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An Inductive Algorithm for Smooth Approximation of Functions

An inductive algorithm is presented for smooth approximation of functions,
based on the Tikhonov regularization method and applied to a speciˇc kind of the
Tikhonov parametric functional. The discrepancy principle is used for estimation of
the regularization parameter. The principle of heuristic self-organization is applied
for assessment of some parameters of the approximating function.

The investigation has been performed at the Laboratory of Information Tech-
nologies, JINR.
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INTRODUCTION

In spite of a big amount of existing methods for smooth approximation
and software developed, they are frequently insufˇcient to meet the need of the
oncoming recent technological developments. For instance, certain difˇculties
exist in the case of many dimension, large data volumes (∼ 100 000 data points
are usual for terrain modeling); nonhomogeneous data (clusterized data), ˇnding
the derivatives with high accuracy.

Also, some methods need the value of some parameter to be set up ad hoc,
manually, so it is necessary to ˇnd methods for automatic choice of its best value.
The subject of the present paper is to introduce an inductive algorithm for smooth
approximation of functions, based on the Tikhonov regularization and applied to
a speciˇc kind of the Tikhonov parametric functional.

The discrepancy principle is used for estimation of the regularization para-
meter α.

The principle of heuristic self-organization is applied for assessment of some
parameters and to increase the predictive ability of the model. The efˇciency of
the algorithm is illustrated using two examples. The ˇrst one is approximation
of simple model function, given in N points on the interval [a, b]. Artiˇcial
normally distributied error was added using the random numbers generator. The
second one is estimation of the gain and the contrast gain of the d-wave in the
electroretinogram.

APPROXIMATION PROBLEM

The approximation problem can be posed in the following way:
Given:

Az = u ≡ (z(x1), z(x2), . . . , z(xN )), z ∈ Z, (1)

where {xi, i − 1, . . . , N} is a lattice of knots on [a, b], Z is metric space.
Find the element:

z ∈ Z : Az = u, u ∈ RN .

Let uσ and σ > 0 are given, instead of u, so that ρ(uσ, u) < σ, where ρ is the
metric in RN , i.e. the data include experimental error. This problem is ill-posed
because of the existence of an inˇnite number of solutions (broken condition
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of uniqueness). In addition, A−1 could not be continuous (broken condition of
stability).

To solve this problem, one must introduce some additional information about
the solution such as assumption on the smoothness. Following the Tikhonov
regularization method [1], the solution is the function g(x) ∈ Z that minimizes
the Tikhonov parametric functional:

Mα(z, uσ) = ρ2(Az, uσ) + αΩ(z),
Mα(g, uσ) = inf

z∈Z
Mα(z, uσ) = inf

z∈Z

(
ρ2(Az, uσ) + αΩ(z)

)
. (2)

Parameter of regularization α is estimated from the condition for the discrepancy:

ρ(Ag, uσ) = σ. (3)

The regularization method is determined by the choice of:
• solution space Z and stabilizer Ω(z);
• estimation of the parameter of regularization α according to additional

information (experimental error σ).
A large class of approximation methods including the splines are based on the

condition of smoothness. It can be formulated within the variational principle as

a minimization of some smoothness functional. For example, Ω(z) =
b∫

a

∣∣∣∣d
2g

dx2

∣∣∣∣
2

dx

is the case of cubic smoothing spline. Probably the most general form of this
approach was introduced by Talmi and Gilat [2].

BRIEF DESCRIPTION OF THE METHOD

We start with the deˇnition of the ®smoothness co-functional¯ (inner product)
which is the central point of the theory.

Let g(x) and h(x) be elements of the space W of the complex analytic
functions, deˇned and ˇnite (they and all their derivatives) on [a, b].

Then we can express this inner product in the form

I(g, h) =
∞∑

n=0

Bn

b∫
a

g(x)(n)∗h(x)(n)dx, (4)

where Bn are (arbitrary) nonnegative constants, chosen to ensure the convergence
of the series.

For g(x) ≡ h(x), this functional naturally induces semi-norm:

I(g, g) = I(g) =
∞∑

n=0

Bn

b∫
a

∣∣∣g(n)(x)
∣∣∣2dx, (5)
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called ®smooth norm¯, because it represents in some sense the smoothness
of g(x).

Let Ω(g) = I(g).
Now the approximation problem can be formulated as follows:

Construct a series g(x) =
∞∑

k=1

AkΦk(x), where {Φk(x)} is a set of ®orthog-

onal¯ functions, i.e., I(Φk, Φl) = δklI(Φk), so that

Mα(z, F ) = ρ2(Ag, F ) + αΩ(g) =

=
N∑

i=1

|F (xi) − g(xi)
∣∣2 ωi + αI(g) = min, (6)

F (xi), i = 1, 2, . . . , N , are the experimental data, ωi are weights, α is the para-
meter of smoothing (regularization),  nd g(x) is the approximating function.

It is proved [2] that there exists one and only one solution:

g(x) =
N∑

n=1

λjR(x, xj), (7)

where

R(x, y) =
∞∑

k=1

Φk(x)Φ∗
k(y)

I(Φk)
,

and λj are found by the solution of the set of linear equations:

g(xi) =
N∑

j=1

λj

[
R(xj , xj) +

α

ωj
δij

]
= F (xi) i = 1, . . . , N. (8)

It is naturally to choose the weights ωi in accordance with data errors σ(xi): ωi =
[σ(xi)]−2.

The choice of smoothing parameter α is very important. Too small α leads
to spiky curve. Too large α leads to smooth curve, but far from the data. The
optimal value of α, such that the solution g(x) is regularized, can be found from
the discrepancy condition (3).

Among the advantages of this methods are: its ability to obtain a good
approximation, not only of the data points, but also of their ˇrst and higher
derivatives; ability to include additional information and constraints given by the
theory or experiment. The method is extended to spaces of arbitrary dimension:

I(g) =
∞∑

n1,n2,...,nL

Bn1n2...nL

∫
dV

∣∣∣∣∂
n1+n2+...+nLg(x1, x2, . . . , xL)

∂xn1
1 ∂xn2

2 . . . ∂xnL

L

∣∣∣∣
2

.
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PRACTICAL REALIZATION

There is some freedom in choice of coefˇcients Bn. This allows one to
express R(x, y) by simple functions according to the choice of Bn [2]. To
distinguish between ®near¯ and ®distant¯ points, a measure D, called ®correlation
length¯, is introduced. D can be chosen somewhat arbitrarily and it is related to
the average density of points. The choice of D will be discussed later.

In this paper we choose Bn =
D2n

(2n)!
. Then R(x, y) has the following form:

R(x, y) = 1/(2 D cosh (πr/2D)).

Fortran codes for smooth approximation for functions of one, two, three dimen-
sions have been developed based on this method. They were applied to many
physical problems [3Ä6].

CHOICE OF CORRELATION LENGTH D

To ˇnd the optimal value of D, we use an inductive approach based on
the principle of heuristic self-organization [7] and principle of external comple-
ment [8]. According to these principles, an optimal mathematical model corre-
sponds to the minimum of some ®external¯ criterion, i.e., based on additional
fresh information, which was not used for model construction. To do this, we
perform the following steps:

1. Split data sample into two subsamples:
• learning set A: NL data points, distributed as uniformly as possible, and
• the rest (NV = N − NL data points) Å validation set B.
2. Estimate coefˇcients λj , j = 1, . . . , N of the approximating function g and

the smoothing parameter α using the proposed method (Eqs. (3), (6) and (8)) and
learning set A.

3. Calculate values of the external criterion for the approximating function g
using the validation set B for different values of the correlation length D.

4. Choice of the best model (best D) corresponding to the minimal value of
external criterion.

We have to achieve two aims:
• For the ˇrst aim Å to obtain an optimal estimation of the parameters of

the approximation {λj} and smoothing parameter α, we use the criterion for
minimum of Tikhonov functional (6) over some subset of data (training set A).

• For the second aim Å ˇnding the model with good prognostic properties
(optimal D), we need second criterion over different subset of data (validation
set B). In this paper we use the criterion for minimum of maximum deviation on
the validation set B.
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The advantages of this approach are:
• Better level of automatization due to automatic choice of the best value

of the correlation length D. One needs to enter initial data sample and type of
external criterion only.

• Improve the predictive ability of the model. In particular, we ˇnd the
approximating function by maximizing its performance on some set of data.
However, its performance is determined not only by its accuracy on this set of
data, but also by its ability to predict well on unseen data.

There are also some problems.
• Only one part of the data is used for ˇtting. This leads to higher variance.
• An open question is how big should the learning set be? Relatively

large learning sets lead to overˇtting, relatively small training sets lead to under-
ˇtting.

APPLICATIONS OF THE METHOD

The efˇciency of the method is illustrated by two examples. The ˇrst one is
the approximation of simple model function F (x). The second one is estimation
of the gain and the contrast gain of the d-wave in the electroretinogram.

Approximation of Model Function. The function F (x) =
1

1 + x2
is given

in N points on the interval [a, b]. An artiˇcially generated normally distributed
random errors are added to analytically computed values with standard devia-
tion σ:

Fσ(xi) = F (xi) + σi.

The noised values Fσ(xi) are applied as input for checking the algorithm. We
divide given data into two sets in the following way: the points with odd i form
the learning set, the rest Å validation set. The coefˇcients λj , j = 1, . . . , N ,
are determined for different values of D using the proposed method (Eqs. (3), (6)
and (8)) and the data from learning set. To ˇnd the optimal value of the parame-
ter D, we use the data from the validation set and the criterion for minimum of
maximum error Δ over the validation set:

Δ = max
i=1,NV

|g(x∗
i ) − Fσ(x∗

i )| = min, (9)

where g(x∗
i ) and F (x∗

i ) are the approximating function and ®experimental value¯,
and NV is the number of points in the validation set.

The results for N = 17 and σ = 0.01, σ = 0.05, σ = 0.1 are shown in Fig. 1.
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Fig. 1. Approximation of function F (x) =
1

1 + x2
, N = 17, x ∈ [−5, 5]. Analitically

computed function F Å solid lines, approximating function Fappr Å dashed lines, ®ex-
perimental data¯ Fσ Å symbols
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ESTIMATION OF THE GAIN AND THE CONTRAST GAIN
OF THE D-WAVE IN THE ELECTRORETINOGRAM

Electroretinography measures the electrical responses of various cell types in
the retina. Control of the gain (sensitivity) and the contrast gain (contrast sensi-
tivity) of the visual responses is very important for the visual system. It allows
discrimination between objects of different intensity and contrast in conditions of
ambient illumination, varying in an enormously wide range (1011), while using a
restricted dynamic range of the responses of the visual cells.

The gain and the contrast gain can be estimated on the basis of the measured
response vs. intensity function V (I):

• V (I) describes the response vs. intensity function of the cells in the
peripheral retina.

• dV/d(I) is used for estimation of the gain (sensitivity) of the light re-
sponses.

• dV/d(log I) is a measure of contrast gain (contrast sensitivity) of these re-
sponses.

A mass electrical response from the retina (electroretinogram Å ERG) is
easily recorded and widely used in the research or clinical practice for evaluation
of functional state of the retina as well as an objective criterion for the sensitivity
of the visual system, because there is a good correlation between ERG and
psychophysical sensitivity.

The proposed method was applied for estimation of the gain and the contrast
gain. A computer code is developed for estimation of the gain and the contrast
gain according to the experimentally measured values of V (I). We split data set
into two subsets in the following way: the points with odd i form the learning
set, the rest Å validation set. The coefˇcients λj , j = 1, . . . , N , are determined
for different values of D using the proposed method (Eqs. (3), (6) and (8)) and
the data from the learning set. To ˇnd the optimal value of the parameter D, we
use the data from the validation set and the criterion for minimum of maximum
error Δ over the validation set.

The results of application of the algorihm for estimation of the gain and the
contrast gain of the d-wave in the electroretinogram recorded from turtle retina
are shown in Fig. 2. The curves calculated for different values of the parameter D
are drawn by different kind of lines. It is seen that the best results for V (log (I)),
as well as for gain and the contrast gain, are for the value of D corresponding to
minimum of external criterion Δ.

CONCLUSION

We have presented an efˇcient algorithm for smooth approximation of data.
The main advantages of this approach are:
1. The Tikhonov regularization ensures stability of the solution.
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Fig. 2. Estimation of the gain and the contrast gain of the d-wave in the electroretinogram
recorded from turtle retina
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2. The speciˇc choice of smoothing functional has many advantages:
• Simultaneously good approximations for the function as well as for its

derivatives;
• high degree of �exibility Å it is possible to incorporate into it additional

information such as the derivatives or some constraints from the theory and
experiment;

• a smooth connection of data points belonging to different ranges of a given
parameter;

• it is easy to extend the method for arbitrary dimension.
3. The inductive approach based on the principle of heuristic self-organization

ensures better level of automatization and improves the predictive ability of the
model.

In conclusion, we believe that the method presented here will be useful for
a large variety of problems encountered in the ˇeld of science and technology,
where here is a need to ˇt data by analytical functions.
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