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ƒ¥¢μ·±Ö´ �.‘., �¡ ¤¦Ö´ �. ƒ., A°·Ö´ �.�. E11-2011-60
� ³μ¤¥²¨·μ¢ ´¨¨ ¸É É¨¸É¨Î¥¸±¨Ì ¸¢μ°¸É¢ ±² ¸¸¨Î¥¸±¨Ì 3D ¸¶¨´-¸É¥±μ²

ˆ¸¸²¥¤ÊÕÉ¸Ö ¸É É¨¸É¨Î¥¸±¨¥ ¸¢μ°¸É¢  ±² ¸¸¨Î¥¸±o£μ 3D ¸¶¨´-¸É¥±μ²Ó´μ£μ ¸²μÖ μ¶·¥¤¥²¥´´μ°
Ï¨·¨´Ò ¨ ¡¥¸±μ´¥Î´μ° ¤²¨´Ò. 3D ¸¶¨´μ¢μ¥ ¸É¥±²μ ¶·¥¤¸É ¢²Ö¥É¸Ö ¢ ¢¨¤¥  ´¸ ³¡²Ö ´¥Ê¶μ·Ö¤μ-
Î¥´´ÒÌ 1D ¶·μ¸É· ´¸É¢¥´´ÒÌ ¸¶¨´-Í¥¶¥° (�‘–), £¤¥ ¢§ ¨³μ¤¥°¸É¢¨Ö ³¥¦¤Ê ¸¶¨´-Í¥¶Ö³¨ Ö¢²ÖÕÉ¸Ö
¸²ÊÎ °´Ò³¨ (´¥¨¤¥ ²Ó´Ò°  ´¸ ³¡²Ó 1D �‘–). „μ± § ´μ, ÎÉμ ¢ ¶·¥¤¥²¥ ¢Ò¶μ²´¥´¨Ö Ô·£μ¤¨Î¥¸±μ°
£¨¶μÉ¥§Ò �¨·±£μË  3D ¸¶¨´-¸É¥±²μ ³μ¦¥É ¡ÒÉÓ £¥´¥·¨·μ¢ ´μ ¢¸¶μ³μ£ É¥²Ó´Ò³ £ ³¨²ÓÉμ´¨ ´μ³
´¥Ê¶μ·Ö¤μÎ¥´´μ° 1D �‘– ¸μ ¸²ÊÎ °´Ò³ μ±·Ê¦¥´¨¥³. �¥Ê¶μ·Ö¤μÎ¥´´Ò° 1D �‘– μ¶·¥¤¥²Ö¥É¸Ö
´  ·¥£Ê²Ö·´μ° ·¥Ï¥É±¥, £¤¥ ¢ ± ¦¤μ³ Ê§²¥ ·¥Ï¥É±¨ ¶μ³¥Ð ¥É¸Ö μ¤¨´ ¸²ÊÎ °´μ μ·¨¥´É¨·μ¢ ´´Ò°
¸¶¨´. ’ ±¦¥ ¶·¥¤¶μ² £ ¥É¸Ö, ÎÉμ ± ¦¤Ò° ¸¶¨´ ¸²ÊÎ °´μ ¢§ ¨³μ¤¥°¸É¢Ê¥É ¸ Ï¥¸ÉÓÕ ¡²¨¦ °Ï¨³¨
¸μ¸¥¤´¨³¨ ¸¶¨´ ³¨ (¤¢  ¸¶¨´  ´  ·¥Ï¥É±¥ ¨ Î¥ÉÒ·¥ ¢ μ±·Ê¦¥´¨¨). ‚ Ê§² Ì ·¥Ï¥É±¨ ¸¶¨´-Í¥¶μÎ±¨
¶μ²ÊÎ¥´Ò ·¥±Ê··¥´É´Ò¥ É· ´¸Í¥´¤¥´É´Ò¥ Ê· ¢´¥´¨Ö. �É¨ Ê· ¢´¥´¨Ö ¸μ¢³¥¸É´μ ¸ Ê¸²μ¢¨Ö³¨ ‘¨²Ó¢¥-
¸É·  ¶μ§¢μ²ÖÕÉ Ï £ §  Ï £μ³ ¶μ¸É·μ¨ÉÓ ¸¶¨´-Í¥¶μÎ±Ê ¢ μ¸´μ¢´μ³ ¸μ¸ÉμÖ´¨¨ Ô´¥·£¨¨, £¤¥ ¢¸¥ ¸¶¨´Ò
´ Ìμ¤ÖÉ¸Ö ¢ ³¨´¨³ ²Ó´μ° Ô´¥·£¨¨ ±² ¸¸¨Î¥¸±μ£μ £ ³¨²ÓÉμ´¨ ´ . �  μ¸´μ¢¥ ÔÉ¨Ì Ê· ¢´¥´¨° · §· ¡μ-
É ´ μ·¨£¨´ ²Ó´Ò° ¢Ò¸μ±μ¶·μ¨§¢μ¤¨É¥²Ó´Ò° ¶ · ²²¥²Ó´Ò°  ²£μ·¨É³ ¤²Ö ³μ¤¥²¨·μ¢ ´¨Ö 3D ¸¶¨´μ-
¢μ£μ ¸É¥±² . 	 ¸¸Î¨É ´Ò · ¸¶·¥¤¥²¥´¨Ö · §²¨Î´ÒÌ ¶ · ³¥É·μ¢ ´¥¢μ§³ÊÐ¥´´μ£μ ¸¶¨´μ¢μ£μ ¸É¥±² . ‚
Î ¸É´μ¸É¨,  ´ ²¨É¨Î¥¸±¨ ¤μ± § ´μ ¨ Î¨¸²¥´´Ò³¨ · ¸Î¥É ³¨ ¶μ± § ´μ, ÎÉμ · ¸¶·¥¤¥²¥´¨¥ ±μ´¸É ´ÉÒ
¸¶¨´-¸¶¨´μ¢μ£μ ¢§ ¨³μ¤¥°¸É¢¨Ö ¢ ³μ¤¥²Ó´μ³ £ ³¨²ÓÉμ´¨ ´¥ ¡²¨¦ °Ï¨Ì ¸μ¸¥¤¥° ƒ¥°§¥´¡¥·£ , ¢ μÉ-
²¨Î¨¥ μÉ Ï¨·μ±μ ¨¸¶μ²Ó§Ê¥³μ£μ · ¸¶·¥¤¥²¥´¨Ö ƒ Ê¸¸ Ä�¤¢ ·¤¸ Ä�´¤¥·¸μ´ , Ê¤μ¢²¥É¢μ·Ö¥É § ±μ´Ê
 ²ÓË -Ê¸Éμ°Î¨¢μ£μ · ¸¶·¥¤¥²¥´¨Ö ‹¥¢¨, ±μÉμ·Ò° ´¥ ¨³¥¥É ¤¨¸¶¥·¸¨¨. �·¥¤²μ¦¥´  ´μ¢ Ö Ëμ·³Ê² 
¤²Ö ¶μ¸É·μ¥´¨Ö ¸É É¨¸É¨Î¥¸±μ° ¸Ê³³Ò ¢ ¢¨¤¥ μ¤´μ³¥·´μ£μ ¨´É¥£· ²  μÉ · ¸¶·¥¤¥²¥´¨Ö Ô´¥·£¨¨
 ´¸ ³¡²Ö 1D �‘–.
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On Modeling of Statistical Properties of Classical 3D Spin Glasses

We study statistical properties of 3D classical spin glass layer of certain width and inˇnite length. The
3D spin glass is represented as an ensemble of disordered 1D spatial spin chains (SSC) where interactions
are random between spin chains (nonideal ensemble of 1D SSCs). It is proved that in the limit of Birkhoff's
ergodic hypothesis performance, 3D spin glasses can be generated by Hamiltonian of disordered 1D SSC
with random environment. Disordered 1D SSC is deˇned on a regular lattice where one randomly
oriented spin is put on each node of lattice. Also, it is supposed that each spin randomly interacts
with six nearest-neighboring spins (two spins on lattice and four in the environment). The recurrent
transcendental equations are obtained on the nodes of spin-chain lattice. These equations, combined with
the Silvester conditions, allow step-by-step construction of spin chain in the ground state of energy where
all spins are in minimal energy of classical Hamiltonian. On the basis of these equations an original high-
performance parallel algorithm is developed for 3D spin glasses simulation. Distributions of different
parameters of unperturbed spin glass are calculated. In particular, it is analytically proved and numerical
calculations show that the distribution of spinÄspin interaction constant in Heisenberg nearest-neighboring
Hamiltonian model, as opposed to widely used GaussÄEdwardsÄAnderson distribution, satisˇes L
evy
alpha-stable distribution law which does not have variance. A new formula is proposed for construction
of partition function in the form of one-dimensional integral on energy distribution of 1D SSCs.
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1. INTRODUCTION

The wide class of phenomena and structures in physics, chemistry, ma-
terial science, biology, nanoscience, evolution, organization dynamics, hard-
optimization, environmental and social structures, human logic systems, ˇnancial
mathematics, etc. are mathematically well described in the framework of spin
glass models [1Ä9].

The considered mean-ˇeld models of spin glasses as a rule are divided into
two types. The ˇrst consists of the true random-bond models where the coupling
between interacting spins are taken to be independent random variables [10Ä12].
The solution of these models is obtained by n-replica trick [10, 12] and requires
invention of sophisticated schemes of replica-symmetry breaking [12, 13]. In
the models of second type the bond randomness is expressed in terms of some
underlining hidden site randomness and is thus of a superˇcial nature. It has
been pointed out in the works [14Ä16], however, this feature retains an important
physical aspect of true spin glasses, viz. they are random with respect to the
positions of magnetic impurities.

Note that all the mentioned investigations as a rule are conducted at equilib-
rium's conditions of medium. This fact plays a key role in both analytical and
numerical simulation by Monte Carlo method.

Recently, as authors have shown [17], some type of dielectrics can be studied
by model of quantum 3D spin glass. In particular, it was proved that the initial
3D quantum problem on scales of space-time periods of an external ˇeld can be
reduced to two conditionally separable 1D problems where one of them describes
an ensemble of disordered 1D spatial spin-chains between which are random
interactions (further will be called nonideal ensemble).

In this paper we discuss in detail statistical properties of classical 3D spin
glass with suggestion that interactions between spins have short-range character.
We prove that nonideal ensemble of 1D SSCs exactly describes the statistical
properties of classical 3D spin glasses in the limit of Birkhoff's ergodic hypothesis
performance. In the work a new high-performance algorithm for simulation of
this traditionally difˇcult calculated problem is developed.

In Section 2 the classical spin glass problem on 3D lattice is formulated.
Equations for stationary points and corresponding Silvester conditions are ob-
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tained for deˇnition of energy minimum on lattice nodes (local minimum of
energy). The formula for computation of different parameters distributions of
spin glass is deˇned.

In Section 3 a theorem on reduction of 3D spin glass problem to the problem
of nonideal ensemble of 1D SSCs is proved.

In Section 4 numerical experiments are adduced for unperturbed 1D SSCs
ensemble with spin chain's length 103d0. In particular, distributions of energy,
polarization and spinÄspin interaction constants of nonideal ensemble are investi-
gated in detail.

In Section 5 partition function is investigated in detail in the conˇguration
integral's representation. A new representation is suggested for partition func-
tion in the form of one-dimensional integral on energy distribution of nonideal
ensemble.

In Section 6 the obtained theoretical and computational results are analyzed.
It is very important to note that it has been proved that in the framework of
the developed method it is always possible to exactly compute the ground-state
energy of 3D spin glasses.

2. FORMULATION OF PROBLEM

The objects of our investigation are solid-state dielectrics, type of SiO2

glass (amorphous silicon dioxide). According to the numerical ab initio sim-
ulations [7], the structure of this type compound can be well described by 3D
random network (Fig. 1, a). The red and brown lattice points on this ˇgure cor-
respond to different atoms, while the links between them correspond to covalent
bounds. As a result of charges redistribution in outer electronic shells, atoms
of Si acquire the positive charge and atoms of O correspondingly the negative
charge. Thus, we can consider compounds of this type as a disordered 3D sys-
tem of similar rigid dipoles (hereinafter termed as a system of 3D disordered
spins, Fig. 1, b). Let us remind that under the similar rigid dipoles are meant the
dipoles for which the absolute values are equal (|pi| = |pj | = p0, where pi and
pj are two arbitrary dipoles), and they do not vary under the in�uence of an
external ˇeld.

The Hamiltonian of 3D classical spin glass system reads

H({r}) = −
∑

<i j>

Ji jSiSj , {r} ≡ r1, r2, . . . ,

where indices i and j run over all nodes of 3D lattice, ri correspondingly de-
notes the coordinates of ith spin (see Fig. 1, b). For further investigation we will
consider a spin glass layer of certain width Lx and inˇnite length (see Fig. 2).
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Fig. 1. The structure of amorphous silicon dioxide SiO2 is described by 3D random network
with covalent bonds. Every silicon vertex (gold sphere) has 4 edges and every oxygen
vertex (red sphere) has 2 edge ∗

We will consider 3D compound in the framework of nearest-neighboring Hamil-
tonian model. Let us note that even for this relatively simple model numerical
simulations of spin glasses are extremely hard to solve NP problems.

At ˇrst we will consider an auxiliary Heisenberg Hamiltonian of the form

H0({r}; Nx) = H
(1)
0 ({r}; Nx) + H

(2)
0 ({r}; Nx), (1)

where the ˇrst term H
(1)
0 ({r}; Nx):

H
(1)
0 ({r}; Nx) = −

Nx−1∑
i=0

Ji i+1SiSi+1,

describes the disordered 1D spatial spins chain (SSC), while the second term

H
(2)
0 ({r}; Nx):

H
(2)
0 ({r}; Nx) = −

Nx−1∑
i=0

4∑
σ=1

Ji iσSiSiσ ,

correspondingly describes the random surroundings of 1D SSC (see Fig. 2). In (1)
Ji i+1 and Ji iσ are correspondingly random interaction constants between arbi-
trary i and i + 1 spins and between i and iσ spins, Si, Si+1 and Siσ are spins

∗ The colored version of the ˇgures of the present work is available at http://www.jinr.ru/publish
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Fig. 2. 1D SSC with the random environment. Recall that each spin chain is surrounded
by four spin chains which randomly interact with it. Symbols ⊗ designate spins from the
random environment (four spin chains of surrounding)

(vectors) of unit length, which are randomly orientated in O(3) space. From the
general reasons it follows that with the help of (1) Hamiltonian and by way of
successive constructing we can restore the Hamiltonian of 3D problem. Recall
that the meaning of the construction is as follows. On the ˇrst step the central
spin chain on the x axis with its surroundings from four random spin chains is
considered (see Fig. 2). On the second step as central spin chains are consid-
ered corresponding spin chains from the random surroundings, each of which
are surrounded by new four neighboring spin chains. Thus, repeating this cycle
periodically, we can construct the Hamiltonian of 3D problem. This idea will be
rigorously proved below.

For further investigation of spin glass problem, it is useful to write the
Hamiltonian (1) in spherical coordinates system:

H0({r}; Nx) = −
Nx−1∑
i=0

{
Ji i+1

[
cosψi cosψi+1 cos (ϕi−ϕi+1)+sinψi sin ψ1+1

]
+

+
4∑

σ=1

Ji iσ

[
cosψi cosψiσ cos (ϕi − ϕiσ ) + sin ψi sin ψiσ

]}
. (2)
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Now the main problem is to ˇnd the angular conˇgurations and spinÄspin interac-
tion constants which can make the Hamiltonian minimal on each node of lattice.

Let us consider the equations of stationary point:

∂H0

∂ψi
= 0,

∂H0

∂ϕi
= 0, (3)

where Θi = (ψi, ϕi) deˇnes the orientation of ith spin (ψi, ϕi are correspondingly
the polar and the azimuthal angles). In addition, Θ = (Θ1,Θ2 . . .ΘNx) describes
the angular conˇguration of spin chain consisting of Nx spins.

Substituting (2) into (3), we can ˇnd the following recurrent equations:

Ji−1 i

[
− sinψi cosψi−1 cos (ϕi − ϕi−1) + cosψi sin ψi−1

]
+

+ Ji i+1

[
− sinψi cosψi+1 cos (ϕi − ϕi+1) + cosψi sin ψi+1

]
+

+
4∑

σ=1

Ji iσ

[
− sinψi cosψiσ cos (ϕi − ϕiσ ) + cosψi sin ψiσ

]
= 0, (4)

{[
Ji−1 i cosψi−1 sin (ϕi − ϕi−1) + Ji i+1 cosψi+1×

× sin (ϕi − ϕi+1)
]

+
4∑

σ=1

Ji iσ cosψiσ sin (ϕi − ϕiσ )
}

cosψi = 0.

In order to satisfy the conditions of local minimum (Silvester conditions) for
H0, it is necessary that the following inequalities be valid:

Aψiψi(Θ
0
i ) > 0, Aψiψi(Θ

0
i )Aϕiϕi(Θ

0
i ) − A2

ψiϕi
(Θ0

i ) > 0, (5)

where Aαiαi = ∂2H0/∂α2
i and Aαiβi = Aαiβi = ∂2H0/∂αi∂βi, in addition:

Aψiψi(Θ
0
i ) = Ji−1 i

{
cosψ0

i cosψi−1 cos (ϕ0
i − ϕi−1) + sinψ0

i sinψi−1

}
+

+ Ji i+1

{
cosψ0

i cosψi+1 cos (ϕ0
i − ϕi+1) + sinψ0

i sin ψi+1

}
+

+
4∑

σ=1

Ji iσ

{
cosψ0

i cosψiσ cos (ϕ0
i − ϕiσ ) + sin ψ0

i sin ψiσ

}
,

Aϕiϕi(Θ
0
i ) =

{
Ji−1 i cosψi−1 cos (ϕ0

i −ϕi−1)+Ji i+1 cosψi+1 cos (ϕ0
i −ϕi+1)+

+
4∑

σ=1

Ji iσ cosψiσ cos (ϕ0
i − ϕiσ )

}
cosψ0

i , Aψiϕi(Θ
0
i ) = 0.
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Recall that Θ0
i = (ψ0

i , ϕ0
i ) designates the angular conˇguration of the spin in the

case that the condition of local minimum for H0 is satisˇed.
Thus, it is obvious that the classical 3D spin glass system (see Fig. 1, b)

can be considered as a nonideal ensemble of 1D SSCs (see Fig. 2) and there are
random interactions between spin chains.

Now we can construct distribution functions of different parameters of 1D
SSCs nonideal ensemble. To this effect, it is useful to divide the nondimensional
energy axis ε = ε/δε into regions 0 > ε0 > . . . > εn, where n � 1 and
ε is the real energy axis. The number of stable 1D SSC conˇgurations with
length Lx in the range of energy [ε − δε, ε + δε] will be denoted by MLx(ε),
while the number of all stable 1D SSC conˇgurations correspondingly by symbol

M full
Lx

=
n∑

j=1

MLx(εj). Accordingly, the energy distribution function can be

deˇned by the expression

FLx(ε; d0(T )) = MLx(ε)/M full
Lx

, (6)

where the distribution function is normalized to unit:

lim
n→∞

n∑
j=1

FLx(εj ; d0(T ))δεj =

0∫
−∞

FLx(ε; d0(T ))dε = 1.

In a similar way we can also construct distribution functions for polarizations,
spinÄspin interaction constant, etc.

3. REDUCTION OF 3D SPIN GLASS PROBLEM
TO 1D SSCS ENSEMBLE PROBLEM

Modeling of 3D spin glasses is a typical NP hard problem. This type of
problems are hard-to-solve even on modern supercomputers if the number of
spins in the system are more or less signiˇcant. In connection with the aforesaid,
the signiˇcance of new mathematical approaches development is obvious and on
this basis an effective parallel algorithm for numerical simulation of spin glasses
can be elaborated.

Theorem: The classical 3D spin glass problem at the limit of isotropy and
homogeneity (ergodicity) of superspins distribution (sum of spins in chain) in 3D
conˇguration space is equivalent to the problem of disordered 1D SSCs ensemble.

It is obvious that the theorem will be proved if we can prove that in the case
that the distribution of superspins in 3D conˇguration space is homogeneous and
isotropic, the following two propositions take place:

6



a) In any random environment which consists of four arbitrary spin chains,
it is always possible to ˇnd at least one physically admissible solution for spin
chain (the direct problem),

b) It is possible to surround an arbitrary spin chain from the given environ-
ment with such environment which can make it physically admissible spin-chain
solution (the reverse problem).

First we prove the direct problem.
By using the following notation:

ξi+1 = cosψi+1, ηi+1 = sin (ϕi − ϕi+1), (7)

the system of equations (6) can be transformed as follows:

C1 + Ji i+1

[√
1 − ξ2

i+1 − tan ψi ξi+1

√
1 − η2

i+1

]
= 0,

C2 + Ji i+1 ξi+1 ηi+1 = 0, (8)

where parameters C1 and C2 are deˇned by the expressions

C1 = Ji−1 i

[
sin ψi−1 − tan ψi cosψi−1 cos (ϕi − ϕi−1)] +

4∑
σ=1

Ji iσ×

×
[
sin ψiσ − tanψi cosψiσ cos (ϕi − ϕiσ )

]
,

C2 = Ji−1 i cosψi−1 sin (ϕi − ϕi−1) +
4∑

σ=1

Ji iσ cosψiσ sin (ϕi − ϕiσ ).

From the system (8) we can ˇnd the equation for the unknown variable ηi+1:

C1ηi+1 + C2

√
1 − η2

i+1 tan ψi +
√

J2
i i+1η

2
i+1 − C2

2 = 0. (9)

We have transformed Eq. (9) to the equation of fourth order which is exactly
solved further:

ξ2
i+1 =

C2
2

J2
i i+1η

2
i+1

, η2
i+1 =

A

B
, (10)

where

A = C2
2

{
J2

i i+1 cos2 ψi + C3 + 2C2
1 sin2 ψi

[
1 ± C−1

1

√
J2

i i+1 − C2
1 − C2

2 cotψi

]}
,

C3 = −C2
1 + C2

2 sin2 ψi,

B = J4
i i+1 cos4 ψi + 2C3J

2
i i+1 cos2 ψi + (C2

1 + C2
2 sin2 ψi)2.

Note that from the condition of nonnegativity of the value under the root we can
ˇnd the following nonequality:

J2
i i+1 � C2

1 + C2
2 . (11)
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In consideration of (7), we can write the following conditions:

0 � ξ2
i+1 � 1, 0 � η2

i+1 � 1.

As it follows from Eq. (10), if the solutions in previous two nodes (i − 1) and
i are known, then the solutions (ψi+1, ϕi+1) in the node (i + 1) can be deˇned
only by constant Ji i+1. In this connection, a natural question arises: are there
solutions for spin chain in arbitrarily given environment?

Let us consider the Silvester conditions (5) which can be written in the form
of the following inequalities:

Ji i+1 cosψ0
i cosψi+1 cos (ϕ0

i − ϕi+1) > −a1 − sinψ0
i sinψi+1,

Ji i+1 cosψi+1 cos (ϕ0
i − ϕi+1) cosψ0

i > −a2, (12)

where constants a1 and a2 are deˇned by the expressions

a1 = Ji−1 i

[
cosψ0

i cosψi−1 cos (ϕ0
i − ϕi−1) + sin ψ0

i sin ψi−1

]
+

+
4∑

σ=1

Ji iσ

[
cosψ0

i cosψiσ cos (ϕ0
i − ϕiσ ) + sin ψ0

i sin ψiσ

]
,

a2 =
{
Ji−1 i cosψi−1 cos (ϕ0

i − ϕi−1) +
4∑

σ=1

Ji iσ cosψiσ cos (ϕ0
i − ϕiσ )

}
cosψ0

i .

So, the problem leads to the answer to the following question: are inequalities (11)
and (12) compatible or not. Taking into account solutions (10), it is easy to prove
that conditions (12) are automatically compatible at large absolute values of Ji i+1.
On the other hand, there is no any contradiction with condition (11). Thus, the
direct problem or the proposition a) is proved.

Now our aim is to prove the reverse problem or the proposition b) which con-
sists in the following. We choose a spin chain from the environment (see Fig. 2),
for example, {i4} ≡ (04, 14, . . . , Nx4). In this spin chain all angular conˇgura-

tions of spins (Θ(4)
0 , . . . Θ(4)

Nx
) are known, but the constants that deˇne spinÄspin

interactions in spin chain and interactions between spin chain and its environment
still are not deˇned. We will prove that it is always possible to surround each
spin chain by environment such that the selected spin chain will be the correct
solution from the main physical laws point of view (see conditions (4), (5)). In
the considered case {i4} ≡ {i′0}, the spin chain is surrounded by four neigh-
bors, one of which {i0} ≡ {i′2} is fully determined, while three spin chains
{i′1}, {i

′

3} and {i′4} should be still speciˇed (see Fig. 3). Recall that the mark ®′¯
designates a new environment with three spin chains. However, for simplicity
we will omit or more clearly make change them in the subsequent calculations
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Fig. 3. The projection of spin-chains ensemble onto the (Y,Z) plane. Spin chains are des-
ignated by symbols © and

⊗
which correspondingly form the old and new environments

(
{i′0}, {i

′

1}, {i
′

2}, {i
′

3}, {i
′

4}
)
→

(
{i0}, {i1}, {i2}, {i3}, {i4}

)
. The proof of the

proposition should be conducted as follows. We will suppose that the constants
of spinÄspin interactions in the considered chain and the corresponding parame-
ters of two spin chains of environment are known. We will show that by special
choosing of parameters of the third spin chain {i3}, it is possible to ensure the
condition of local minimum energy is satisˇed in the considered spin chain.

Let us deˇne the following denotations for constants:

c1 = Ji−1 i[− sin ψi cosψi−1 cos (ϕi − ϕi−1) + cosψi sinψi−1]+
+ Ji iσ [− sin ψi cosψiσ cos (ϕi − ϕiσ ) + cosψi sin ψiσ ],

c2 = − sinψi cosψi+1 cos (ϕi − ϕi+1) + cosψi sin ψi+1,

c3 = Ji−1 i cosψi−1 sin (ϕi − ϕi−1) + Ji iσ cosψiσ sin (ϕi − ϕiσ ),
c4 = cosψi+1 sin (ϕi − ϕi+1), σ = 4.

(13)

Using (13), we can transform Eq. (4) to the following form:

c1 + c2Ji i+1 +
3∑

σ=1

Ji iσ [− sin ψi cosψiσ cos (ϕi − ϕiσ ) + cosψi sinψiσ ] = 0,

c3 + c4Ji i+1 +
3∑

σ=1

Ji iσ cosψiσ sin (ϕi − ϕiσ ) = 0,

9



which are equivalent to the following relations:

Ji i+1 = −c1

c2
− 1

c2

3∑
σ=1

Ji iσ [− sin ψi cosψiσ cos (ϕi − ϕiσ ) + cosψi sinψiσ ],

(14)

Ji i+1 = −c3

c4
− 1

c4

3∑
σ=1

Ji iσ cosψiσ sin (ϕi − ϕiσ ).

After excluding Ji i+1 from (3) we ˇnd the following equation:

3∑
σ=1

{
Ji iσ

c2
[− sinψi cosψiσ cos (ϕi − ϕiσ ) + cosψi sin ψiσ ]−

− Ji iσ

c4
cosψiσ sin (ϕi − ϕiσ )

}
− c5 = 0, c5 =

c1

c2
− c3

c4
. (15)

Having made the following designation:

D =
2∑

σ=1

{
Ji iσ

c2
[− sinψi cosψiσ cos (ϕi − ϕiσ ) + cosψi sin ψiσ ]−

− Ji iσ

c4
cosψiσ sin (ϕi − ϕiσ )

}
− c5,

we can transform Eq. (15) to the following form:

D +
Ji i3

c2
[− sin ψi cosψi3 cos (ϕi − ϕi3) + cosψi sinψi3 ]−

− Ji i3

c4
cosψi3 sin (ϕi − ϕi3) = 0. (16)

Now substituting
x = cosψi3 (17)

into (16), we ˇnd the equation

D +
Ji i3

c2
[−x sin ψi cos (ϕi − ϕi3 ) +

√
1 − x2 cosψi]−

− x
Ji i3

c4
sin (ϕi − ϕi3) = 0. (18)

From (18) the following square equation can be found:

K0x
2 + 2K1x + K2 = 0, (19)

10



where the following designations are made:

K0 = cos2 ψi +
(

sin ψi cos (ϕi − ϕi3) +
c2

c4
sin (ϕi − ϕi3 )

)2

,

K1 = −Dc2

Ji i3

(
sin ψi cos (ϕi − ϕi3) +

c2

c4
sin (ϕi − ϕi3)

)
,

K2 =
(

Dc2

Ji i3

)2

− cos2 ψi.

The discriminant of the square equation (19) has the form

Dx =
(

sin ψi cos (ϕi − ϕi3) +
c2

c4
sin (ϕi − ϕi3)

)2

cos2 ψi+

+
{

cos2 ψi −
(

Dc2

Ji i3

)2}
cos2 ψi � 0, (20)

which on some set of Ji i3 can be positive; i.e., the ith spin in spin chain {i4}
will satisfy the local minimum conditions.

Let us deˇne:
y = cos (ϕi − ϕi3 ). (21)

Substituting (21) into (16), we will ˇnd that

D +
Ji i3

c2
[−y sin ψi cosψi3 + cosψi sin ψi3 ] −

Ji i3

c4
cosψi3

√
1 − y2 = 0,

After squaring we will have the following equation:

M0y
2 + 2M1y + M2 = 0, (22)

where the following designations are made:

M0 =
((

c2

c4

)2

+ sin2 ψi

)
cos2 ψi3 ,

M1 = − sinψi cosψi3

(
cosψi sin ψi3 +

Dc2

Ji i3

)
,

M2 =
(

cosψi sin ψi +
Dc2

Ji i3

)2

−
(

c2

c4

)2

cos2 ψi3 .

The discriminant of the square equation (22) has the form

Dy =
(

c2

c4

)2

cos2 ψi + sin2 ψi cos2 ψi3 −
(

Dc2

Ji i3

+ cosψi sin ψi3

)2

� 0. (23)

11



Obviously, there are some set of constants Ji i3 on which Dy � 0. However, it
is more important to ˇnd the region of the interaction constant Ji i3 values for
which both determinants Dx and Dy are positive.

In particular, as the analysis of the following condition shows:

−
∣∣∣∣ Dc2

cosψi

∣∣∣∣ � Ji i3 �
∣∣∣∣ Dc2

cosψi

∣∣∣∣, (24)

discriminant Dx is always nonnegative. On the other hand,

sinψi3
∼= − Dc2

Ji i3cosψi
, (25)

which will assure that the Dy discriminant is always nonnegative. A simple analy-
sis of the conditions (24) and (25) shows that they are compatible. In other words,
the set of constants Ji i3 which satisˇes the energy local minimum condition is
not empty and therefore the proposition b) is proved.

So, we have proved the validity of a) and b) propositions. It is obvious
that at the simulation of 1D SSC problem we can in this way ˇll up 3D space
by 1D SSC, which is equivalent to obtaining 3D spin glass. When the number
of 1D SSCs is so much that the directions of spins in 3D space are distributed
isotropically and homogeneous, the statistical properties of both problems (3D
spin glass and 1D SSCs nonideal ensemble) will be obviously identical.

The theorem is proved.

4. RESULTS OF PARALLEL SIMULATIONS

One important consequence of the theorem is that for the numerical simu-
lation of the problem we can use the algorithm for solving the direct problem.
Obviously, a large number of independent computations of 1D SSC, which can
be carried out in parallel, in statistical sense make it equivalent to the problem
of 3D spin glass. This approach considerably reduces the amount of needed
computations and helps us effortlessly simulate statistical parameters of 3D spin
glasses of large size.

The strategy of simulation consists of the following steps (see Fig. 4). At
ˇrst, the angular conˇgurations of four spin chains are randomly generated which
form random environment of the spin chain that we plan to construct later. On
a following step, a set of random constants Ji iσ are generated, which character-
izes the interactions between the random environment and the spin chain. The
interaction constants are generated by Log-normal distribution. The angular con-
ˇgurations of the random environment are generated in the same way as it is
described in [18]. Now that the environment and its in�uence on disordered

12



Fig. 4. The algorithm of parallel simulation of statistical parameters of disordered 1D SSCs
nonideal ensemble. The symbol Ωe

n describes the input of environment, M is a number
of simulation or overall number of spin chains in the nonideal ensemble, Nx is a number
of spins in chain

1D SSC are deˇned, we can go over to the computation of a spin chain which
must satisfy the condition of local energy minimum. Note that the scheme of
further computation of nonideal ensemble of 1D SSCs (see Fig. 2) is identical
to the scheme of the computation of an ideal ensemble of disordered 1D SSCs
(see [18]). Note that all calculations of 1D SSCs nonideal ensemble are done for
spin chains with 103 d0 length which require huge computational resources.

As the simulations show, for the ensemble which consists of 105 spin chains,
the dimensional effects practically disappear (see Figs. 5, a, b and 6) and the energy
distribution F (ε) has one global maximum and is precisely approximated by
Gaussian distribution (see Fig. 5, a).

Mean values of polarizations on coordinates are not very small, especially
when it comes to coordinate x (thickness of spin glass layer): px = −0.13508,
py = 0.036586, pz = −0.059995 and correspondingly the average energy of 3D

SSC is equal to ε̄ = −990.88, where p̄ =
+∞∫
−∞

F (p)pdp, p = (px, py, pz), ε̄ =

13



Fig. 5. a) The energy distribution of 1D nonideal ensemble of SSCs with 103 length. The
red line shows a numerical data visualization, while the green one illustrates its ˇtting
by Gaussian function. b) The visualization of numerical data of spinÄspin interaction
constants (pink line) and Gaussian distribution (blue line). The analysis of the numerical
data proves that the green curve is not analytic function and by the character is the L
evy
skew α-stable distribution function

Fig. 6. The polarization distributions on different coordinates after 105 simulations

0∫
−∞

F (ε)εdε and F is the distribution function. As our numerical investigations

have shown using the example of systems where the thickness of the spin glass
layer is not so large ∝ 25d0−100d0, for a full self-averaging of superspin it is
necessary to make ∝ N2

x simulations. In other words, the system can be fully
ergodic in the considered case if we continue the numerical simulations of the
spin chains up to ∝ 106 times.

14



It is analytically proved and also the parallel simulation results show that the
spinÄspin interaction constant cannot be described by GaussÄEdwardsÄAnderson
distribution (see Fig. 5, b). It essentially differs from the normal Gaussian distri-
bution model and can be approximated precisely by L
evy skew alpha-stable dis-
tribution function. Let us recall that L
evy skew alpha-stable distribution is a con-
tinuous probability and a limit of certain random process X(α, β, γ, δ; k), where
the parameters correspondingly describe an index of stability or characteristic ex-
ponent α ∈ (0; 2], a skewness parameter β ∈ [−1; 1], a scale parameter γ > 0, a
location parameter δ ∈ R and an integer k which shows the certain parametriza-
tion (see [19,20]). Let us note that the mean of distribution and its variance are
inˇnite. However, taking into account that spinÄspin interaction constant has lim-
ited value in real physical systems, it is possible to calculate distribution mean and
its variance. In particular, if J ∈ [−5, +5], then J = 0.89717 and J2 = 5.3382.

In the work we also present polarization distributions on different coordinates
(see Fig. 6). The polarization distributions are obviously very symmetric by
coordinates in the considered case (see Fig. 6).

One of the advantages of the developed algorithm is that we are able to take
into account the branching solutions at the successive constructing of the spin
chain (see Fig. 7). As calculations show, the number of branching solutions ν for
spin chains of length 103 d0 is not more than 25. At the simulation process only
those spin chains are considered for which Silvester conditions are satisˇed on
each node. If on some node the conditions are not satisˇed, we try to regenerate
Ji i+1 in order to obtain a new solution. However, if the solution is not found after
a large quantity of simulations, it means that the weight of these solutions are all

Fig. 7. The number of branching of solutions ν shown along with the spin-chain length
depending on different initial conditions which are indicated by way of various colors
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extremely small and further simulations of these spin chains are unpractical. Thus,
when the ensemble consists of a large number of spin chains, the self-averaging
of superspin (sum vector of spin chain) in 3D space occurs with high accuracy.
It is important to note that the summation procedure on the number of spins in
chain or on the number of spin chains in ensemble is similar to the procedure
of averaging by the natural parameter or ®timing¯ in the dynamical system. The
latter means that at deˇned space scales of spin glasses it is possible to introduce
the concept of ergodicity for both separate spin chains and ensemble as a whole.

5. PARTITION FUNCTION

The main object of investigation of statistical mechanics, information science,
probability theory, etc., is the partition function which is deˇned for classical
many-particle case in conˇguration space as follows [21]:

Z(β) =
∫

exp
[
−βH({r})

]
dr1dr2 . . . , β =

1
kBT

, (26)

where kB is the Boltzmann constant and T is the thermodynamic temperature.
Obviously, when the number of spins or spin chains in the system are large, we
can consider the integral (26) as a functional integral. In any case the number
of integration in the expression (26) as a rule is very large for many tasks and
the main problem lies in the correct calculation of this integral. However, in
the representation of (26) conˇgurations of spin chains that are not physically
realizable obviously make a contribution. Moreover, the weight of these conˇgu-
rations is not known in general scenario and it is unclear how to deˇne it. With
this in mind and also taking into account the ergodicity of the spin glass in the
above-mentioned sense, we can deˇne the partition function as

Z∗(β; Nx) =

0∫
−∞

exp
[
βε

]
F (ε; Nx)dε, (27)

where F (ε; Nx) is the energy distribution function in nonideal ensemble of 1D
SSCs with certain length Nx (see also deˇnition (6)). Note that the partition func-
tion will be deˇned more precisely and comprehensively if the distribution func-
tion F (ε; Nx) is replaced by the new distribution function F (ε;p; Nx), where p is
spin-chain three-climensional vector of polarization and the integration in (27) is
performed on space (ε;p).

Now we can deˇne the Helmholtz free energy for ensemble of 1D SSCs in two
different ways. Using standard deˇnition for Helmholtz free energy, we can write

Q(β; Nx) = − 1
Nxβ

ln
[
Z(β; Nx)

]
, Q∗(β; Nx) = − 1

Nxβ
ln

[
Z∗(β; Nx)

]
. (28)
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Note that the dependence on Nx of the expressions in (28) arises due to the ˇnite
layer width. In particular, using the expression of partition function (26), we can
ˇnd the average value of free energy coming on one spin in the chain (see also [22]):

Q(β; Nx) = − 1
Nxβ

〈Nx−1∑
i=0

ln
[
sinhxi

xi

]〉
, xi = Ji i+1β, (29)

where
〈
. . .

〉
designates averaging by 1D SSCs ensemble. Now the main prob-

lem is the investigation of behavior of free energy subject to the parameter β.
Correspondingly, we can deˇne two forms of free energy derivatives:

q(β; Nx) =
∂Q(β; Nx)

∂β
=

1
Nxβ2

〈Nx−1∑
i=0

{
1 + ln

[
sinh xi

xi

]
− xi coth xi

}〉
,

q∗(β; Nx) =
∂Q∗(β; Nx)

∂β
=

1
Nxβ

{
1
β

ln Z∗(β; Nx) − Z∗; β(β; Nx)
Z∗(β; Nx)

}
, (30)

where Z∗; β(β; Nx) = ∂Z∗(β; Nx)/∂β.

6. CONCLUSION

A new parallel algorithm is developed for the simulation of the classical 3D
spin glasses. It is shown that 3D spin glasses can be investigated with the help of
an auxiliary Heisenberg Hamiltonian (1). The system of recurrent transcendental
equations (3) and Silvester conditions (4) are obtained by using this Hamiltonian.
Let us note that exactly similar equations of stationary points (3) can also be
obtained if the full 3D Hamiltonian (see the ˇrst unnumbered formula) is used in
the framework of short-range interaction model. That allows us to construct step
by step a spin chain of the speciˇed length with taking into account the random
surroundings. It is proved that in the limit of Birkhoff's ergodic hypothesis
performance, 3D spin glass can be generated by Hamiltonian of disordered 1D
SSC with random environment. We have proved that it is always possible to
construct a spin chain in any given random environment which will be in ground-
state energy (direct problem). We have also proved the inverse problem, namely,
every spin chain of the random environment can be surrounded by an environment
so that it will be the solution in the ground state. In the work, all the necessary
numerical data were obtained by way of a large number of parallel simulations
of the auxiliary problem in order to construct all the statistical parameters of 3D
spin glass in the limit of ergodicity of 1D SSCs nonideal ensemble. As numerical
simulations show, the distributions of all statistical parameters become stable after
∝ N 2

x independent calculations which are realized in parallel. The idea of 1D
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Fig. 8. Two derivatives of Helmholtz's free energy shown depending on reverse temper-
ature β, which have been calculated by formulas (30) after 106 simulations. The ˇgure
shows that at low temperatures the curves approach each other which is rather natural,
resulting from the decrease of the system's entropy

spin chains parallel simulations, based on this simple and clear logic, greatly
simpliˇes the calculations of 3D spin glasses which are still considered as a
subset of difˇcult simulation problems. Let us note that computation of spinÄ
spin interactions distribution function from the ˇrst principles of the classical
mechanics is a very important result of this work. Analysis shows that the
distribution is not an analytic function. It is from the class of L
evy functions
which does not have variance J2 and mean value J̄ .

Despite the absence of calculations by other methods, it is obvious that the
developed scheme of calculations should differ from other algorithms, including
the algorithms which are based on Monte Carlo simulation method [23], in the
accuracy and efˇciency. We were once again convinced in the accuracy and
efˇciency of the algorithm after analyzing the results of different numerical ex-
periments by modeling the statistical parameters of 3D spin-glass system which
are presented in Figs. 5, a, b and 6.

In the work a new way of partition function construction (conˇguration
integral) is proposed in the form of one-dimensional integral of the energy distri-
bution, which unlike the usual deˇnitions does not include physically unrealizable
spin chains conˇgurations (see the difference of free energy derivatives on Fig. 8).
It is obvious that the new deˇnition of partition function is more correct and in
addition it is very simple for computation.

Finally, the developed method can be generalized for the cases of external
ˇelds which will allow us to investigate a large number of dynamical problems
including critical properties of 3D classical spin glasses.

Acknowledgements. The work is partially supported by RFBR grants 10-01-
00467-a, 11-01-0027-a.
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