtain the same expression for a neutrino transition probability
as for the case of neutrino vacuum oscillations where p changes to p′:

P (E′, t, . . .) = 1 − sin2 2θ sin
2πct

L′
0

, (40)

where E′ � p′c = pc + W and L′
0 =

4πE′
ν�

Δm2c3
.

The same result was obtained when we worked in the framework of the
scheme of masses mixings where we have taken into account that the standard
weak interactions for their chiral invariance cannot generate masses [17,18].

3. CONCLUSION

Wolfenstein's equation is used to describe the neutrino (particle) passing
through the matter. Though this equation was obtained to describe the neutrino
passing through the matter (by weak interactions which are left-side interactions),
it is the Schréodinger type of equation and therefore this equation is the only one
for left-right symmetric wave function and, correspondingly, it is valid for the
left-right symmetric interactions.

It is supposed that while the neutrino is passing through the matter, the reso-
nance enhancement of neutrino oscillations in the matter appears. It is shown that
Wolfenstein's equation, describing passage of the neutrino through the matter, has
a disadvantage (does not take into account the law of momentum conservation;
i.e., it is supposed that in the matter the neutrino energy changes, but not its mo-
mentum). It leads, for example, to the change in the effective mass of the neutrino
by the value 0.87 · 10−2 eV from a very small value of the energy polarization of
the matter caused by the neutrino, which is equal to 5 ·10−12 eV. After removing
this disadvantage (i.e., taking into account that neutrino momentum also changes
in matter) we have obtained a solution to this equation. In this solution a very
small enhancement of neutrino oscillations in the solar matter appears due to the
smallness of the energy polarization of the matter caused by the neutrino.

Solutions to Wolfenstein's equation were also obtained for two limiting cases:
when the full energy of neutrino interactions with matter is included in the neutrino
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mass and when the full energy of neutrino interaction with the matter is included
in the neutrino kinetic energy.

The author is grateful to Professors V. B. Belyaev, E. A. Kuraev, V. B. Pries-
jev and I. V. Amirkhanov for useful discussions.
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