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EPR paper [1] is reconsidered. Unavoidable redeˇnition of values of physi-
cal quantities is shown to resolve the paradox. Entangled states according to EPR
logic are shown not to exist, and therefore nonlocality in quantum mechanics is ab-
sent. Violation of Bell's inequalities in coincidence experiments with parametrically
downconversion photons is shown not to mean a rejection of quantum mechanical
locality. Experiments to check the natural correlation of photon polarizations without
entangled states are proposed. Consequences of absence of the entangled states are
discussed.
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1. INTRODUCTION

In EPR paper [1] it is shown that on the one hand, from the common sense
logic it follows that a particle can have position and momentum simultaneously,
but on the other hand, the particle cannot have them because of uncertainty
relations. This contradiction is called the EPR paradox. We will show that
the contradiction arises from an incorrect deˇnition of the values of physical
quantities as eigen values of the corresponding operators. Such a deˇnition leads
to an inconsistency. The only way to correct this inconsistency is to redeˇne the
notion of a physical quantity. After redeˇnition the paradox disappears.

Another point of EPR paper is introduction of entangled states of two parti-
cles, which is a sum of different products of independent wave functions. Entan-
glement leads to a nonlocality, i.e., to action at a distance, when a measurement
on one particle immediately affects the state of another one. We show that the
logic of the EPR paper itself proves that the entangled states do not exist.

However the last 30 years an avalanche of publications appeared in liter-
ature, where entanglement as a typical sign of nonlocality is ®proven¯ even
experimentally. The start to all this activity gave John Bell [2]. He considered
a possibility to replace nonlocal quantum theory by a local and ®realistic¯, i.e.,
classical physical theory, and derived the well-known inequality. He proved him-
self that the nonlocal quantum mechanics violates the inequality, therefore the
nonlocal quantum mechanics cannot be replaced by local and ®realistic¯, i.e.,
classical physical theories.

Since then the number of inequalities multiplied [3Ä5], but the goal of all the
experiments dealing with them remained identical: to prove that they are violated,
therefore no local realistic theory can replace nonlocal quantum mechanics.

It seems that a possibility to replace quantum mechanics with a classical the-
ory must be considered absolutely differently (see, for instance, [6, 7]), therefore
we do not want to follow here the realistic approach by J. Bell. Our goal is to
check, whether experiments on violation of Bell's inequalities really prove that
we cannot abandon entangled states and nonlocality in quantum mechanics.

It is necessary to tell here that Bell's inequalities should not be violated in
local quantum mechanics, so violation of these inequalities in an experiment looks
like a proof of nonlocality. However the close inspection of some experimental
data (for instance, in atomic cascade decay [8Ä11]) shows that the proof is unre-
liable because of doubtful subtraction of the background (see, for instance, [7,12]
and also the recently reported long-distance experiment [13]).
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The most recent experiments were performed with parametrically down con-
version photons (PDCP) [14Ä16]. So the question is how reliable are these
experiments. We are not yet ready to analyze all of them here. We want only to
show analytically, that in the local quantum mechanics Bell's inequalities can be
also violated. So their violation does not prove existence of entangled states of
separated particles.

This paper stemmed from a desire to understand the publication [17], which
after [18] presented results of numerical experiment with not entangled photons,
where Bell's inequalities were found to be violated because of time lag of two
photons on their way to registration stations. This numerical experiment is inter-
preted here analytically.

2. INCONSISTENCY IN THE EPR PAPER

In [1] it is said: If ψ is an eigenfunction of the corresponding operator A,
that is, if

ψ′ ≡ Aψ = aψ, ([1]1)

where a is the number, then the physical quantity A has with certainty the value
a whenever the particle is in the state given by ψ.

In particular, the momentum p is deˇned for the wave function represented
by a plane wave

ψ = exp (2πip0x/h), ([1]2)

since the eigenvalue of the momentum operator p̂ = (h/2πi)d/dx for this wave
function is p0. Thus, in the state given by Eq. ([1]2), the momentum has certainly
the value p0. It thus has meaning to say that the momentum of the particle in the
state given by Eq. ([1]2) is real.

In such a state, however, we have no information about the particle posi-
tion. According to EPR [1], we can only say that the relative probability that a
measurement of the coordinate will give a result lying between a and b is

P (a, b) =

b∫
a

|ψ(x)|2dx = b − a. ([1]6)

We must point out this equation as inconsistent one, because it cannot be
accepted as a probability. It is not dimensionless, and it is not normalizable.

All the textbooks on quantum mechanics ignore this inconsistency. They use
the modiˇed plain waves exp(ikx)/

√
L instead of ([1]2) with some large linear

scale L. Then instead of ([1]6) we get (b − a)/L, which is dimensionless. For
|b − a| to be not larger than L, the particle is claimed to be in an impenetrable
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box. However, in this case the wave function must look like sin(πnx/L) with
integer n, and such a function is not an eigenfunction of the momentum operator.
Therefore the momentum does not exist in such a box.

3. CORRECTION OF THE INCONSISTENCY

To have physical value of momentum and to avoid inconsistency in determi-
nation of its position, we must introduce a wave packet for the wave function of
a particle, and redeˇne the momentum and position of the particle as expectation
values of operators:

p =
∫

ψ+(x′)p̂ψ(x′)dx′, x =
∫

ψ+(x′)x̂ψ(x′)dx′, (1)

then they exist simultaneously and the EPR paradox disappears.
Noncommutativity of operators x̂ and p̂ does not preclude simultaneous pre-

cise deˇnitions of x and p according to Eq. (1), therefore uncertainty relations
have nothing to do with quantum mechanics. They are valid in quantum me-
chanics because they are valid in every branch of physics dealing with functions.
Uncertainty relation is only a mathematical theorem, which relates range of any
function to the range of its Fourier image [6].

The textbooks in quantum mechanics do not accept relations of Eq. (1) as
values of physical quantities because with such deˇnitions we have dispersions:

Δx2 =
∫

ψ+(x′)(x̂ − x)2ψ(x′)dx′, Δp2 =
∫

ψ+(x′)(p̂ − p)2ψ(x′)dx′. (2)

However, the dispersion is not a statistical indeˇniteness, but a characteristic of
the wave packet. For illustration, let us look at any object of nonzero size. Can
we say what is its position? Yes, we can, but the position point is a matter of
deˇnition. It can be the center of gravity, or geometrical center, or the closest
point to an observer. For every extended in space object, we can also ˇnd a
dispersion of the previously deˇned position, and this dispersion characterizes the
form and the size of the object.

4. ENTANGLED STATES OF SEPARATED PARTICLES DO NOT EXIST

The EPR paper considers two particles, which interacted at some past moment
and then �ew far apart. Notwithstanding of how large is the distance between
them they have a common ®entangled¯ wave function

Ψ(x1, x2) =
∑

n

φn(x1)un(x2). (3)
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According to EPR logic, if particle 1, after measurement is found in the state
φm(x1), then the state of particle 2 is um(x2). But particle 2 is far away
from particle 1 and is not perturbed by measurements of 1, therefore particle 2
had the state um(x2) before the measurement.

Following this logic, we immediately conclude that if particle 2 had the state
um(x2) before the measurement of 1, then, according to Eq. (3), particle 1 before
the measurement had the wave function φm(x1), i.e., the wave function of two
particles before the measurement was not Eq. (3), but a simple product

Ψ(x1, x2) = φm(x1)um(x2), (4)

and the measurement only revealed what product it really was. So the entangled
state of Eq. (3) represents only a list of possible states for separated particles.
The total sum of Eq. (3) is forbidden in quantum mechanics like forbidden are
the exponentially growing solutions of the Schréodinger equation.

However we can proceed even further. Since wave function of a particle is
a normalizable wave packet, the wave function of two particles is not a product,
but a sum of wave packets of separated particles, because the product annuls with
the time. It is an additional argument against entanglement of separated particles.

5. BOHMÄAHARONOV VERSION OF THE EPR ENTANGLED STATE

BohmÄAharonov [19] considered EPR paradox and entanglement in terms
of spin operators of spin 1/2 particles, and the photon polarizations. We will
omit discussion of spin 1/2 particles and limit ourselves only to the photon
polarizations.

Let us imagine the experiment shown in Fig. 1.

Fig. 1. Scheme of the experiment on coincident measurement of a correlation of polarization
of two photons radiated by the source S. The source radiates two photons with parallel
polarizations c which has a uniform angular distribution around direction of the photons
�ight path. Polarizing beam splitters with axes a and b transmit photons along one of the
two channels toward the detectors D±

1,2

The source S radiates photons, which can be assumed to be in an entan-
gled state

|ψ0(1, 2)〉 =
1√
2

[
|V1〉|V2〉 + |H1〉|H2〉

]
, (5)
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where |Vi〉, |Hi〉 denote states of ith photon with polarization along orthogonal
vertical and horizontal axes. Though the wave packets of photons �y apart,
their polarization is claimed [16] to be in the state of Eq. (5). Therefore no
photon has an individual polarization before measurement. The entanglement like
Eq. (5) is ®proven¯ by the experimental data, which demonstrate violation of
Bell's inequalities. The inequalities would not be violated if the photons could
�y apart with their individual polarizations.

Nevertheless, we suppose that the radiated photons can have their own linear
polarizations directed along some unit vector c, which has random distribution
around the direction of propagation, and will show that notwithstanding of their
individuality the correlation of photon polarization can violate Bell's inequality.
It contradicts the wide spread belief and supports the results of the numerical
experiment reported in [14].

5.1. Bell's Inequality. There are many inequalities called ®Bell's inequali-
ties¯. Only two of them belong to Bell himself [5]. One was derived in 1964 [2],
and the other one in 1971 [3]. The last inequality, which was also derived earlier
(see [4]), looks like

−2 � S � 2, (6)

where
S = E(a,b) − E(a,b′) + E(a′,b′) + E(a′,b), (7)

and E(a,b) is a correlation of polarizations of two particles registered after two
analyzers with their axes along unit vectors a and b in an experiment depicted in
Fig. 1. This correlation was presented by Bell as

E(a,b) =
∫

dλρ(λ)A(a, λ)B(b, λ), (8)

where λ is some hidden parameter with statistical distribution ρ(λ), and two
functions A(a, λ) and B(b, λ) are some classical functions, which for a given
parameter λ have one of three predetermined values ±1 or 0. The ˇrst two values
correspond to registration by detectors D±

i and the last value corresponds to loss
of the particle. Let us take into account that, though it is said that particles are
measured in coincidence, there is no time or time window in Eq. (8). It means
that the width w of the time window is large enough or w = ∞, and no other
particle can enter any of the detectors inside this window.

5.2. Deˇnition of the Correlation. We will not use classical description
with predetermined functions. Instead, we suppose that the radiated particles are
not entangled, have their individual polarizations, and interact with analyzers a
and b quantum mechanically, i.e., probability of a photon with polarization c to
be transmitted through the analyzer with its axis a is equal to P+(a) = (a · c)2 =
cos2(α − ξ) along one channel, and P−(a) = 1 − (a · c)2 = sin2(α − ξ) along
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another channel, where α, ξ are azimuthal angles of vectors a and c deˇned with
respect of some axis normal to the propagation direction. In the following, we
will choose this axis along the vector a, so α = 0. We also suppose that the angle
ξ has the uniform distribution dξ/(2π). Thus, our correlation looks as in [14]:

E(a,b) ≡ E(β) =
P++(a,b) + P−−(a,b) − P+−(a,b) − P−+(a,b)
P++(a,b) + P−−(a,b) + P+−(a,b) + P−+(a,b)

, (9)

where, say, P±(a,b) is the probability of registration by detectors D±
1,2 in coin-

cidence, and β is the angle between vectors a and b.
We suppose the analyzers to be without losses and efˇciency of registration

by the detectors after analyzers are all the same and can be put to unity. Then
the probabilities in Eq. (9) can be calculated analytically. For instance,

P++(a,b) ≡ P++(β) =
∫

dξ

2π
cos2(ξ) cos2(β − ξ)Θ(|t1 − t2| < w), (10)

where w is the width of the coincidence window, t1,2 are the time delays of the
moment of registration and Θ is the step function equal to unity, when inequality
in its argument is satisˇed, and Å to zero in the opposite case.

Our goal is to calculate all these probabilities and to show for some particular
case that the inequality

S = 3E(β) − E(3β) < 2, (11)

where β = β0 = π/8, can be violated notwithstanding that our particles are not
entangled.

5.3. Calculation of the Probabilities. In the following, we, like in [17],
suppose that the time difference Δt = |t1 − t2| depends on angles ξ, β and on
registration channels.

5.3.1. Calculation of the Probabilities for Diagonal Channels. Let us con-
sider the sum of probabilities of Eq. (10) for diagonal channels. It can be
represented as

Qd(β) ≡ P++(β) + P−−(β) =

=
1
4

∫
dξ

2π

(
2 + cos (2β) + cos (2(2ξ − β))

)
Θ(|t1 − t2| < w). (12)

We suppose that the time delay Δt changes with the change of the angle β. So,
for a given β and small enough w, the Θ-function restricts integration over ξ to
some interval Δ(ξ) � 2π. Therefore, Eq. (12) is reduced to

Qd(β) =
1

(8π)

⎛
⎜⎝Δ(β)[2 + cos (2β)] +

ξ2(β)∫
ξ1(β)

dξ cos (4ξ − 2β)

⎞
⎟⎠ , (13)
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where Δ(β) = ξ2(β)−ξ1(β). Equation (13) after integration can be represented as

Qd(β)=
Δ(β)
(8π)

(
2+cos (2β) +

sin (2Δ(β))
2Δ(β)

cos (2(ξ2(β) + ξ1(β))−2β)
)

. (14)

Now we have to deˇne the limits of integration. For simplicity, we restrict our
considerations only to the particular cases β = β0 = π/8 and β = 3β0. For
the ˇrst case, we take the interval (c1, c2) for photon polarizations c, in which
both particles are registered, to overlap β0, as is shown in Fig. 2, a, and in the
second case, the interval is inside 3β0. Moreover we suppose that γ = β0 to stop
registration of particles in coincidence, when angular distance of ξ from axis of
one of two analyzers is larger than 2β0.

Fig. 2. Restriction of integration interval (c1, c2). a) In the case β = β0 the integration
interval overlaps angle β. b) In the case of β = 3β0 the integration interval is inside β.
In calculations we take γ = β0 and such a choice means that time interval Δt of detector
registrations is inside coincidence window w, when angle between photon polarization and
every analyzer axis is not larger than 2β0

With such a choice of the angular limits, Eq. (14) becomes

Qd(β0) =
3β0

(8π)

(
2 + cos (2β0) +

sin (6β0)
6β0

)
, (15)

and

Qd(3β0) =
β0

(8π)

(
2 + cos (6β0) +

sin (2β0)
2β0

)
. (16)

5.3.2. Calculation of the Probabilities for Nondiagonal Channels. Now we
calculate nondiagonal channels. In this calculation we take into account that the
cross channels are equivalent to the diagonal channels, where one of the analyzer
axes is turned by additional angle π/2. It means that for β = β0, the nondiagonal
probabilities are equal to diagonal ones but with β = π/2 − β0 = 3β0. This
consideration facilitates our calculations very much.
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The sum of nondiagonal probabilities

Qnd(β0) ≡ P+−(β0) + P−+(β0) =

=
∫

dξ

2π
[sin2(ξ) cos2(β0 − ξ) + cos2(ξ) sin2(β0 − ξ)]Θ(|t1 − t2| < w) (17)

can be transformed to

Qnd(β0) =
∫

dξ

8π
[2− cos (2β0)+cos (4ξ−2(π/2−β0))]Θ(|t1 − t2| < w), (18)

and, since π/2 − β0 = 3β0, this integral is calculated in the limits shown in
Fig. 2, b. Integration over this interval leads to

Qnd(β0) =
β0

8π

[
2 − cos (2β0) +

sin (2β0)
2β0

]
. (19)

The similar considerations for nondiagonal terms in the case of β = 3β0

immediately gives

Qnd(3β0) =
3β0

8π

[
2 − cos (6β0) +

sin (6β0)
6β0

]
. (20)

5.3.3. Calculation of Correlations and S for β = β0 = π/8. Substitution
of (15), (16), (19), (20) into Eq. (9) for β0 = π/8 gives

E(β0) =
4 + 4 cos (2β0) +

sin(6β0)
2β0

− sin (2β0)
2β0

8 + 2 cos (2β0) +
sin (6β0)

2β0
+

sin (2β0)
2β0

=
4 + 2

√
2

8 +
√

2 + 4
√

2/π
, (21)

E(3β0)=
−4 + 4 cos (6β0) +

sin (2β0)
2β0

− sin (6β0)
2β0

8 − 2 cos (6β0) +
sin (2β0)

2β0
+

sin (6β0)
2β0

=
−4 − 2

√
2

8 +
√

2 + 4
√

2/π
. (22)

Substitution of these values into Eq. (11) for S shows that

3E(β0) − E(3β0) = 2
1 +

√
2√

2 + 1/4 + 1/π
= 2.44, (23)

i.e., Bell's inequality (Eq. (11)) is violated though we considered photons with
individual polarizations.
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6. CONCLUSION

We have shown that EPR paradox does not exist, that uncertainty relations
have nothing to do with quantum mechanics, that entangled states do not ex-
ist, and experiments with cascade decay of excited calcium atom do not prove
nonlocality of quantum mechanics. We did not analyze here experiments with
parametric down conversion of photons because of volume restriction. Some of
them were already analyzed in [12], and it was shown that they also do not prove
nonlocality of quantum mechanics. It proves that violation of Bell's inequalities
in an experiment is the necessary, but not the sufˇcient condition for nonlocality
of quantum mechanics.
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