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Beam Stability in Synchrotrons with Digital Transverse Feedback Systems
in Dependence on Beam Tunes

The beam stability problem in synchrotrons with a digital transverse feedback
system (TFS) is studied. The TFS damper kicker (DK) corrects the transverse mo-
mentum of a bunch in proportion to its displacement from the closed orbit measured
at the location of the beam position monitor (BPM). It is shown that the area and
conˇguration of the beam stability separatrix depend on the beam tune, the feedback
gain, the phase balance between the phase advance from BPM to DK and the phase
response of the feedback chain at the betatron frequency.

The investigation has been performed at the Veksler and Baldin Laboratory of
High Energy Physics, JINR.
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INTRODUCTION

A classical transverse feedback system (TFS) in synchrotrons consists of a
beam position monitor (BPM), a damper kicker (DK), and an electronic feedback
path with an appropriate signal transmission from BPM to DK [1,2]. The damper
kicker corrects the transverse momentum of a bunch in proportion to its displace-
ment from the closed orbit measured at the BPM location. The total delay τdelay

in the signal processing of the feedback loop from BPM to DK is adjusted to be
equal to τPK, the particle time of the �ight from BPM to DK, plus an additional
delay of q̂ turns:

τdelay = τPK + q̂ Trev , (1)

where Trev is the revolution period of a particle. BPM and DK are located at
the ˇxed positions in the synchrotron. The particle betatron phase advance from
BPM to DK and the phase response of the feedback loop to the corresponding
beam signal should be adjusted for damping of particle oscillations. These both
phases depend on the beam tune that is a tuneable parameter in synchrotrons.
Beam stability conditions in dependence on the beam tune are studied below.

BASIC NOTIONS

Following the matrix description of the free oscillation of a particle in syn-
chrotrons, the matrix equation for its states at the BPM location sP at the (n + 1)
and nth turns after a small kick by the DK is given by [3,4]

X̂ [n + 1, sP] = X̂ [n, sP + C0] = M̂0 X̂[n, sP] + B̂ ΔX̂K[n, sK], (2)

where elements of the column matrix X̂ [n, s] are the particle displacement x[n, s]
and the angle x′[n, s] of its trajectory, M̂0 is the revolution matrix, B̂ is a
transfer matrix from the point [n, sK] on the closed orbit at the DK location to the
point [n, sP + C0] at the BPM position at the nth turn, C0 is the synchrotron's
circumference. The ˇrst element of column matrix ΔX̂K[n, sK] is zero, but the
second one equals the kick value Δx′[n, sK]. Let the kick be in proportion to the
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particle displacement at the BPM location at the same turn:

Δx′[n, sK] =
g√
β̂Kβ̂P

x[n, sP] , (3)

where g is a feedback gain, β̂s ≡ β̂(s) is the betatron amplitude function at the
point s. Substituting (3) into (2), one can obtain the difference equation in a
matrix form:

X̂ [n + 1, sP] = M̂ X̂[n, sP], M̂ ≡ M̂0 +
g√
β̂Kβ̂P

B̂ T̂ , (4)

where T̂ is 2 × 2 matrix in which T21 = 1 and the other elements are zero.
Consequently, the particle dynamics is determined by roots zk of the characteristic
equation:

det ( zk Î − M̂ ) = z2
k − [2 cos (2πQ)+

+ g sin (2πQ − ψPK)] zk + 1 − g sinψPK = 0 , (5)

where Î is the identity matrix, Q is the beam tune, ψPK is the betatron oscillation
phase advance from BPM to DK. The particle motion is stable if |zk| < 1 so that
the damping rate is Dk ≡ − ln |zk| and the fractional number of oscillations per
turn is {Q} ≡ arg (zk)/2π.

Two eigenvalues z1 and z2 of the quadratic equation (5) depend on g, Q
and ψPK(Q). Let Q0 be the tune on the reference closed orbit in the synchrotron
for particles with momentum p0. The tune of injected particles with momentum
p0 + δp deviates from Q0 so that the phase advance ψPK(Q) for the tune Q =
Q0 + δQ is as follows:

ψPK(Q) ≡ ψPK(Q0 + δQ) =
(

1 +
δQ

Q0

)
ψPK(Q0).

Let us deˇne the rate D for the maximal absolute value of zk:

D = − ln (MAX|zk|) . (6)

In the case of under-damping oscillations one can write for Eq. (5) with real
coefˇcients:

1 − g sinψPK(Q) = z1 z2 = exp (−2D). (7)

In the case of over-damping oscillations the rate D corresponds to the slowest
exponential decay of oscillations. Hence, one can obtain two numbers of the gain
for the ˇxed tune Q with the same rate D. The three-dimensional representation
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Fig. 1. Beam stability surface (left) and contour (right) plots

of beam stability data set D(g, Q − Q0) and its contours for ˇxed dampimg
rates Dn:

D0 = 0.002, Dn = nc/80, 1 � nc � 8 (8)

are shown in Fig. 1 in the case of Q0 = 59.31 and ψPK(Q0) = 2π × 59.25.
The contour line for the damping time τ = Trev/D that corresponds to D0

is chosen for damping regime τ < τdec where the assumed decoherence time
τdec > 500 Trev. Therefore, the closed curve for D0 can be considered as the
beam stability separatix. It separates the (g, δQ) space into two distinct areas.
The particle motion within the separatrix corresponds to the damped oscillations,
whereas the outside of the separatrix corresponds to non-damped oscillations. For
example, the damping time τ � 10 Trev corresponds to the internal area of the
closed curve with nc = 8 (the smallest area in Fig. 1, right) where |δQ| < 0.14
for gain g = 0.3. It should be emphasized that in accordance with Eqs. (5) and
(7) the separatrix is limited by the fractional part of the tune {Q} = 0.5 and
δQ > −0.25 for {Q0} > 0.25 (or {Q} = 0 and δQ < 0.25 for {Q0} < 0.25),
and the δQ size is maximum in the case of | sin ψPK(Q0)| = 1.

DIGITAL TFS

In general, the kick value depends on the bunch displacement at the BPM
location according to the structural scheme of electronics in the feedback loop.
For linear time invariant feedback systems one can write

Δx′[n, sK] =
g a0√
β̂Kβ̂P

u[n − q̂]
n−q̂∑
m=0

h[m] x[n − q̂ − m, sP] , (9)

where u[n] is the Heaviside step function, elements a0 and h[m] are determined
by the feedback electronics, q̂ is the number of turns for the delay (see Eq. (1)).
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Following the approach [3Ä5] for solving Eqs. (2) and (9) by using Z-transform,
one can obtain that the particle dynamics is determined by roots zk of the char-
acteristic equation:

z2
k −

[
2 cos (2πQ) + g a0 z−q̂

k H(zk) sin (2πQ − ψPK)
]
zk+

+ 1 − g a0 z−q̂
k H(zk) sin ψPK = 0 , (10)

where the transfer function H(z) is determined by parameters h[m] in (9) and a0

is deˇned for z0 ≡ exp (j2πQ0) at the reference orbit such that

|a0z
−q̂
0 H(z0)| = 1, a0 sin

(
ψPK(Q0) − arg

(
z−q̂
0 H(z0)

))
> 0. (11)

If g = 0, then the solutions z
(0)
± = exp (±j2πQ) of Eq. (10) correspond to

the solutions for frequencies of the betatron motion equation of a particle in
synchrotrons. If the fractional part of the tune {Q} is not close to 0 or 0.5 [5,6],
then the solutions of Eq. (10) in the linear approximation with g � 1 are expressed
by the following formula:

z± ≈ exp
(
− g

2
sgn (a0) sin ΨPK

)
exp

(
±j 2πQ ∓ j

g

2
sgn (a0) cosΨPK

)
, (12)

where the sgn (a0) function is an odd mathematical function that extracts the sign
of a0 and

ΨPK = ψPK − arg
(
z−q̂

Q H(zQ)
)
, zQ ≡ exp (j2πQ) . (13)

Hence, the best damping of transverse oscillations is achieved by optimal choosing
the BPM and DK positions and the phase response of feedback electronics at the
betatron frequency that provides a phase advance of ΨPK equal to an odd number
multiplied by π/2.

To simplify further explanations, one can assume that TFS has no additional
delay (q̂ = 0) so that ΨPK depends on the tune Q via ψPK and argH .

Properties of H(z) are determined by the feedback electronics. If the kick
depends on the displacement in accordance with (3), then H(z) = 1 (the so-called
ideal feedback loop). The transfer function for TFS with the notch and Hilbert
ˇlters [7] is as follows:

H1(z) ≡ HN(z)HHF(z) =

=
(
1 − z−1

) (
h0z

−3 + h1z
−2(1 − z−2) + h3(1 − z−6)

)
, (14)

where

h0 = cos (Δϕ) , h1 =
2
π

sin (Δϕ) , h3 =
2
3π

sin (Δϕ) .
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Fig. 2. The magnitude G(Q) and phase response Φ(Q) graphs for the notch and Hilbert
ˇlters (solid) and for the notch ˇlter and the FIR ˇlter of the ˇrst order (dashed)

H(z) for TFS with the notch ˇlter and the FIR ˇlter of the ˇrst order [5] is

H2(z) ≡ HN(z)HFIR(z) =
(
1 − z−1

) (
1 + a2z

−1
)
. (15)

The magnitude G(Q) ≡ |a0 H(zQ)| and phase response Φ(Q) ≡ argH(zQ)
graphs against the fractional part of the tune {Q} are shown in Fig. 2 for ˇlters
with transfer functions H1(z) and H2(z) at Q0 = 59.31, Δϕ = −59.33◦ and
a2 = 0.576 so that G(Q0) = 1 and Φ(Q0) = 0. One can note for the interval
of |Q − Q0| < 0.1 that the deviations |Φ(Q) − Φ(Q0)| < 130◦ for the notch
and Hilbert ˇlters considerably exceed the betatron phase advance deviations
2π|Q−Q0| < 36◦ comparable with the deviations |Φ(Q)−Φ(Q0)| < 25◦ for the
notch ˇlter and the FIR ˇlter of the ˇrst order.

Damping rate contours D = − ln (MAX|zk|) for TFS with transfer functions
H1(z) and H2(z) are shown in Fig. 3 in the case of Dn from (8) and ψPK(Q0) =
2π × 59.25. The best damping is achieved for small gains at | sin ΨPK(Q0)| = 1
in agreement with Eqs. (13) and (12) due to values of Δϕ = −59.33◦ and
a2 = 0.576.

Fig. 3. Damping rate contours for TFS with transfer functions H1(z) and H2(z)
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One can note that in the case of the notch and Hilbert ˇlters the damping
time τ � 10 Trev corresponds to the internal area of the closed curve with nc = 8
(the smallest area in Fig. 3, left) where 0 < δQ < 0.02 for gain g = 0.15. The
damping time τ = 40 Trev corresponds to the closed curve with nc = 2 (the third
curve in Fig. 3, left) where −0.022 < δQ < 0.035 for gain g = 0.1. On the
other hand, in the case of the notch ˇlter and the FIR ˇlter of the ˇrst order, the
damping time τ � 10 Trev corresponds to the internal area of the closed curve
with nc = 8 (the smallest area in Fig. 3, right) where |δQ| < 0.065 for gain
g = 0.3. Hence, the area of separatrix in the case of H1(z) is much less than
the same area for H2(z), which, in its turn, is less than the separatrix area for
H(z) = 1 (see Fig. 1, right).

Fig. 4. Dependences of Trev/τ on gain g for H(z) = 1 (dotted-dashed), HN(z) (dotted),
H1(z) (solid), H2(z) (dashed) on the left side and for TFS with H1(z) at Δϕ = −116.4◦

(solid), Δϕ = −76.4◦ (dashed), Δϕ = −156.4◦ (dotted) on the right side

It should be emphasized that the phase advance ΨPK(Q0) can be matched
to optimal magnitude by choosing the digital ˇlter parameters according to the
phase advance ψPK(Q0). For example, if ψPK(Q0) = 2π × 59.092 at Q0 = 59.31,
then | sinΨPK(Q0)| = 1 can be achieved for Δϕ = −116.4◦ or a2 = 2.86 (see
Fig. 4, left). One can see that there is no beam stability for TFS with the notch
ˇlter (HN(z) = 1 − z−1) for these numbers of ψPK(Q0) and Q0. Damping times
for the ideal feedback loop (H(z) = 1, but | sin ψPK| < 1) is much bigger than
the same values in the case of H1(z) and H2(z) for g < 0.25. Damping rate
contours for TFS with H1(z) and H2(z) at Δϕ = −116.4◦ and a2 = 2.86 look
like the contours in Fig. 3. However, Dn-contours and damping rates depend on
Δϕ. For example, if Δϕ = −116.4◦ ± 40◦, then the damping rates are less than
those at Δϕ = −116.4◦ (see Fig. 4, right). This dynamic behavior can be used
for tuning and optimisation of the transverse feedback loop parameters.

Acknowledgements. The author thanks W.Héo�e, R. Louwerse and D.Valuch
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discussions.
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