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XKunkos I1. E. E5-2011-28
O p au JIbHO-CHUMMETPUYHBIX PENIEHHsIX yp BHEHUS —Au + u = \u|p’1u.
OJlY-nogxon

Bompock! CyIIecTBOB HUSl P M JIBHO-CHMMETPHYHBIX PElICHHil yp BHEHHs, YK 3 HHOIO B
3 TOJIOBKE, B LI Pe C HYIEBBIMU TP HUYHBIMU YCIOBUAMH JMpHXJIE U3YY JIUChb B MHOIOYHC-
JIeHHBIX MyOJMK LMSX, M, BOOOLIE roBopsi, ObLT HoydeH Gojlee WM MeHee IONHBI OTBeT H
STH BONPOCHL. B H crosiiiee Bpems M3BECTHO, YTO €CJIM P 3MEpHOCTh mpocTp HCTB d > 3
nl<p<(d+2)/(d—2) mboecmd=2ul<p< 400, T0 W 10OGOrO LEIOr0
1>03T 3149 BII pe WM BO BCceM MPOcTp HeTee = € R umeeT p 1u bHO-CHMMeTpUYHOE
peleHre, KOTopoe 001 I er B TOYHOCTH [ Hymsimu K K (yHkims 7 = |z|. Ecmm d > 3 u
p > (d+2)/(d—2), T0o3149 BO BceM IPOCTP HCTBE HE MMEET HETPHBU JILHOIO pellie-
Huss. CH 4 J1 9T 3 X 9 H3y4 JI Cb HEKOTOPHIM B PU HTOM B PU LMOHHOro Meroy . OnH Ko
CIeLH JIMCT M B 9TOH OGN CTH M3BECTHO, YTO T KX€ MHTEPECHO MOJyYUTh T€ XKe PE3YJbT Thl
C MCIIONBb30B HUEM METONOB K yecTBeHHOW Teopun OLY. B H crosuiell CT The NpPEICT BIEHO
[POCTOE JIOK 3 TEJIbCTBO BBILIEYK 3 HHOIMO Pe3yIbT T H 9TOM Hyrd. Bonee p HHee 10K 3 -
TEJILCTBO BTOTO PE3y/IbT T JAPYTHMH BTOP MH CYIIECTBEHHO CIIOXHEe H LIEro.

P 6or Bbmonnen BJI Gop Topuu teopermdyeckoil uznku um. H. H. Boromo6os OHWSIH.

IMpenpunt O6beAUHEHHOTO UHCTUTYT SIAEPHBIX HcclenoB Huil. dyom , 2011
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On Radially Symmetric Solutions of the Equation —Aw + u = |u[P ™ u.
An ODE Approach

Questions of the existence in a ball of radially symmetric solutions of the equation indicated
in the title with the Dirichlet zero boundary conditions are studied in many publications and,
generally speaking, there was obtained more or less complete answer to these questions. It is
known now that if the dimension of the space d > 3 and 1 < p < (d+2)/(d—2) orif d =2
and p > 1, then for any integer [ > 0 this problem in a ball or in the entire space = € R?
has a radially symmetric solution with precisely ! zeros as a function of r = |z|. If d > 3
and p > (d+ 2)/(d — 2), then the problem in the entire space has no nontrivial solution. For
the first time, this problem was studied by a variant of the variational method. However, it
is known to the specialists in the field that it is also interesting to obtain the same results by
using methods of the qualitative theory of ODE. In the present paper, we shall give a simple
proof of the above result in this way. An earlier proof of this result of the other authors is
essentially more complicated than our one.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics,
JINR.
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1. INTRODUCTION.
STATEMENTS OF THE MAIN RESULTS

In this paper, for one more time, we shall deal with the existence of nontrivial
solutions of the problem

—Autu=ufu, wu=u(r), r=|z|, z €RY (1)

—0. 2)

ul
|z|—o0

Here d > 2 is integer, A is the Laplace operator in R%, and p > 1. Investigations
of this problem have a long history, and the main results on this subject are
;H; if d > 3 or p* = 400 for d — 2. Then the
result on the existence known currently says that for any p € (1,p*) and integer
I > 0 problem (1)-(2) has a radially symmetric solution that, being regarded as
a function of r = |z|, has precisely [ zeros in the half-line (0,+o00). If d > 3
and p > p*, then the problem has no nontrivial solution. We refer readers to
papers [6, 11,12, 14] for historical remarks.

To the author’s knowledge, for d = 3 this result for the first time was obtained
in its complete form by Sansone [11] (in fact, in this paper, the proofs are made
for positive solutions, but they still hold for solutions that alternate sign) and, a
few years later, by Macky [8]. This result for all integer d > 3 is reestablished,
for example, in [14]. For all values of d it was proved by Schekhter [12] and
later reestablished by Kiguradze and Schekhter in [2]. In [5, 6], H. Berestycki and
P.L.Lions obtained a result on existence for nonlinearities f(u) of a very general
kind. Their theorem says that in our case when 1 < p < p* the problem has a
positive solution and an infinite sequence of pairwise different solutions.

The first proofs of the results above were based on minimization methods
with constraints as in [5, 6] and in [11, 14]. Methods of the qualitative theory of
ODEs allowed one to obtain intermediate results not for all values p € (1,p*).
However, in the author’s opinion, applications of methods of the qualitative the-
ory of ODEs to problem (1)-(2) and to similar ones are of a separate interest. In
particular, they allow one to restore the behavior of solutions of equation (1) on
the (r,u)-plane. In [7], H.Berestycki, P.L.Lions and L. A. Peletier proved the
existence of a positive solution for an arbitrary value of p in this interval (and
for nonlinearities of a more general kind) by methods of ODEs, but some prin-
cipal steps in their approach are based on variational methods. In the important
paper [12] B. L. Schekhter succeeded in proving the existence of a radially sym-
metric solution of (1)—(2) with an arbitrary given number of zeros by methods of
ODEs: his result holds for all p € (1,p*) (in fact, he considered problem (3)-(4)
below with arbitrary real d).

Concerning the uniqueness of a solution with a given number of zeros, to
our knowledge, for problem (1)—(2) only the uniqueness of a positive solution is

known now. Denote p* =



known. For the first time, this result is due to Kwong [3]. However, his work
seems to be sufficiently intricate and complicated. A simpler and clear proof of
the same result was obtained by McLeod [9].

So, to our knowledge, the first complete investigation of the existence of
solutions for problem (1)—(2) by methods of the qualitative theory of ODEs was
made by Schekhter [12]. However, his proofs seem to be sufficiently complicated.
With the present paper, the author wanted to establish a simpler and shorter proof
of the same result (for integer d only) by using the methods of the qualitative
theory of ODEs.

Now, we shall establish the statements of our results. By substitution © =
u(r), problem (1)—(2) reduces to the following:

d—1
= u =l w= (), >0, (3)

u'(0) = u(400) = 0, (4)

where the prime denotes the derivative in r. In addition to problem (3)—(4), we

consider
"

-1
u 4+ u= |u\p*1u, u=u(r), r >T, (5)

u'(F) = u(400) =0, (6)
where 7 > 0 is a parameter. Our first main result is as follows.

Theorem 1. Let d > 2 be integer and 1 < p < p*. Then, for any integer > 0
there exist constants Co = Co(l) > 0 and 7 > 0 such that for any ¥ € (0,7) and
an arbitrary radially symmetric solution u(r) of problem (5)—(6) that possesses
precisely | zeros in (7, +00) one has

sup [u(r)| < Coll):
r&(T,+00)

Earlier this result was proved in [2, 12]. In our opinion, our proof is simpler
and shorter than the one in [2, 12].
Using Theorem 1, we shall prove the following.

Theorem 2. Let d > 2 be integer and 1 < p < p*. Then, for any integer
l > 0 problem (1)—(2) has a radially symmetric solution that, being regarded as
a function of the argument v = |x|, possesses precisely | zeros in (0,400).

As we already noted, Theorem 2 was already known earlier, but we shall
prove this result by the methods of the qualitative theory of ODEs, and with this
we shall simplify such a proof presented in [2, 12].

In addition, one can obtain the following a priori estimates of solutions
of equations (1) and (2) with a given number of zeros just as when proving
Theorem 1, with quite elementary modifications only.



Theorem 3. Let d > 2 be integer and 1 < p < p*. Then, for any integer

[ > 0 there exists a constant Cy(l) > O such that for an arbitrary radially

symmetric solution u(r) of problem (1)—(2) with precisely | zeros in the half-line
€ (0,400) one has:

sup [u(r)| < Co(l).
r>0

Now, let us introduce some notation. Let I C R be an interval and Br =
Bgr(0) := {z € R? : |z| < R} be a ball, where 0 < R < +oco. By C(I)
and C(BRr) we denote the spaces of continuous bounded functions in I and
Bp, respectively, with the uniform norm. Let L,(Br), ¢ > 1, be the standard
Lebesgue space with the norm

1
q

9l = /mwm

If g(-) is radially symmetric, then Hg||q J(Br) = wdf lg(r)|9dr, where the

constant wg > 0 depends only on d. By H, ;(B Rr), ¢ = 1, we denote the standard
Sobolev space taken with the norm
1

gl 52y = /mwm +(ﬁwwx
Br

R
If g € Hj(Bg) is radially symmetric, then ”gH?i;(Bn) = wq [T |g(r)|7+
0

|u/(r)|9}dr. By H, .(Bgr) we denote the subspace of the space H,(Bg) that
consists of radially symmetric functions. According to [4] (on this subject see
also [14]), any g € Hj ,(R?) is continuous at any point x # 0. Let also HZ(Bg)
be the Sobolev space of functions in B equipped with the norm

lollzcam) = /mww +Z Nm

= /’89018%

Finally, we denote by C5°(RY) the linear space of infinitely differentiable func-
tions in R? with compacts supports.

Q=




We shall prove Theorem 1 in the next section 2 and Theorem 2 in section 3.
As was already noted, the proof of Theorem 3 repeats our proof of Theorem 1,
with quite elementary modifications only. Methods of this paper can also be
adapted to a wider class of nonlinearities in (1). Results analogous to Theorems 1,
2 and 3 still hold if in place of problem (1)—-(2) we consider the following similar
problem in a ball Bg(0), where 0 < R < +o0:

—Au+u=|uP u, u=u(r), r=|z|, x € Br(0), = 0.

u| BR(0)

2. PROOF OF THEOREM 1

In fact, when we derive our a priori estimates stated by Theorem 1, we use
a simplified variant of a similar derivation in [13] where a system of equations is
considered. Our method is based on the same ideas as in [1].

Lemma 1. Let integer | > 0 be arbitrary. Then, there exists C1 > 0 such
that for any T € (0,1/2) and an arbitrary solution u(r) of problem (5)—(6) that
has precisely 1 zeros in (0,+00) one has

lu(D)] + [/ (1)] < Cy.

Proof. On the contrary, suppose that there exist sequences 7 € (0,1/2) and
un(r) of values of the parameter 7 and of solutions of problem (5)—(6) with !
zeros such that |u,,(1)| + |ul,(1)] — 400 as n — co. We establish the following
three observations. The first one is as follows. Let u(r) be an arbitrary solution of
problem (5)—(6) and I = (a,b) C (1/2,1) be an interval such that |u(r)| > D in

1
I for a constant D > 0. If D is sufficiently large, then one has b—a < m,
for any such a solution and an interval.

The proof immediately follows by comparing equation (5) with the equation

— =2 pPTl — 1)z =0, z=2z2(r), rel,

by applying the standard comparison theorem. We fix such a constant D > 0.
We have for an arbitrary solution u(r) of equation (5):

d—1
r

E'(r) = - [/ (7)), (7)

1 1 1
where E(r) = 5[1/(7”)}2 - 5u2(r) + ?\u(r)\p“. The second observation is
b

that, in view of (7), |u,(r)| + |u,(r)] — 400 as n — oo uniformly with respect
to r € [F",1] (because E,(r) > E,(1) for any r € [F", 1] where by E,(r) we
denoted the function F(r) corresponding to the solution w,,(r)).



The third observation, following from the second one, is that |u/,(r)| — +oc
as n — oo uniformly with respect to r € S, where S = {r € [1/2,1] : |u,(r)| <
D}.

Now, it follows from the first and third observations that for any sufficiently
large n the solution u, (r) has in the interval [1/2,1] at least (I 4 1) zeros, which
is a contradiction.[d

We have from (7) for an arbitrary solution u(r) of equations (5) and (6) for
r>T

“L2F) + — (PP = B() > B(r) > —su?(r) +

p+1 >0
2 p+1 2 p+1|u(r)|

1
and ——u*(F) + |u(F)[PT* > 0 which imply that |u(F)| > |u(r)| for any

2 p+1
r > T. Now, we shall derive the following variant of the Pohozaev identity

obtained for the first time in [10].
Lemma 2. Let u(r) be a solution of problem (5)—(6) taken with ¥ € (0,1/2].
Then, one has
19t + ?alde = [ fulalltde + wan(w@) @)
Bi\Br Bi\Br
and

| ZEEule - G el) + et a4

Bl\BF

wdFd
p+1

Wq
2

[u(F) P + L) +
p+1 ’
©))

Proof. To obtain (8), multiply (1) by wu(|z|) and integrate the result over
B\ Br. To obtain (9), multiply equation (5) by 7%/(|x|) and integrate the result
from 7 to 1.0

Lemma 3. Given integer | > 0, there exists D; > 0 such that for any
7 € (0,1/2) and an arbitrary solution u(r) of problem (5)—(6) that possesses
precisely | zeros in (T, +00) one has:

lull ey B\Br) < Di-

Proof. First, suppose that d = 2. Then, from (9) and Lemma 1,

/ {pjl_ u(fa) P - §u2<x>} dx < C, (10)

Bl\BF




where the constant C; > 0 does not depend on 7 € (0,1/2) and u. Therefore,
. d o d
since —u° < ————
2" S o0t
on u, from (10) and (8) we obtain our claim.

Now, let d > 3. Multiply (8) by and add the result to (9). Then,

|u[Pt 4 Cy for a constant Cy > 0 that does not depend

/ {_“2(“”) + (1% + 2;—d> IU(m)I”“} dr < Cs,

Bl\B$

where C5 > 0 does not depend on 7 € (0,1/2) and on u. Therefore, since

d d—2 1 d 2—d
—— — —= > 0 and si in u? < = [ —— +—— ) [ulPt! + Cy4,
) 5 and since again u 5 <p+1 + 5 )Iu + Cy

where Cy > 0 does not depend on u, we deduce that

Hu‘|Lp+l(Bl\B?) < Cs

for a constant Cs > 0 independent of 7 € (0,1/2) and of u. Now, in view of
(8), we obtain our claim.O

Lemmad. Ler q € (2,p*+1], if d > 3, or q € (2,00), if d = 2, be arbitrary.
Then, the constant C' > 0 in the embedding inequality
l9llz,Bi\By < CHQHHZ{T(BI\B?),

where g € Hy (B1\By) is arbitrary, does not depend on sufficiently small 7 > 0.

Proof. Take arbitrary 7 € (0,1/2) and g € Hj (B \ Br). As is known
(see [4] and, in addition, [14]), g can be chosen continuous in By \ Br. We
set g(r) = g(7) for r € (0,7) and g(r) = g(r) if r € [F,1]. Then, there exists
Ce > 0 independent of g € Hj ,.(B1\ Br) such that ||g]lz,(5,) < Colldll a2 (5,)-
The latter is equivalent to ’

19llz,Br) + llgllz,B:\Br) < Cr(IVGllLoB\Br) + 19l o(Bi\B) + 1]l L2(B5))-

From this, since ||g||z,(B,) < Cs(7)||gllz,(B,) for a constant Cs(7) > 0 that goes
to +0 as 7 — +0, we obtain our claim.O

Lemma 5. Consider the linear problem
—Ag=f(r) € Ly(B1\ Br) in Bi\ Br,

g’|T|:1 = u(1)7 gl(’r)’r:F = 07

where f depends only on r, T € (0,1/2) is sufficiently small and s > 1. As is
known, there exists Cog = Co(s) > 0 such that ||g|| g2, \B,) < Co(| f]
|u(1)]). In fact, Cy does not depend on sufficiently small 7 > 0.

Ly(B1\Br)T



Proof. It is clear that g depends only on r. We define g as earlier. Then
~Ag=f in B,
g|\w\:1 = ’U,(].),

where f = 0in By and f = f in B1\B;. We have [|§[| zr2(5,) < C10(8) (| /]| . (51)
+|u(1)|), where the constant C1p > 0 does not depend on f and 7 (here we used
the assumption that ¢’(7) = 0). The latter is equivalent to the following:

L.(Br) < Clo(ll f]

9!l 2B\ B + 113 L.(B\By) T u(1)]),

and we obtain our result.0

Lemma 6. Let H2(B; \ By) denote the subspace of the space H2(B; \ By)
that consists of radially symmetric functions g from H2(By \ Br) each of which

is equal to 0 at r = 1 and is such that ¢'(F) = 0. IfE——-i-— > 0 for
S q

some q > s, then the constant C1; = C11(s) > 0 in the qmbedding inequality
l9llz,(B.\B < Cu1llglla2(B,\B,), Which holds for any g € H?2(B1\Br), does not

2 1
depend on sufficiently small 7> 0. By analogy, if 173 > 0, then the constant

Cia = Ci2(s) > 01in th(f embedding inequality ||g| c(B,\Br) < C12ll9llm2(B,\Br)>
that holds for any g € H?(B \ By), does not depend on sufficiently small 7 > 0.

o201 . .
Proof. Again, if ———+~ >0, we have for §: ||gl|z,(B,) < C13/|gllm2(B,)-
s q s

d
But again,

190l 2By < N9llz.Br) + N9l 2B\ Br) < Cra(P)| Gz, (Br) + 9]l H2(B1\ B

where C14(T) > 0 goes to 0 as T — +0. Hence, we obtain our claim (for
sufficiently small 7 > 0). The second claim can be proved by analogy.O]

Now, we turn to proving Theorem 1. Let d > 3 (for d = 2 the proof can be
made by analogy). According to Lemma 3, there exists C15 > 0 such that

lu — JulP~ ul

L.,(B:\Br) < C15,

2d
where s; = ————, for any ¥ > 0 sufficiently small and for an arbitrary

p(d —2)
solution wu(r) of equations (5) and (6) that has precisely [ zeros in (7, +00).
Therefore, by Lemma 5,

lull g2, (B1\Br) < Cr6(s1), (11)



where Ci6(s1) > 0 does not depend on sufficiently small 7 > 0. If ¢ :=
2d d 4
-3 > ‘%, which occurs when 1 < p < T2 then Lemma 6 and (11) imply
Theorem 1. Suppose that
2d d

— < -
pd—2) S 2

4
If p= T then from (11) according to Lemma 6 the expression u — |u|[P~1u

belongs to Ly, (B \ Br) with arbitrary large sz > 1. Therefore, as above, the
solution w is bounded in HZ,(By \ Br) with arbitrary large so > 1. Thus, in this
case we obtain the statement we need.

d—+2
<p< L In this case,

. 4
Consider the case 1-32 71—2

ullz,, Bi\Br) < C’17(81)||U||1;'131 (B1\Br)

where C17(s1) > 0 does not depend on w and sufficiently small 7 > 0 and

2
p + — — — = 0. Observe that ¢g» > ¢; and denote so = g2/p. Then, we have
q2 S1

llu— |ufP~ L.,(B:\By) < Cis(s1),

where Cig(s1) > 0 does not depend on sufficiently small 7 > 0 and w.

Continue this iteration process. Then, we obtain the sequences ¢, and s,, =
gn/p such that the norms of w in Ly, (By \ Br) and in H2 (B \ Br) are bounded
uniformly with respect to all sufficiently small 7 > 0. Observe that each of these
two sequences strictly increases and that the first of them does not have a fixed

point larger than 1—3 Therefore, the first sequence goes to +00 as n — oo SO

that the values s,, become unboundedly large for sufficiently large n. Therefore,

. 2 1 .
there exists a number ng such that — — — < 0, but — — > (. Thus, in

S’I’LD sn0+1
view of Lemma 6 and because the number ny does not depend on 7, we obtain

the statement of Theorem 1.0

3. PROOF OF THEOREM 2

A large part of auxiliary results in this section has been already published
earlier. However, we include their proofs for the completeness of our presentation.

Let us prove the existence of a solution u(r) of problem (5)-(6) that has
precisely a given number [ of zeros in (7, +00). Consider the Cauchy problem

"

-1
u' 4+ u=[uf e, u=u(r), r>T, (12)




u(@) = A >0, u(F) =0, (13)

where A > 0 is a parameter. It easily follows from identity (7) that an arbitrary
solution of problem (12)—(13) is bounded, hence, it is global (that is, it can
be continued on the entire half-line (7,400)). It can be proved completely as
in the proof of Lemma 1 that for A > 0 sufficiently large the corresponding
solution of problem (12)—(13) has at least (I 4+ 1) zeros in (7,+00). If A €

1\\ 71
(O, (%)) , then by identity (7) the corresponding solution has no zeros

because in this case E(7) < 0 and it must be E(r) > 0 at such a zero r. Denote

A ={A>0: u(r) has no less than (I + 1) zeros in (7, +00)}

2

Lemma 7. Let u(r) be a non-constant solution of problem (12)—(13) such
that u(r1) = 0 for some r1 > T. One has u'(r1) # 0 so that any zero of such a
solution is isolated. Denote by ro > T the zero of this solution u smaller than ry
and closest to 1 or set ro =T if there is no such a zero. Then, u(r) has precisely
one point of extremum T1 in the interval [ro,r1]. In addition, |u(T1)| > 1.

1
1\7 7
and set A; = inf A;. Then, A > <1i> .

Proof. First of all, u/(r1) # 0 by the uniqueness theorem because otherwise
we would have a nontrivial solution of equation (12) taken with the initial data
u(r1) = u'(r1) = 0. Now, let 79 < r1 be two closest to each other zeros of our
solution u(r) (the case o = T can be considered by analogy). Suppose that there
exist two points of extremum of w(r) in [rg,r1]. Then, there exists a point of
minimum # of |u(r)| in this interval. But according to the maximum principle
|u(7)| € (0,1] so that E(#) < 0 which contradicts (7).0

Denote by w;(r) the solution of problem (12)-(13) taken with A = A;.

Lemma 8. The solution w;(r) has at most [ zeros in (T, +00).

Proof. On the contrary, suppose that the solution w;(r) has more than [ zeros
in (T, +00). According to Lemma 7, uj(ry) # 0 at any such zero 7. Therefore,
the solution of problem (12)—(13) taken with any A > A; sufficiently close to A;
has more than [ zeros in the same interval. This contradiction proves our claim.O

Denote by 71 <79 < ... <71 and 0 =79 <71 < ... < Ti_1 the zeros and
the first k£ points of extremum of our solution u;(r), respectively. Then,

To<r <71 < ..<Tg_1 <Tg.

The proof of the following technical result was established in [15] and later
reestablished in [14] (in fact, in these two publications a slightly different problem
is considered, but the proof holds in our case).



Lemma 9. One has k = 1.

Proof. According to Lemma 8 k£ < [. Take an arbitrary A € A; sufficiently
close to A; and let u(r) be the corresponding solution of problem (12)—(13).
Denote by s1 < 83 < ... < §141 and 0 =3y < 51 < ... < 5 the first (I + 1) zeros
and the points of extremum of this solution u(r) so that

Sp <81 <81 <82 < ... <8 < 841
Let us prove that there exists C' > 0 such that
s5<C

for any A € A; sufficiently close to A;. According to (7) E(7;) > 0, where
E(r) is introduced with (7) and corresponds here to the solution u(r), because
E(Sl+1) >0 and s;4+1 > 5. By (7)

E(r) > E) >0

for any r € [s1,5).
Denote by z < Z two points in (s;,5;) such that u(z) = h, where h is the

1 1
oint in the interval (1, |u(5;)|) such that —h? — —— [P = - ———— >0,
point in the interval (1, |u(3;)|) su 5 p—|—1|‘ TP
1 5= 1 - 1 1
and —u?(Z) - —|u@)P™' == - ———<>0. By (7), C; < |/(r)] < C
30°0) — P = L s > 0 By (.G < )] < Co

for any r € [E,ﬂ, where the constants C; > 0 and C; > 0 do not depend on the
above A € A;. Therefore,

(d—1) / Mdr > Cs5, 1.

Hence, by (7),

1
' (r)] = C5'5,

[V

for a constant C'5 > 0 independent of A € A; sufficiently close to A; and for any
r € [s1,%]. Since |u”(r)| = C4 in [z,5;], we deduce that

1
5 — 51 < Cs37 + Cs,

where the positive constants Cy, Cs and C do not depend on the above A € A;.
By analogy, there exist constants C7 > 0 and Cs > 0 such that

1 1
5, —s; <Cs+ C7§l2 and s; — 35,1 < Cg + C7§l2, 1=1,2,...,1 (14)

10



for any A € A; sufficiently close to A;. Now, summing estimates (14), we obtain

1
5 < Cio + Co37,

where the constants Cg > 0 and C1p > 0 do not depend on A € A; sufficiently
close to A;. Thus, 5; is bounded uniformly with respect to A € A; sufficiently
close to A;. In addition, |u/(s)| = C11 for a constant Cy; > 0 independent of
k=1,2,...,1 and of the above A € A;. Thus, indeed, k = [.0

Lemma 10. As in the proof of Lemma 9, we have that |u;(r)| achieves
a maximum at some T; > r;, where |u(7;)| > 1. In fact |u(r)| decreases in
(71, +00) and u;(+00) = 0.

Proof. First, suppose that there exists a point of minimum 7 of |u;(r)| in
(71, +00). Then, from (12) by the maximum principle |u;(7)| € (0,1). But then,
E; () < 0, where the function F(r) = Ej(r) corresponds to the solution ().
Therefore, from (7), any solution of problem (12)—(13) with A € A; sufficiently
close to A; cannot have more than [ zeros in (7, +00), which is a contradiction.

Now, suppose that u;(r) does not have a point of minimum in (3, +00).
Then, this function is monotone and bounded in this interval. Therefore, its
graph has a horizontal asymptote v = ¢, where c is a constant. From (12), it
must be ¢ = 0 or ¢ = £1. If ¢ = %1, then E;(r) < 0 for r sufficiently large,
therefore in this case the solution of equations (12) and (13), taken with A € A;
sufficiently close to A; cannot have more than [ zeros in (7,4o00), which is a
contradiction. Thus ¢ = 0 and Lemma 10 is proved.O

Note that, from the arguments below Lemma 1, sup |u;(r)| = |u;(7)|. Take
r>T

now a sequence {7"} of values of 7 that goes to 0 and let u}'(r) be a solution of
problem (5)—(6) taken with 7 = 7" that has precisely [ zeros in (7", +00) (here
n =1,2,3,...). Then, according to Theorem 1 there exists a constant C' > 0 such

that
lui' | cra\ Brn) < C

for any number n. In addition, it follows from (7) that [|[u'(7)]'[|¢(7n,400) < Co.
Hence, the sequence {u]'(|xz|)} has a subsequence still denoted by {uj(|z|)}
that converges to a u(-) in C(By \ B,) and weakly in Hi (B, \ B,), where
0 < a < b < +oo are arbitrary. In addition, it is easily seen that u € H2(Bg(0))
for any R > 0 and that » is radially symmetric. In view of (5), we can also
accept that for any 0 < a < b < +oo the sequence {[u]*(r)]'} converges to u'(r)
in C([a, b]).

Take an arbitrary ¢ € C5°(R?) equal to 0 in a neighborhood of the point
x = 0, multiply equation (1), written for u}'(| - |), by ¢ and integrate the result

11



over R?. Then, we obtain

/ {Vur (lz)Ve(z) + ui (l2])e(@) = o (2P e (j2]) (@) } do =0

Rd

for all sufficiently large n because each uj*(|x|) is a solution of equation (1) in
the domain R? \ By». Take in this identity the limit n — co. Then, we get

/ {Vu(lz) V(@) +u(lz)e(@) = [ullz) P~ u(lz])e(@) } de = 0.

R4

Take the limit in the latter relation over a sequence of functions ¢, € C§°(R?),
each of which is equal to zero in a neighborhood of the point z = 0, converging
in H3(R?) to an arbitrary ¢(-) € C5°(R?). Then, we obtain the equality above
for an arbitrary such a function o(-). Therefore, u(| - |) is a weak solution of
equation (1) in R? bounded in C'(R?). Hence, as is well known, u(]-|) is locally
Holder continuous and thus, it is a smooth solution of equation (1). As in the
proved part of Theorem 2, the solution u, regarded as a function of the argument
r, has precisely [ zeros in (0, +00) and u(4o00) = 0. Theorem 2 is proved.O
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