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Modiˇed Model of Neutron Resonances Width Distribution. Results of Reduced
Neutron Widths Approximation for Mass Region 35 � A � 249

The distributions of the reduced neutron widths of s-, p- and d-resonances of
nuclei of any type from nuclear mass region 35 � A � 249 were approximated with
maximal precision by the model which presents experimental data set as a superpo-
sition of a maximum of four independent neutron amplitudes. Under the assumption
that each of these amplitudes has the Gauss distribution with the unique maximum
there were determined the most probable values of contribution of each amplitude in
summary width distribution, their most probable mean values and dispersions. Com-
parison of the obtained χ2 values with value χ2 at description of the experimental
data by one distribution of neutron amplitudes with best ˇtted parameters shows that
all widths from more than 157 analyzed data sets can have different types of wave
functions.

The investigation has been performed at the Frank Laboratory of Neutron Physics,
JINR.
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1. INTRODUCTION

Experimental investigation of super�uidity of heated nuclei can give unique
information on such fundamental physics process as interaction and intertransi-
tion between Fermi and Bose systems. As compared with the other objects of
investigation the new principle data can be obtained in this case owing to radical
difference of parameters of macrosystems and nucleus.

The main parameter that characterizes the degree of super�uidity of heated
nucleus is entropy which is determined by its density ρ of excited levels [1].
The special interest for its study is the region of nuclear excitation energy from
doubled energy of nucleon paring Δ up to their binding energy Bn. Just here the
process of break up of Cooper pairs of nucleons onto the pairs of independent
quasi-particles is developed. Unfortunately, just in this region of excitations
the ρ value is determined in the experiment with inevitable and, often, rather
signiˇcant systematical errors. This conclusion follows from the comparison of
nuclear properties, obtained from interpretation of data of the one-step reactions
(which determine ρ from the total gamma spectra [2] or spectra of evaporation
nucleons [3]) and two-step reaction (n, 2γ).

Respectively, a nucleus can be presented as
a) the system of noninteracting Fermi particles,
b) the Bose condensate (practically Å only below nucleon binding

energy Bn) or
c) the mixture of increasing number of quasi-particles and some number

of phonons, where break-up of Cooper pair number n occurs with interval of
about 2Δn, which decreases with increase of nuclear excitation energy [4].

These principally incompatible conclusions [2Ä4] of a nuclear properties point
to the presence of serious systematical errors in different experiments. The most
probable and largest systematical error is caused by the use of the model ideas
of unknown [5] probability of the reaction product emission, corresponding to
transition of nucleus between its excited levels and low sensitivity to variations
of the desired parameters [6].

The noticeable problem can be also an error in determination of the experi-
mental density of neutron resonances ρλ = D−1

λ from the results of analysis of
the experimental data with the use of the neutron time-of-�ight method. This
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value is a basic for any experiments where nuclear level density in the excitation
region above some MeV is derived from the spectra of gamma rays or evapo-
ration nucleons. But, potentially high precision in determination of D−1

λ can be
realized, at least, by careful accounting and correction of all systematical errors
of the experiment. This statement concerns, ˇrst of all, the model intended for
description of distribution form of the obtained values of reduced neutron widths
of resonances Γ0

n (or Γ1
n . . .) for its following extrapolation below sensitivity

threshold of the experiment. Of course, precision of this procedure is determined
by degree of correspondence of theoretical ideas on distribution of Γ0

n to the
experiment.

The not removable uncertainty D−1
λ is caused by the fact that the independent

variable of the analyzed distribution of the widths X = Γ0
n/〈Γ0

n〉 always contains
unknown systematical error. This error is caused by impossibility of unambiguous
determination of the mean value 〈Γ0

n〉 only from the set of the experimental values
of widths. According to the theoretical analysis, the Γ0

nvalue for neutron reso-
nances is determined by few-particle components of wave function, whose square
contribution in normalizing is estimated [7] in nuclei of middle and large mass by
the value of about 10−6Ä10−9. It is generally accepted that the experimentalists
use the PorterÄThomas hypothesis [8] for description of �uctuations of Γ0

n and
parameters of its distribution. The smallness and chaotic character of items of
neutron amplitudes of resonances are determined by strong fragmentation [9] of
low-lying one- and two-quasi-particle states of a nucleus, i.e, it is conˇrmed by
modern nuclear theory. Another obligatory condition of applicability of [8] Å
mathematical expectation of mean value of amplitude A =

√
Γ0

n must be equal
to zero and its dispersion Å to mean 〈Γ0

n〉. Both conditions:

M(A) = 0,
(1)

D(A) = 〈Γ0
n〉

are not tested in modern analysis of experimental values Γ0
n, i.e., applicability of

the PorterÄThomas distribution is postulated, but ground conditions of its truth
are not proved.

Experimental distribution of widths is not also tested for possibility of exis-
tence of superposition of several gamma functions with different values M(A)
and D(A). The latter situation can appear at presence of groups of neutron reso-
nances with noticeably (or strongly) differing structure of wave functions and is
trivial at presence of two and more spins of resonances. Approximation [4, 10, 11]
of level density below Bn, derived from intensities of two-step gamma cascades,
shows that the structure of any nucleus at increase of excitation energy undergoes
cyclic change because of discrete character of break-up process of Cooper pairs of
nucleons. Corresponding conclusion was obtained for different tested functional
dependences of correlation function of two nucleons Δn on excitation energy
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of a nucleus for the set of ≈ 40 nuclei from the mass region 40 � A � 200.
High reliability of establishment of this fact is conditioned by its obtaining in the
framework of the only model-free method for determination of ρ [12] realized by
now practically.

Cyclic change of structure of neutron resonances at increase of excitation
energy of a nucleus must occur owing to appearance of nuclear states with in-
creasing number of quasi-particles and with possible variation of number and
type of phonons. Fragmentation of these complicating nuclear states inevitably
changes the coefˇcients of wave functions of neutron resonances (as is follows
from the main notions of quasi-particleÄphonon model of a nucleus). As a result,
there is possible violation of the PorterÄThomas distribution in its existing today
interpretation (1).

2. MODERN STATUS OF PROBLEM
OF THE EXPERIMENTAL DATA ANALYSIS

Distributions of the experimental Γ0
n values are usually approximated at analy-

sis in different form of functional dependence [8]. But experimental data contain
ˇxed (and limited) quantity of information. Therefore, the accessible for its
extraction maximally possible volume must not depend on analysis type. And
choice of the form of data presentation and algorithms of analysis are determined
only by problems of obtaining of maximally precise values of the determined
parameters at presence of random and systematical errors and, it is desirable, the
best visualization of the obtained results.

The main problem of analysis of distribution of the measured neutron widths
at presence of their registration threshold Å absolute absence of the experimental
data on value of its portion which is really observed in experiment. In the other
words, modern experiment cannot give the Γ0

n/〈Γ0
n〉 values. As a consequence,

here arises the problem of the random value unit Å it must not depend on
presentation form for distribution. The most suitable form of the data presentation
for the task under solution is cumulative sum of the experimental values X =
Γ0

n/〈Γ0
n〉, which increases at increasing X . The main preference of such a

presentation is clearness of the presence of change in form of distribution and the
lowest degree of its dependence on the error 〈Γ0

n〉 and revealing of the most strong
misprints. The example of expected random cumulative sums for distribution [8]
is shown in Fig. 1.

Corresponding analysis was performed for the values of widths of neutron
resonances obtained experimentally and included in known compilations (for ex-
ample, in [13, 14] or library ENDF/B-VII [15]).
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Fig. 1. Top row Å the example of cumulative sums for some tens of sets from 150, 500
and 2000 random X values. Bottom row Å cumulative sums for the same sets after
exclusion of 30% of the lowest X values

3. THE MODEL AND METHOD FOR THE SUGGESTED ANALYSIS

The sample average 〈Γ0
n〉 for the experimental cumulative sum was deter-

mined from this set without accounting for omitted resonances and their unre-
solved multiplets. This uncertainty does not tell on in�uence of ratio of values
χ2 for different approximating functions Å the shapes of experimental and ap-
proximating distributions and their relative difference for cumulative sum X do
not depend on the units in which the Γ0

n width is determined.
The ˇtted object is the sum of k distributions of gamma functions Γ(X)

for square of normally distributed random amplitudes with independent variables
Xk each. The desired parameters in compared variants are the most probable
value bk of amplitude Ak, its dispersion σk and the total contribution Ck of
gamma-function number k for the variable

Xk = ((Ak − bk)2)/σ2
k (2)

in the full experimental cumulative sum of widths Sexp(X). The maximum pos-
sible value of k is determined by variation of its tested values at the beginning
from k = 1.
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The number of distribution k and sign of amplitude Ak for given resonance
are unknown. That is why, further was used only its positive value because (2)
is invariant with respect to simultaneous change of sign of both Ak and bk. But
everywhere it is supposed that in considered distribution number k can exist the
only singular desired value bk, i.e., any distribution number k of widths has the
only one most probable value of amplitude. There is the main (and absolutely
necessary) hypothesis of the analysis of distributions of the reduced neutron
widths of resonances performed below. It should be noted in addition that the
modules of values bk and σk are strongly correlating variables, at least, for large
enough values bk.

Concrete value of function P (X) for variable (2) in the described analysis
was obtained by compression and shifting of the generally known Euler gamma
function. The obtained in this way value corresponds to the magnitude of the
above-mentioned function for the variable X = (Aσ + b)2. At present, the basis
for this algorithm for setting of parameters of approximating function is excellent
degree of description of all known experimental distributions of the widths.

It is obvious that the case: k = 1, bk = 0 and σ = 1 corresponds to distrib-
ution [8]. The case of arbitrary value bk = const and σ = 0 corresponds to the
degenerate (caused) distribution of widths for corresponding value of amplitude.
Any other values of approximation parameters correspond to any point of the
spectrum of possible values of amplitudes for wave functions of concrete neutron
resonances. According to the main axiom of mathematical statistics, their most
probable values correspond to minimum of χ2. Naturally, the best values of
k, b, σ and contribution of each from k partial distributions in the total sum are
distorted by random �uctuations of widths in maximally possible extent. How-
ever, unlike usual approximations of distributions of neutron widths, the obtained
values of the parameters contain maximally possible information on their real
structure.

Analysis of the different spins of resonance data sets was approximated a
distribution gΓ0

n (s-resonances of even-odd and A-odd target nuclei) or only Γ0
n

for ˇxed (on basis of some information) spins of resonances. More correct,
methodically and physically, is to separate approximation of the data of the one
and the same spin. But, it is true only for the case if they were determined for the
all resonances with high enough precision. In principle, real analysis must take
into account the distortions of the experimental data so that the most probable
parameters of the width distribution would be maximally reliable at presence of
arbitrary systematical errors. By this reason, it was performed in the given work
only for gΓ0

n.
The region of approximation for distribution [8] must be great enough. In

all the calculations adduced below it was corresponded to the interval from zero
to the maximal experimental values of 1.5 Xmax. Cumulative sum in point Xmax

was normalized to the number of the experimentally determined widths. By this,

5



the region (0Ä1.5 Xmax) in all cases contained more than M = 1000 points, where
there was minimized the difference of the experimental cumulative sum Sexp and
approximating function Sfit. This is necessary because the approximating function
is determined by numerical integration of width distribution.

In the region of neutron resonances, the experimental level density of nuclei
from mass region 40 � A � 200 obtained in Dubna (by model-free method of
analysis of intensities of two-step cascades), according to [4, 10, 11], is described
by the sum of four (sometimes three) partial level densities with a different number
of quasi-particles and phonons. Just from this it follows that neutron resonances
can, in principle, have several different types of wave functions. In practice, it is
accepted by calculating problems that the experimentally observed resonances can
in limiting case belong, maximum, to four different distributions of Γ0

n for evenÄ
even target nuclei. It is true for A-odd nuclei (and all p-resonances) at equality
〈gΓ0

n〉 for resonances with different spins J . In the other case, the results of
approximation can be determined also by the possible spin dependence of the
neutron strength functions.

Physically, from parameters of different variants of approximation of the total
set of level density, obtained for 40 nuclei in Dubna, it is followed also to limit the
maximal value k by magnitude k = 4. In this case the system of corresponding
nonlinear equations will be badly stipulated and sometimes degenerated. Last
remark concerns only ®partial¯ cumulative sums with number k, sum Sfit of which
is the approximation of experimental value Sexp. And instead of determination
of their unique function parameters value, in this case it is necessary and possibly
to determine only limited region of Ak, bk and σk variations, which corresponds
to one and the same χ2 minimum.

4. PRACTICAL APPROXIMATION OF THE DATA

Relative smallness of set of the experimental values of widths and expo-
nential functional dependence of probability of their observation at different gΓ0

n

very strongly complicate the process of search of approximating function Sfit,
which provides the lowest value χ2 = ((Sexp − Sfit)/σcum)2/M . Therefore, it
is worthwhile to realize this operation so that the algorithm for search of the
minimum would admit stable approximation of Sexp at presence of two and more
distributions weakly differing by parameters b and σ, sum of which is equal
to Sfit. Practical degeneration of the realized process makes difˇcult (but does
not exclude) the use of the Gauss method for solution of systems of nonlinear
equations in form of existing library programs. But the cases of appearance (as
the most probable value) of near-to-zero values σ and corresponding to them
®steps¯ in cumulative sums exclude possibility to use this method, i.e., some part
of neutron width sets contains, as the most probable, some quantity of nonrandom
values.
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In this situation the most simple way for ˇt the parameters of the width distri-
bution is to use the Monte Carlo method of solution of the systems of degenerated
equations. Namely, combination of randomly choice of elements of correction
vector of parameters for ˇtted function with maximum possible variation of their
initial values. By the use of two and more sets of unknown parameters (2) for
approximating curve, it is very worthwhile to account strong anticorrelation of
the total value of cumulative sums for different k for acceleration of conver-
gence of the length of correction vector to zero. The used (and decreasing with
different speed) in this work their values for the beginning of random process
were varied usually by 1 to 5 percents of initial values of b, σ and C. This
provided achievement of local minimum of χ2 after some tens of thousands of
iterations. Obvious criterion of achievement of absolute minimum of χ2 for such
well-regulated function as cumulative sums Å equality of value of approximating
function to the value 0.5(Si + Si+1) for its element number i + 1. It is effective
at estimation of approximation precision for the main part of the experimental
data, but may be noneffective for the maximal values Xi.

In practice, the unsolvable problem is setting of dispersion σcum of each point
of cumulative sum for arbitrary X value for calculation of unshifted value χ2.
The regularity of the data set in cumulative sum sharply decreases �uctuations
of form of the data analyzed here. By normalization of cumulative sum on the
experimental number of resonances, σcum changes from zero to the some maximal
value in region of magnitudes X ≈ 2Ä10 (see. Fig. 1) and then Å up to zero.
Dispersion of each element of cumulative sum consists from the experimental
error of neutron width and unknown value of its �uctuations. Naturally, it must
be one and the same in all variants of approximation for 1 � k � 4.

Methodically, the problem has the simple solution: there are generated the
large (minimum 106 random numbers) sets of cumulative sums of squares of
normally distributed random values with given b and σ for each partial function.
Then, by means of usual relations of mathematical statistics, from these sums the
dispersion of cumulative sum σcum = f(X) in any point X for each value of
variable is determined. But, really this procedure requires unacceptable computer
time. Therefore, possible change in value χ2 for different expected densities of
neutron resonances for realistic magnitudes of dispersions of cumulative sums
was performed only for 232Th, 233,235U and 239Pu and only in variants b = 0
and σ = 1. The main results of analysis given here keep also in the realized case
σcum = 1.

Besides, it must be taken into account that the practical search of parameters
b and σ, which provide minimum of χ2 in the used algorithm of analysis, cannot
guarantee the best approximation of the experimental data in arbitrary variant
of calculation. Only variation of initial values and ways of random processes
many times repeated provides the sufˇcient for practical applications reliability
and precision of determination of the lowest possible value χ2. The results of
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Fig. 2. The results of approximation of neutron distribution widths for 35Cl, 40Ar and
50,52,54Cr. Histogram Å the experiment, dashed line Å approximation for k = 1, thick
line Å k = 4, dotted lines Å the variant of decomposition of experimental distribution
over partial functions

Fig. 3. The same as in Fig. 2, for 54,56Fe, 59Co and 58Ni
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Fig. 4. The same as in Fig. 2, for 58,60,61Ni, 63,65Cu and 64Zn

Fig. 5. The same as in Fig. 2, for 66,67,68,70Zn, 75As and 79,81Br
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Fig. 6. The same as in Fig. 2, for 81Br, 85Rb, 84,86Kr and 88Sr

Fig. 7. The same as in Fig. 2, for 89Y, 90Zr, 93Nb, 97,98Mo, 99Ru, 103Rh and 105Pd
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Fig. 8. The same as in Fig. 2, for 108Pd, 107,109Ag, 113Cd and 115In

Fig. 9. The same as in Fig. 2, for 116,120,122Sn, 121,123Sb and 122,123,124Te
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Fig. 10. The same as in Fig. 2, for 125,126Te, 127,129I and 133Cs

Fig. 11. The same as in Fig. 2, for 136Ba, 139La, 140Ce, 141Pr, 143,145Nd and 147,149,150Sm
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Fig. 12. The same as in Fig. 2, for 151,152Sm, 151Eu, 155,156,158Gd, 159Tb and 161,162Dy

Fig. 13. The same as in Fig. 2, for 163,164Dy, 165Ho, 166,167,168,170Er, 169Tm and 171Yb
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Fig. 14. The same as in Fig. 2, for 172,173Yb, 175Lu,177Hf, 181Ta and 182,183,184W

Fig. 15. The same as in Fig. 12, for 184,186W, 185,187Re, 186,187,188Os and 192Pt
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Fig. 16. The same as in Fig. 2, for 197Au,204,206,207Pb and 231Pa

Fig. 17. The same as in Fig. 2, for 232Th, 237Np and 233,234,235,236,238U

15



Fig. 18. The same as in Fig. 2, for 239,240,241,242Pu, 241,243Am, 243Cm and 249Bk

approximation of the experimental cumulative sums, as is seen from the com-
parison of the data presented in Figs. 2Ä18 for each nucleus, depend on model
notions and, ˇrst of all, on concrete value k. The analysis was limited by nuclei
in which the set of s-resonances had, with some exceptions, the value Nr ≈ 90
and more.

5. ON INFLUENCE OF EXPERIMENTAL SYSTEMATICAL ERRORS
ON THE APPROXIMATION PARAMETERS

An attempt of objective estimation of the portion of resonances not observed
in experiment with accounting of possible discrepancy of their real distribution
to the PorterÄThomas distribution was realized in [16]. There was obtained, pro-
ceeding from independence of χ2 on varied portion of omitted resonances, that
this criterion of the maximum likelihood method can have the lowest and equal
value in the interval corresponding to the portion of omitted resonances from
zero to ≈ 90%. This result is truthful, at least, for actinides, i.e., the value of
the most serious systematical error for density of neutron resonances (and, cor-
respondingly, mean value of widths) cannot be objectively determined at present
from the model approximations of the observed data and following extrapolation
of the approximated distributions to their zero value.

Some notion on the value of the next by signiˇcance uncertainty of analysis
can be obtained from the data [14] for 99Tc. According to this compilation, at

16



Fig. 19. Approximation of two sets of neutron widths of s- (a) and p-resonances (b) 99Tc

present there are two Γ0
n value sets [17, 18], which contain: a) 658 and b) 689

s- and p-resonances. Accordingly, the number of s-resonances for them is equal
to 516 and 383. The results of approximation of these four sets are compared
in Fig. 19. It is seen that the errors of determination of orbital momentum of
resonance and/or their omission do not change principally the conclusion on
possible difference of structure of neutron resonances and rather weakly change
the form of cumulative sum for the case l = 0. Twofold change of number of
p-resonances noticeably distorts the form of cumulative sum in the region of the
largest values of X . The sum of the χ2 values for l = 0 and l = 1 in variant
k = 1 for the set (a) is 1.3 times more than for (b); for k = 4 they practically
coincide, i.e., examined systematical errors in determination of l and Γ0

n values
bring distortions in the picture of the nuclear properties studied here, which are
acceptable for reliability of conclusions obtained below.

6. PROBLEMS OF INTERPRETATION OF THE RESULTS OF ANALYSIS

The key problems of analysis of the form of neutron width distributions
for the experimental data, as can be seen from the data presented in Figs. 2Ä18,
are the determination of the number of possible types of their wave functions
with maximally possible reliability and determination of 〈gΓ0

n〉 with the highest
precision. The seriously problem here is the really unknown and not removable
�uctuations of cumulative sums in function of parameter X . It is necessary
to extract new information on properties of neutron resonances at presence of
different nature signiˇcant deviations of the experimental data from their real
value and not removable ambiguity of the used algorithm of analysis.
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Parameters of approximation (Figs. 2Ä18) contain superposition of useful and
wrong information and depend on:

a) portion of resonances with the widths which are less than the registration
threshold,

b) structure of resonances under consideration,
c) systematical error of determination of mean value 〈gΓ0

n〉,
d) systematical errors of determination of parameters of the each existed

resonance and
e) magnitude of dispersion of their pure ®nuclear¯ �uctuations.
This mixture can be decomposed onto components only with using of the

additional experimental data. The existing and potentially possible nuclear models
like [8] cannot provide acceptable for the present solution of such a problem. The
ground here can be only a hypothesis of the Gauss form of distribution of neutron
amplitudes. But the performed analysis also is not more or less strong proof of
the last assumption Å the lack of any facts which contradict any hypothesis
cannot be its proof.

The attempt [16] of maximally correct approximation of the distribution para-
meters of the experimentally observed resonances for the following extrapolation
of the distribution to Γ0

n = 0 demonstrated that the accepted in [8] assumption
about small portion of omitted resonances is not grounded. There is possible situ-
ation with nonzero probability that the number of resonances below the threshold
of experiment can many times exceed the number of the observed resonances:
analysis [16] showed that the maximally probable density of resonances can be
5Ä10 times larger than the accepted values. This conclusion was obtained in the
framework of the only hypothesis of the Gaussian form of the distribution of
neutron widths and does not require ˇxation of values k, b and σ.

Besides, this analysis allows us to estimate of the lowest number of res-
onances which permits one to determine realistically the presence/absence of
noticeable variations of structure of the wave functions of resonances. Any distri-
bution from assumed superposition must contain much more resonances than the
number of parameters (which equals three for every k). Both the proof of truth or
mistakenness of possible very considerable error of determination of D−1

λ , and the
fact of existence of groups of resonances with different structure of their wave
functions require corresponding decrease of the observation threshold of weak
resonances and precise enough determination of their parameters as compared
with the level of the experiment informativeness achieved by now.

In spite of this, the performed analysis of 157 sets of resonances allows
one to make conclusion on high probability that in experiment there is really
observed superposition of levels whose wave functions concern two or more of
their types. Such a result was obtained owing to revealed in [16] zero or very
weak dependence of parameter χ2 (i.e., form of general approximating curve) for
different number of omitted resonances in wide enough interval of their values.
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Fig. 20. Frequency distribution of the sets
of resonances for different values χ2(k =
4)/χ2(k = 1) ratio

In Fig. 20 is shown the histogram
of values of ratio R of approximation
parameters χ2(k = 4) to χ2(k = 1).
From this distribution follows that the
analyzed set of the data has value
〈R〉 = 0.33 (19). This permits one to
make the conclusion on high probabi-
lity of existence of resonances with
different structures for nuclei of dif-
ferent mass and orbital momentums
0 � l � 3. Realistic estimation of
reliability of this conclusion requires,
most probably, analysis of the fac-
tors of distortions of the experimental
data (b)Ä(d).

7. CONCLUSION

1. The results of the performed analysis do not contradict the notion of normal
distribution of neutron amplitudes with the changing from nucleus to nucleus
parameters b and σ, at least, for the main part of studied resonances. In this
case, the mean value of amplitudes and their dispersion can depend on structure
of wave function of levels excited by resonance neutrons and, in principle, on
excitation energy of a nucleus.

2. A totality of the data on parameters σ and b and dynamics of their change
with change of mass of a nucleus fully permits possibility of values σ = 1 and
b = 0 in some energy intervals of neutron resonances. The width of corresponding
interval and its location in scale of excitation energy of given nucleus cannot be,
most probably, one and the same for different nuclei.

3. Precision of the approximated by model [8] neutron resonance widths dis-
tribution (in the generally accepted notions or with the varied values of parameters
b and σ) is enough for any practical applications.

4. It is possible that for determination of the reliable properties of a nucleus
it is necessary to make the estimate of required precision of parameters of the
width distribution for concrete situation (experiment) and to use the best data for
parameters of the available sets of widths.

5. The presence of several neutron amplitudes with different mean values
and dispersions is alternative to [8] notion on distribution gΓ0

n practically for
all nuclei studied here. It is worthwhile to take into account this possibility in
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analysis of distributions of widths by using of the new experimental data for
maximal reliability of the obtained conclusions.

6. The increase of precision of determination of any nuclear physics para-
meters requires, most probably, to take into account the degree of in�uence of
structure of the excited nuclear levels on their density and emission probability
of the nuclear reaction products in wide excitation energy diapason. In particular,
in the region of neutron resonances.

7. The unique conclusion on this statement requires one to perform the ex-
periment, in which the observables depend on structure of the wave function of
resonances. For example, there can be the experiment, where the ratio of inten-
sities of the primary gamma transitions is measured to the groups of levels with
different number of the broken Cooper pairs. This conclusion was made in [19]
on the basis of approximation of the radiative strength functions of the primary
gamma transitions below and close to the neutron binding energy diapason.
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