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1. INTRODUCTION

The idea that the superconducting pairing correlations exist inside the atomic
nuclei was formulated more than ˇfty years ago [1]. As in the microscopic theory
of superconductivity [2], it was assumed that a weak attractive interaction acts
between the nucleons moving inside the nuclear mean ˇeld. This interaction can
glue two nucleons into a pair having zero angular momentum. Those pairs behave
like bosons and may form a condensat revealing the super	uid properties. The
theoretical description of the system of fermions with an attractive interaction is
based on the method of the canonical transformation [3,4] in which the quasipar-
ticle creation and annihilation operators are introduced as the linear combinations
of the nucleon creation and annihilation operators. The state having no quasipar-
ticles (the quasiparticle vacuum) is considered as the approximate ground state
of the system, consisting of even number of nucleons of the same kind (either
protons or neutrons) [5].

The accuracy of the canonical transformation method had been studied in
many papers. The main attention had been paid to the problem that the quasipar-
ticle vacuum state being a condensat of the nucleon's pairs is not the eigenstate of
the particle number operator. The ways of projecting the wave functions obtained
by canonical transformation method on the states with deˇnite number of particles
were designed and their accuracy was studied (for example and future references,
see the papers [5Ä7]).

The analysis of the accuracy of the canonical transformation method over-
looks quite often one more approximation, namely, that the in	uence of an in-
teraction resulting in the pairing correlations of superconducting type on the
energies of single-particle states was not accounted for. In other words, in order
to simplify the calculations and in order to get the solutions in explicit form,
the terms similar to G

∑
s

v4
s were neglected in the expression for the energy of

the quasiparticle vacuum state (see Eq. (3) below). Sometimes this approxima-
tion was considered as the using of the approximate equations of the canonical
transformation method. Sometimes it was interpreted as the renormalization of
the energy of single-particle state [5]. The neglecting of the terms similar to
Gv4

s can be physically justiˇed if one uses as a mean ˇeld potential the phenom-
enological shell potential with parameters ˇtted to reproduce the experimental
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values of single-particle energy. In that case ˇtting procedure accounts implicitly
for the pairing potential. If the mean ˇeld potential is calculated in the frame-
work of the HartreeÄFock or the HartreeÄFockÄBogoliubov approximations and
obtained single-particle energies are to be compared to the experimental ones, the
account of the in	uence of pairing interaction on the energy of single-particle
state becomes advisable.

As far as we know, in the literature there are no estimations of the accuracy
of this approximation and of the in	uence of the coupling between the pairing in-
teraction and the single-particle energies on the correlation function, the chemical
potential and the energy of quasiparticle states.

In the present paper the problem of the nuclear pairing correlations of super-
conducting type is solved without this approximation. We consider the simplest
model of deformed nucleus with constant pairing to avoid unnecessary techni-
cal complications. The extension of the presented considerations to the cases of
spherical symmetry and/or of more realistic pairing potentials is quite straight-
forward.

The basic formulae of the model and the solution of the equations are de-
scribed in the next section. Also it is shown how the exact equations and their
solutions may be reduced to well-known approximate ones. The third section
contains the results of numerical calculations and discussion. The main results
are summarised in the last section.

2. THE EQUATIONS

We consider the neutron subsystem of a deformed nucleus. The Hamiltonian
of the model for describing the superconducting correlations is [5]

H − λN̂ =
∑

s

∑
σ=±1

(Es − λ)a†
s,σas,σ − G

∑
s,s′

a†
s,+a†

s,−as′,−as′,+. (1)

Here a†
s,σ and as,σ are nucleon creation and annihilation operators; indices s and

σ list the single-particle states with explicit indication of the sign of the projection
of angular moment, σ = ±1; Es is the single particle energy; G is the constant of
the pairing interaction; N̂ is the particle number operator, and λ is the chemical
potential. The quasiparticle operators are introduced by the BogoliubovÄValatin
special transformation

as,σ = usαs,σ + σvsα
†
s,−σ. (2)
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The Hamiltonian (1) reduces to

H − λN̂ = 2
∑

s

(Es − λ)v2
s − G

∑
s

v4
s − G

[∑
s

usvs

]2

+

+
∑

s

{
(Es − λ − Gv2

s)(u2
s − v2

s) + 2Cusvs

}{
α†

s,+αs,+ + α†
s,−αs,−

}
+

+
∑

s

{
2(Es − λ − Gv2

s)usvs − C(u2
s − v2

s)
}{

αs,−αs,+ + α†
s,+α†

s,−

}
+

+ . . . (3)

Here the standard deˇnition of the correlation function is used [5],

C = G
∑
s′

us′vs′ . (4)

The ellipsis denotes the terms containing the normal product of four creation and
annihilation quasiparticles operators. These terms disappear after averaging over
the quasiparticle vacuum Φ0, αsΦ0 = 0.

Either the condition of minimum of the ground-state energy
(Φ0, (H − λN̂ )Φ0) or the principle of compensation of dangerous diagrams,
(Φ0, αs,σαs′,σ′(H − λN̂)Φ0) = 0, together with the requirement that the trans-
formation (2) should keep the fermion commutation rules, leads to the system of
equations

2(Es − λ − Gv2
s)usvs − C(u2

s − v2
s) = 0,

(5)
u2

s + v2
s = 1.

The usual equations of the theory of superconducting correlations [5] can be
obtained by discarding the term Gv2

s inside the ˇrst brackets of the ˇrst equation.
Chemical potential λ is chosen so that the average number of particles in a

state Φ0 equals the number of particles in the system,

(
Φ0, N̂Φ0

)
=

(
Φ0,

∑
s,σ

a†
s,σas,σΦ0

)
= 2

∑
s

v2
s = N. (6)

It is convenient to pass from the us and vs coefˇcients of the transforma-
tion (2) to the combinations

ts ≡ usvs = (Φ0, as,+as,−Φ0),

ws ≡ v2
s = (Φ0, a

†
s,σas,σΦ0),
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those are usually named the abnormal and the normal densities, respectively.
With variables ts and ws equations (5) take the form

2(C − Gts)ws + 2(Es − λ)ts − C = 0,
(7)

w2
s − ws + t2s = 0.

We eliminate the unknown ws from Eqs. (7) by the standard method [8]. Let us
consider the equations as the pair of equations with respect to ws. The equations
will have the common root ws, if the determinant composed of the coefˇcients
of the system and named resultant equals zero,

∣∣∣∣∣∣
C − Gts (Es − λ)ts − C/2 0

0 C − Gts (Es − λ)ts − C/2
1 −1 t2s

∣∣∣∣∣∣ = 0. (8)

An algebraic quartic equation with respect to ts is obtained by expanding the
determinant,

G2t4s − 2GCt3s +
(
(Es − λ)2 + C2 − G(Es − λ)

)
t2s +

1
2
GCts −

1
4
C2 = 0. (9)

The roots of a quartic equation can be expressed through the radicals composed
of the coefˇcients of the equation. However, the expressions obtained are too
cumbersome for using them. Therefore, we solved this equation numerically.
From the solutions one must select the real root satisfying the inequalities

0 < ts � 1
2
, (10)

which follow immediately from the conditions ts ≡ usvs and u2
s+v2

s = 1. Taking
this root ts, we obtain from the ˇrst of Eqs. (7)

ws =
C/2 − (Es − λ)ts

C − Gts
. (11)

If one forgets for a short time that the C is proportional to the G, and puts
G = 0, Eq. (9) goes into

(
(Es − λ)2 + C2)

)
t2s −

1
4
C2 = 0,
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and the well-known approximate solution

ts =
C

2
√

(Es − λ)2 + C2
and ws =

1
2
− 1

2
Es − λ√

(Es − λ)2 + C2
. (12)

emerges [5].
The values of ts and ws calculated according to Eqs. (9)Ä(11) depend on the

parameters C and λ. The ts and ws are substituted into Eqs. (4) and (6). And
the system of two equations with respect to C and λ is obtained:

G
∑

s

ts − C = 0,

(13)
2

∑
s

ws − N = 0.

These equations are solved numerically by the iterations.

3. NUMERICAL RESULTS

The calculations are carried out for neutrons of the nucleus 166Er with N =
98. The single-particle energies Es were calculated with the deformed SaxonÄ
Woods potential for A = 165 [9].

The calculations were carried out by the following way. For initial values C
and λ the coefˇtients of Eq. (9) were evaluated for each s. For each s all four
roots were determined and the tests showed that only one root ts satisˇes the
inequalities (10). The corresponding ws was found from Eq. (11). New values of
C and λ were obtained by solving Eq. (13).

The table shows the correlation function, the chemical potential obtained by
solving the exact Eqs. (9), (11) and (13). These results are marked by the letter
®a¯ in the table and below. The label ®b¯ indicates the solutions of Eqs. (13),
when ts and ws were calculated according to the usual approximate formulae (12).
It is seen that for all considered values of G the exact equations lead to the smaller
values of the correlation function and the chemical potential. In the model of the
independent particles, the energy of last occupied level EF = −6.218 MeV and

Correlation functions, chemical potentials, the difference of the ground-state energies
and the dispersion of the particle number in Φ0 state for the neutrons of 166Er nucleus
calculated for different values of pairing constant

G,
MeV

C, MeV
a b

λ, MeV
a b

Ea
gr − Eb

gr,
MeV

Ea
gr − Eb′

gr ,
MeV

ΔN
a b

0.108 0.439 0.515 −5.771 −5.712 −5.217 −0.010 1.53 1.78
0.122 0.838 0.893 −5.743 −5.674 −5.803 −0.009 2.33 2.46
0.136 1.254 1.306 −5.703 −5.624 −6.370 −0.009 2.89 2.99
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the energy of ˇrst vacant state EF+1 = −5.250 MeV. Thus, in both cases, the
chemical potentials are between the levels which would be the last occupied and
the ˇrst vacant ones in the absence of an interaction.

As G increases, the values of C and λ grow and the small, in size of several
tens of KeV, decrease of the correlation function and of the chemical potential in
the case (a) compared with the case (b) may be masked by the process of ˇxing
of the constant G by ˇtting to the experimental values of the pairing energy [5,9].

The energy of ground-state (quasiparticle vacuum) equals the average value
of the Hamiltonian over Φ0 and is given in the ˇrst line of Eq. (3). The table
shows the difference between the ground-state energies calculated by

Ea
gr = (Φ0, HΦ0)a = 2

∑
s

Esws(a) − G
∑

s

w2
s(a) − G

[∑
s

ts(a)

]2

,

Eb
gr = (Φ0, HΦ0)b = 2

∑
s

Esws(b) − G

[∑
s

ts(b)

]2

.

A noticeable difference in the energies of the ground states is explained by the
fact that the renormalization of single-particle energies Es − Gv2

s → Es discards
the term G

∑
s v4

s in Eb
gr. Equation (3) shows that renormalization of the single-

particle energies removes the contribution of this term to ground-state energy
even for the trivial solution in which usvs = 0 for any s. The authors of several
papers (see, for example, [10,11]) neglect the G

∑
s

v4
s term in the calculations of

the us and vs coefˇcients, of the correlation function and the chemical potential,
but restore its in computation of the ground-state energy, arriving at

Eb′

gr = (Φ0, HΦ0)b − G
∑

s

w2
s(b) =

= 2
∑

s

Esws(b) − G

[∑
s

ts(b)

]2

− G
∑

s

w2
s(b).

The table shows that the difference between Ea
gr and Eb′

gr is in ten KeV range, so
the accounting of this term allows one to get almost exact value of ground-state
energy using the solution of approximate equations.

The dispersions of the particle number in Φ0 state

ΔN =

√(
Φ0, N̂2Φ0

)
−

(
Φ0, N̂Φ0

)2

= 2
√∑

s

t2s

are shown in two last columns of the table. The particle number dispersion
calculated with the solution of exact equations is slightly less than the dispersion
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obtained with the solution of approximate equations. For all the considered values
of coupling constant G, the ratios of the particle number dispersions are close to
the ratios of the correlation functions

ΔNa

ΔNb
≈ Ca

Cb
.

The energies of one-quasiparticle states, abnormal densities ts and vs coef-
ˇcients are displayed on the ˇgures. The points presenting the values calculated
with the same G are connected by the fragments of straight line. The second row
of Eq. (3) gives the Hamiltonian of the independent quasiparticle model, and the
coefˇcient at the operator α†

s,σαs,σ is the energy of the quasiparticle state α†
σ,sΦ0.

It is
ξs = (Es − λa − Gws)(1 − 2ws) + 2Cats

Fig. 1. The properties of the single-quasiparticle states calculated with the solutions of the
exact equations. The results obtained for G equal to 0.108, 0.122 and 0.136 are presented
by solid, dashed and short-dashed lines, respectively
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for the case (a). The dependence of ξs on Es is shown in the upper part of Fig. 1.
The largest difference between the ξs values calculated with the different G is
observed near to the chemical potential, at the small |Es −λa|. It is interesting to
compare ξs to the corresponding one-quasiparticle energy calculated in case (b),

εs =
√

(Es − λb)2 + C2
b .

The ratios ξs/εs are shown in the upper part of Fig. 2. The ξs are larger than
εs almost everywhere except the small region around λ where exact quasiparticle
energies are smaller than the approximate ones.

The ts values calculated in the case (a) are shown in the middle panel of
Fig. 1 and their ratios to ts(b) Å in Fig. 2. The ts depends on the coupling
constant G, and ts calculated by solving exact equations is less than the ts
obtained by approximate formulae. It is interesting to note that the solutions of

Fig. 2. The ratios of single-quasiparticle energies, abnormal densities and vs coefˇcients
calculated with the solutions of the exact and approximate equations. For the legend see
Fig. 1
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exact equations grow faster in the region of Fermi surface than the solutions of
approximate equations (the ratios ts(a)/ts(b) have a peak near λa,b).

The vs coefˇcients calculated with solution of the exact equations are shown
in the lower part of Fig. 1 and their ratios to vs obtained with solution of approx-
imate equations Å in Fig. 2. In the (a) case vs varies with Es more steeply near
the Fermi surface than vs calculated from the approximate equations. It agrees
with general rule: when C decreased the dependence of vs on Es near λ became
sharper, transforming into a step at the C = 0. The differences in the behaviour
of vs are smoothed out as the coupling constant G increases.

4. CONCLUSIONS

We have calculated the correlation function, the chemical potential, coef-
ˇcients of a BogoliubovÄValatin transformation and energy single-quasiparticle
states for the nuclear problem of pairing correlations of superconducting type,
keeping the term G

∑
s

v4
s usually neglected, i.e., using the exact equations.

Comparison with results of calculations based on the traditional method of
renormalization of single-particle energies has shown that the correlation function
and the chemical potential in the exact calculations are slightly less than the values
obtained with the solutions of approximate equations. But this discrepancy can
be easily compensated by a small increase of the constant of monopole pairing.
And so, it is not crucial probably.

It has been shown that the traditional solution of model equations, based on
the method of renormalization of the single energy, yields signiˇcantly larger
energy of the quasiparticle vacuum compared to the one obtained by the exact so-
lution of the model. This follows from the fact that the renormalization procedure
discards the part of the attractive pairing interaction contribution to the energy of
the ground state. The account of the term G

∑
s

v4
s allows one to reproduce the

ground-state energy quite well using the solution of the approximate equations.
The authors are thankful to A.V. Sushkov for numerous discussions and help

in calculations.
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