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SpinÄIsospin Excitations in Nuclei and a Separable Approximation
for Skyrme Interactions

A ˇnite rank separable approximation of Skyrme forces is applied to study
charge-exchange excitations in spherical nuclei. This approximation enables one to
reduce considerably the dimensions of the matrices that must be diagonalized to
perform QRPA calculations in large conˇguration spaces. Choosing as examples
the nuclei 90Zr, 132Sn and 126,128,130Cd, we demonstrate an ability of the method
to study the GamowÄTeller and spin-dipole strength distributions. It is shown that
characteristics calculated within the approach are in a reasonable agreement with
available experimental data.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical
Physics, JINR.
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INTRODUCTION

A study of the charge-exchange nuclear modes is an interesting problem not
only from the nuclear structure point of view, but it is very important for the
nuclear astrophysics applications. Many versions of the self-consistent approach
based on the Random Phase Approximation (RPA) or the quasiparticle RPA
(QRPA) were developed during last years, see, for example, [1Ä10]. A com-
parison of such calculations with recent experimental data demonstrates that model
mentioned above cannot reproduce correctly the strength distribution of the spinÄ
isospin resonances. It is necessary to take into account a coupling with more
complex conˇgurations that results in shifting some strength up [11Ä13]. More-
over, the tensor forces can give an additional shift [10, 11]. It is much simpler
to include a coupling in QRPA calculations if one uses separable forces [12Ä14].
This idea stimulated us to develop the ˇnite rank separable approximation (FRSA)
for the Skyrme interactions [15, 16] that enables one to perform calculations in
the large conˇguration space. Applications of our method to study the low-lying
states and giant resonances within the QRPA and beyond are given in [15Ä18].
Recently, we have proposed an extension of our approach for the charge-exchange
nuclear excitations [19Ä21]. Before to investigate effects of the coupling we need
to be sure that the ˇnite rank approximation for the Skyrme interactions is good
enough to reproduce main characteristics of such nuclear modes.

In this work we describe brie�y our method for the charge-exchange exci-
tations and present our investigations of properties of the GamowÄTeller (GÄT)
resonances and the spin-dipole (SD) resonances in some spherical nuclei.

1. THE METHOD

The starting point of the method is the HFÄBCS calculation [22] of the
parent ground state, where spherical symmetry is imposed on the quasiparticle
wave functions. The continuous part of the single-particle spectrum is discretized
by diagonalizing the Skyrme HF Hamiltonian on a harmonic oscillator basis.
We work in the quasiparticle representation deˇned by the canonical Bogoliubov
transformation:

a+
jm = ujα

+
jm + (−1)j−mvjαj−m, (1)
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where jm denote the quantum numbers nljm. We use the Skyrme interaction [23]
in the pÄh channel, while the pairing correlations are generated by the surface
peaked density-dependent zero-range force

Vpair(r1, r2) = V0

(
1 − ρ(r1)

ρc

)
δ(r1 − r2). (2)

Here ρ(r1) is the particle density in the coordinate space, ρc is equal to the
nuclear saturation density, the strength V0 is the parameter ˇxed to reproduce
the odd-even mass difference of nuclei in the study region. In order to avoid
divergences, it is necessary to introduce a cutoff in the single-particle space. This
cutoff limits the active pairing space above the Fermi level. We used a procedure
that is proposed in [16,24].

The residual interaction in the pÄh channel Vres can be obtained as the second
derivative of the energy density functional with respect to the particle density ρ.
Following our previous paper [15], we simplify Vres by approximating it by its
LandauÄMigdal form. For Skyrme interactions all Landau parameters with l > 1
are zero and they are functions of the coordinate r. We keep only the l = 0 terms
in Vres and the expressions for F ′

0, G
′
0 in terms of the Skyrme force parameters can

be found in [25]. The Coulomb and spin-orbit residual interactions are dropped.
Therefore, we can write the residual interaction in the isovector channel in the
following form:

Vres(r1, r2) = N−1
0 [F ′

0(r1) + G′
0(r1)σ(1) · σ(2)]τ (1)τ (2)δ (r1 − r2), (3)

where σ(i) and τ (i) are the spin and isospin operators, and N0 = 2kF m∗/π2
�

2

with kF and m∗ standing for the Fermi momentum and nucleon effective mass
in nuclear matter.

In what follows we use the second quantized representation and V̂res can be
written as

V̂res =
1
4

∑
1234

(V1234 − V1243) : a+
1 a+

2 a4a3 := V̂M + V̂SM , (4)

where a+
1 (a1) is the particle creation (annihilation) operator and 1 denotes quan-

tum numbers (n1, l1, j1, m1). Following our method [15Ä18], the residual inter-
actions can be reduced to a ˇnite rank separable form:

V̂M = −2
∑
JM

N∑
k=1

κ
(k)
F : M̂

(k)+
JM M̂

(k)
JM :, (5)

V̂SM = −2
∑
JM

∑
L=J;J±1

N∑
k=1

κ
(k)
G : Ŝ

(k)+
LJM Ŝ

(k)
LJM :, (6)

2



(
κ

(k)
F

κ
(k)
G

)
= −N−1

0

Rwk

2r2
k

(
F

′

0(rk)
G

′

0(rk)

)
, (7)

where R is a large enough cutoff radius for a N -point integration Gauss formula
with abscissas rk and weights wk [15].

The operators entering the normal products in Eqs. (5), (6) are deˇned as
follows:

M̂
(k)+
JM = (−1)J−M Ĵ−1

∑
jnjpmnmp

〈jnmnjp − mp | JM〉×

× f
(Jk)
jnjp

(−1)jp−mpa+
jnmn

ajpmp , (8)

Ŝ
(k)+
LJM = (−1)J−M Ĵ−1

∑
jnjpmnmp

〈jnmnjp − mp | JM〉×

× g
(LJk)
jnjp

(−1)jp−mpa+
jnmn

ajpmp . (9)

f
(Jk)
jnjp

are the single-particle matrix elements of the multipole operators,

f
(Jk)
jnjp

= ujn(rk)ujp(rk)〈jn||iJYJ ||jp〉, (10)

and g
(LJk)
jnjp

are the single-particle matrix elements of the spin-multipole operators,

g
(LJk)
jnjp

= ujn(rk)ujp(rk)〈jn||iLTLJ ||jp〉. (11)

In the above equations, 〈jn||iJYJ ||jp〉 is the reduced matrix element of the spher-

ical harmonics YJM , Ĵ =
√

2J + 1, TLJM (r̂, σ) = [YL × σ]MJ . The radial wave
functions uj(r) are related to the HF single-particle wave functions,

φi,m(1) =
ui(r1)

r1
Ym

li,ji
(r̂1, σ1). (12)

We introduce the phonon creation operators

Q+
JMi =

∑
jnjp

(XJi
jnjp

A+(jnjp; JM) − (−1)J−MY Ji
jnjp

A (jnjp; J − M)), (13)

A+(jnjp; JM) =
∑

mnmp

〈jnmnjpmp | JM〉α+
jnmn

α+
jpmp

, (14)

where the index J denotes total angular momentum and M is its z-projection in
the laboratory system. One assumes that the ground state is the QRPA phonon
vacuum |0〉 and the excited states are deˇned as Q+

JMi|0〉. Making use of the
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linearized equation-of-motion approach one can get the QRPA equations [22]:(
A B
−B −A

) (
X
Y

)
= ω

(
X
Y

)
. (15)

The AJ
(jnjp)(j′nj′p) matrix is related to forward-going graphs and the BJ

(jnjp)(j′nj′p)

matrix is related to backward-going graphs. The dimension of the matrices A,B
is the space size of the two-quasiparticle conˇgurations. The explicit solution
of the corresponding QRPA equations is described in detail elsewhere [21]. Our
approach enables one to reduce remarkably the dimensions of the matrices that
must be inverted to perform nuclear structure calculations in very large conˇg-
uration spaces. It is shown that the matrix dimensions never exceed 4N × 4N
independently of the conˇguration space size. Our previous study of the FRSA
applied to charge-exchange excitations [21] enables us to conclude that a value
N = 45 for the number of Gauss points in the radial integrals is sufˇcient for the
desired accuracy in all nuclei with A � 208.

The excitation energies with respect to the parent ground state are

E∓
Ji = ωJi ∓ (λn − λp), (16)

where ωJi denotes the QRPA energies in the T∓ channels, λn and λp being the
neutron and the proton chemical potentials, respectively.

2. RESULTS

First, we show the accuracy of the FRSA by comparing results obtained using
this separable approximation with those from a full treatment of the Skyrme-type
pÄh residual interaction. We select the SD transitions in the T− and T+ channels
from the parent ground states of 90Zr and 132Sn as illustrative cases. For the
sake of simplicity the check is done within the TammÄDancoff approximation
(TDA) without pairing effects. The RPA results would be similar because the
backward-going graphs are somewhat blocked in these charge-exchange channels,
and in any case we are just interested here in assessing the validity of the FRSA.

In this work, the calculations are done with the Skyrme parameter set
SGII [25] which was designed to give reasonable values for the spinÄisospin
Landau parameters (G0 = 0.01, G′

0 = 0.50 at saturation density). The HF mean
ˇeld is ˇrst calculated in coordinate space, then the single-particle spectra nec-
essary for the TDA calculations (energies and wave functions) are obtained by
diagonalizing the HF mean ˇeld in a 12-shells harmonic oscillator basis and keep-
ing all states below 100 MeV. This is sufˇcient to exhaust the Ikeda sum rule
3(N − Z) [26] for the GÄT strength as well as the SD sum rule [27,28]:

S− − S+ =
9
4π

(N〈r2〉n − Z〈r2〉p), (17)
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where
S∓ =

∑
ν

|〈N, Z|Ô∓|N ∓ 1, Z ± 1; ν〉|2 (18)

are the total SD transition strengths to the neighbouring daughter nuclei induced
by the operators

Ô∓ =
∑

i,m,μ

rit∓(i)σm(i)Y μ
1 (r̂i). (19)

All calculations are without any quenching factor. In the ˇgures, the calcu-
lated strength distributions are folded out with a Lorentzian distribution of
1 MeV width.

We compare the SD sum rule (17) calculated in FRSA and with the full
SGII force [21]. To compare our calculations with experimental data in 90Zr we
choose the energy interval E � 50 MeV for the T− channel and E � 26 MeV
for the T+ channel [7, 28]. The FRSA sum rules are quite close to those of
the full calculations. The calculated values S−, S+ agree well with experi-
mental data [7, 28] in 90Zr. The SD sum rule (17) is an integral character-
istic and it is less sensitive to the details than the SD strength distribution.
The calculated T− and T+ strength distributions in various Jπ channels are
shown in Figs. 1 and 2, for the 90Zr case. The excitation energies refer to
the ground state of the parent nucleus 90Zr. The experimental strength distribu-
tions [7,28] for the T− and T+ channels are results of the multipole decomposition
analysis done for the 90Zr (p, n) 90Nb and 90Zr (n, p) 90Y reactions, respectively.
From Figs. 1 and 2, it can be seen that the FRSA reproduces the essential fea-
tures of the SD strength distributions with a downward shift about 0.9 MeV in
the positions of the high energy peaks for the T− and T+ channels. Thus, the
pÄh interaction in the FRSA is slightly weaker than the original interaction. The
difference between the full calculation and the FRSA is small in global compar-
ison with the experimental data. There is the missing of signiˇcant part of the
experimental strength distribution in the region above the main peaks. One can
expect a redistribution of strength if the coupling of the 1pÄ1h conˇgurations to
more complex 2pÄ2h conˇgurations is taken into account [11, 13, 29]. The pÄh
interaction of the form Eqs. (5), (6) allows one to simplify the calculation of such
couplings, and this study is now in progress. It is worth mentioning that the SD
strength distributions in 90Zr are rather well studied within the 1pÄ1h conˇgura-
tion space (for example, see [6,7,9]). The effect of the tensor correlations on the
SD strength distributions is studied in [30].

We have done a similar check of the FRSA in the case of the parent nucleus
132Sn. A perfect agreement is obtained between the r.h.s. of Eq. (17) and the l.h.s.
calculated either in FRSA or full Skyrme TDA [21]. The SD strength distributions
summed over the three Jπ components in both T− and T+ channels are shown
in Fig. 3. As can be seen from Fig. 3, the FRSA treatment changes slightly the
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Fig. 1. Spin-dipole strength distributions in the T− channel of the parent nucleus 90Zr.
The results with the FRSA for the pÄh interaction (dashed lines), and with the full pÄh
interaction (solid lines) are shown. The black dots correspond to the experimental data

energies of the peaks in 132Sb. However, we ˇnd that the general structure
remains the same. The two low-lying peaks are due to the 2− excitations. The
main conˇguration of the peak at E = 2.0 MeV (1.5 MeV in the FRSA case) is{

π1g
7
2
ν1h

11
2

−1}
. At the same time, the leading contribution of the peak at E =

9.1 MeV (8.8 MeV in FRSA) comes from the conˇguration

{
π1h

11
2

ν1g
7
2

−1}
.

The peak around E = 17.9 MeV is related with the collective 0−, 1−, and
2− states. The peak energy is moved downward by about 0.5 MeV in FRSA. The
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Fig. 2. The same as in Fig. 1, for the T+ channel

main features of the high-energy broad bump are well reproduced by the FRSA.
For the T+ channel, the Pauli blocking of the neutron excess in 132Sn is the
reason why there is only one sharp peak in the strength distribution, and the S+

value is much smaller than the S− value. The Jπ = 0−, 1−, and 2− states in
the daughter nucleus 132In are concentrated in the sharp peak at E = 14.1 MeV
which is shifted downward by 0.5 MeV if one uses the FRSA. The 0− and 1−

states are due to the

{
ν1h

9
2
π1g

9
2

−1}
conˇguration. The main conˇgurations of

the 2− state are the

{
ν1h

9
2
π1g

9
2

−1}
and

{
ν2f

5
2
π1g

9
2

−1}
.

One can thus conclude that the FRSA can reliably be used for the study of
charge-exchange modes in the 90Zr as well as 132Sn regions.
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Fig. 3. The spin-dipole strength distributions summed over Jπ = 0−, 1−, 2− in both T∓
channels in 132Sn. The same notations as in Figs. 1 and 2

There is a relation between the N = 82 shell closure and the A ≈ 130 peak
of the solar r-process abundance distribution [31]. The N = 82 isotones below
132Sn are important for stellar nucleosynthesis, see, e.g., [32Ä35]. It is interesting
to study the properties of the GÄT and SD states in 126−130Cd within the QRPA.

We use the isospin-invariant surface-peaked pairing force (2), with the value
ρ0 = 0.16 fm−3 of the nuclear saturation density corresponding to the SGII force.
The strength V0 = −870 MeV fm3 is ˇtted to reproduce the experimental pairing
energies [21]. The deˇnition of the pairing force (2) involves the energy cutoff
of the single-particle space to restrict the active pairing space. We use the soft
cutoff at 10 MeV above the Fermi energies as proposed in [16,24].

Figure 4 shows the evolution of the GÄT strength distributions in 126,128,130Cd.
One can see that the major part of the strength is concentrated in the peaks at
E = 14.9, 14.3, and 13.8 MeV for 126Cd, 128Cd, and 130Cd, respectively. The
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Fig. 4. The GÄT strength distributions in 126Cd (solid line), 128Cd (dashed line), 130Cd
(dotted line)

largest contribution in the peaks comes from the conˇguration

{
π1h

9
2
ν1h

11
2

}
.

About 99% of the GÄT strength distribution is located below 30 MeV with re-
spect to the parent ground state. Taking into account the QRPA tensor correlations
within our approach [37] can improve the results. The tensor correlations can
shift up about 10% of the GÄT strength to the higher energy region in the case
of 90Zr and 208Pb [10,36,37].

The evolution of the SD strength in the T− channel of the three Jπ compo-
nents is shown in Fig. 5. A comparison of the calculated SD sum rule with the
right-hand side of Eq. (17) shows that the SD sum rule is exhausted with a good
accuracy [21]. The slight increase in the S− value and the noticeable decrease
in the S+ value when the mass number grows. It is worth mentioning that the
ratio 5 : 3 : 1 of the three Jπ components of the S−−S+ value is fulˇlled in our
calculations. As can be seen from Fig. 4, for the T− channel the fragmentation
of the SD strength distributions increases with the value of J . The distributions
are shifted to lower energies as one goes from 126Cd to 130Cd. In particular,
the peak energy of the Jπ = 0− mode of the SDR is 26.4, 25.7, and 25.0 MeV
in 126Cd, 128Cd, and 130Cd, respectively, and many conˇgurations contribute
to these structures. For the 1− excitations, the shift of the main sharp peak is
about 1 MeV. At the same time, the contribution of the leading conˇguration{

π2i
11
2

ν1h
11
2

}
is decreasing from 54% for 126Cd to 45% for 130Cd. The spec-

trum of the 2− states is fragmented in a wide energy range. There are two peaks
in the strength distribution at lower energies. These low-energy excitations are
of noncollective nature. In all three nuclei, the lowest peak is mainly due to the
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Fig. 5. Spin-dipole strength distributions of the T− channel in 126Cd (solid line), 128Cd
(dashed line), 130Cd (dotted line)

conˇguration

{
π1g

7
2
ν1h

11
2

}
, while the dominant conˇguration of the second

one is

{
π1h

11
2

ν1g
7
2

}
. It is worth pointing out that these conˇgurations induce

the low-energy peaks obtained in 132Sn, as is discussed above. Most of the 2−

strength is concentrated in the two peaks around 17.5(16.4) and 23.8(22.6) MeV
in 126Cd(130Cd). Thus, the three Jπ modes of the SDR in 126,128,130Cd keep to
the energy hierarchy E(2−) < E(1−) < E(0−) as already found in 90Zr [6,7,9].

The general behavior of the sharp peaks in the T+ strength distribution is
displayed in Fig. 6. With increasing mass number, the peak energy is moved
upward from 14.0 MeV in 126Cd to 14.8 MeV in 130Cd. As expected, the
Pauli blocking effect leads to a small contribution to the SD sum rule (17).
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Fig. 6. The same as in Fig. 5, for the T+ channel

The peaks in the 0− and 1− distributions have a noncollective structure with a

dominant conˇguration

{
ν1h

9
2
π1g

9
2

}
. In the case of the 2− states, the leading

conˇgurations are

{
ν2f

5
2
π1g

9
2

}
and

{
ν1h

9
2
π1g

9
2

}
. The situation is similar

to the 132Sn case. The structure peculiarities of the SD strength distributions are
related with the shell structure in this region of nuclei.

CONCLUSION

A ˇnite rank separable approximation of Skyrme-type forces, which was
proposed in our previous work, is applied to study the charge-exchange nuclear
modes. The suggested approach enables one to reduce remarkably the dimensions
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of the matrices that must be inverted to perform nuclear structure calculations in
very large conˇguration spaces.

As an illustration we present results of HF-TDA calculations for the GamowÄ
Teller and spin-dipole resonances in 90Zr and 132Sn. The values calculated within
FRSA are very close to those that were calculated with the full Skyrme interac-
tion. A comparison of our results with experimental data and other theoretical
calculations demonstrates that the method gives a good description of properties
of the charge-exchange excitations.

We have studied the GÄT and spin-dipole strength distributions of the parent
nuclei 126,128,130Cd in the T+ and T− channels by performing QRPA calculations
with the FRSA and the Skyrme parametrization SGII. Similarly to the case of
90Zr we ˇnd that the peak energies of the spin-dipole distributions in these Cd
isotopes obey the energy hierarchy E(2−) < E(1−) < E(0−).

An inclusion of the tensor terms of the Skyrme interaction and taking into
account the coupling of the QRPA states with more complex components of the
wave functions are in progress now.
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