В. В. Пупышев*

РАССЕЯНИЕ ПРОТОНА АТОМОМ ВОДОРОДА
В ЭФФЕКТИВНО-ДВУХЧАСТИЧНОЙ МОДЕЛИ

Направлено в журнал «Ядерная физика»

*E-mail: pupyshev@thsun1.jinr.ru
Proton-Hydrogen Atom Scattering in Effective Two-Body Model

By assumption, the total proton-hydrogen atom interaction is the sum of the short-range nuclear Reid potential with a soft core and the long-range Thomas–Fermi potential. The quantum-mechanic analysis of the low-energy peculiarities of the phase-shift and cross-section of the proton-hydrogen atom scattering is given in the case of zero total angular momentum. As the result of the calculation performed in the framework of the nonlinear version to the variable phase approach, it is shown that due to the long-range asymptotics of the Thomas–Fermi potential, the cross-section oscillates at low energies but has a finite number of zeros.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics, JINR.
ВВЕДЕНИЕ

Из-за перечисленных выше трудностей не угасает интерес к эффективно-двухчастичным моделям столкновения заряженной частицы с нейтральным атомом. Одна из таких моделей предлагается и используется в настоящей работе для описания упругого рассеяния протона атомом водорода. В предлагаемой модели взаимодействие между летающим протоном и протоном, являющимся ядром атома водорода, считается суперпозицией ядерного потенциала Рица [10] с мягким кором и потенциала Томаса–Ферми [11, 12], описывающего эффект экранировки кулоновского заряда ядра атома водорода его электроном.

Стоит отметить два факта. Давно предложенное взаимодействие Томаса–Ферми интенсивно и успешно применялось для качественного и численного исследования [13] уровней энергии электронов тяжелых атомов и ионов. Однако упругое рассеяние частицы ядерного типа на нейтральном атome с учетом этого взаимодействия и низкоэнергетические особенности такого столкновения детально не исследовались.

Настоящая работа является попыткой восполнить этот пробел таким образом, чтобы ее содержание оказалось ясным для максимально широкого круга читателей.
Главная цель нашего исследования заключается в качественном и численном анализе низкозерентических особенностей S-волнового рассеяния протона на атоме водорода в кратко описанной выше эффективно-двухчастичной модели.

Раздел 1 полностью посвящен подробному описанию этой модели и ее квантово-механическому анализу. В разделе 2 сформулированы предложенные способы численного анализа рассеяния протона атомом водорода и представлены результаты вычислений. Основные выводы суммируются в заключении.

1. МОДЕЛЬ И ЕЕ КВАНТОВО-МЕХАНИЧЕСКИЙ АНАЛИЗ

Для начала опишем обозначения физических констант и напомним особо важные определения.

Всюду далее h — постоянная Планка, m_e, e и a_B — масса, электрический заряд $(e < 0)$ и боровский радиус электрона e^{-}; $m_p, |e|$ и R — масса, электрический заряд протона и боровский радиус системы $\{p, p\}$ двух протонов. Для оценок и вычислений использовались следующие значения:

$$m_e = 0.5110034 \text{МэВ}, \quad m_p = 1836,15152 m_e \approx 938.2796696 \text{МэВ},$$

$$\frac{h^2}{m_p} \approx 41.49996 \text{МэВ} \cdot \text{Фм}^2, \quad e^2 = 1.4399758 \text{МэВ} \cdot \text{Фм},$$

$$a_B \equiv \frac{h^2}{m_e e^2} \approx 52917,706 \text{Фм}, \quad R \equiv \frac{h^2}{m_p e^2} = \frac{m_e}{m_p} \approx 28,81990 \text{Фм}.$$

Чтобы избежать возможных недоразумений, напомним, что в нерелятивистской квантовой механике [1], в отличие от теории электричества [2], потенциалом принято называть потенциальную энергию.

В нерелятивистской квантовой механике [1], в квантовой теории рассеяния для систем нескольких частиц [3] и в методе фазовых функций [4] потенциал $u(x)$, удовлетворяющий условию

$$x^n u(x) \rightarrow 0, \quad x \rightarrow \infty; \quad n = 0, 1, 2, \ldots,$$

т.е. убаивающий в пределе больших значений аргумента x быстрее любой функции x^{-n}, называется короткодействующим. Потенциал, не удовлетворяющий такому условию, начиная с какого-либо значения n, считается дальнодействующим.

Теперь кратко опишем известную и довольно реалистическую модель [6] столкновения двух протонов в 1S_0-состоянии системы $\{p, p\}$, в котором ее полные угловые момент и спин равны нулю.

2
Используем систему центра масс двух протонов. Пусть в этой системе \(r, k \) и \(E = (\hbar k)^2/m_p \) — относительные расстояния между двумя протонами, волновое число и энергия столкновения этих же протонов, измеряемые, соответственно, в Ферми, в обратных Ферми и в электрон-вольтах. Если энергия \(E \) задана в килоэлектронвольтах, то волновое число \(k \) в обратных Ферми вычисляется по формуле
\[
k = p \sqrt{E}; \quad p \equiv \sqrt{0.001m_p/h^2} \approx 0.00490809 \text{ (кэВ}^{1/2} \cdot \text{Фм})^{-1}.
\]

В обсуждаемой модели полное взаимодействие между двумя протонами считается суперпозицией \(V(r) = V_c(r) + V_s(r) \) отталкивающего кулоновского потенциала \(V_c(r) \equiv e^2/r \) и ядерного \(1S_0 \)-потенциала Рида с мягким кором [10], который несложно вычислить по следующим формулам:
\[
V_s(r) = \begin{cases}
|g(x)/x| \left(V_1 + g^3(x)[V_4 + V_7g^3(x)] \right), & g(x) \equiv \exp(-x), \quad x \equiv r/r_\pi; \\
V_1 = -10,463 \text{ МэВ}, & V_4 = -1650,6 \text{ МэВ}, \quad V_7 = 6484,2 \text{ МэВ},
\end{cases}
\]
\[r_\pi \equiv (10/7) \text{ Фм}.\]

По определению (1) кулоновский потенциал \(e^2/r \) является дальнодействующим, а потенциал Рида (2) — короткодействующим.

Поясним функциональную зависимость потенциала Рида \(V_s(r) \) от расстояния \(r \). Обсуждаемая функция имеет асимптотики
\[
V_s(r) \sim V_s^0/r, \quad V_s^0 \approx 6890 \text{ МэВ} \cdot \text{Фм}, \quad r/\pi \to 0;
\]
\[
V_s(r) \sim V_s^\infty \exp(-r/r_\pi)/r, \quad V_s^\infty \approx -14,9 \text{ МэВ} \cdot \text{Фм}, \quad r/\pi \to \infty.
\]

С ростом аргумента \(r \) эта функция монотонно убывает на интервале \((0, r_\pi^2)\), в точке \(r \leq r_\pi^2 \approx 0,6402 \text{ Фм} \) обращается в ноль, в точке \(r = r_\pi^2 \approx 0,8449 \text{ Фм} \) достигает своего минимального значения \(V_s(r_\pi^2) = V_{s_{\text{min}}} \approx -97,2308 \text{ МэВ} \), а затем монотонно возрастает, сходясь к нулю в пределе \(r/r_\pi \to \infty \).

Следовательно, потенциал Рида (2) имеет в начальной точке \(r = 0 \) сингулярность кулоновского типа, является отталкивающим потенциалом на отрезке \([0, r_\pi^2]\) и притягивающим потенциалом на полуоси \(r > r_\pi^2 \). Для большей ясности график потенциала Рида изображен на рис. 1.

Приступим к описанию предлагаемой эффективно-двухчастичной модели рассеяния протона \(p \) атомом водорода \(H \).

Атом водорода считаем электрически нейтральным связаным состоянием системы \(\{e^-, e^+\} \) двух разноименно заряженных частиц: электрона и протона. Массу атома водорода \(m_H \) полагаем равной массе \(m_p \) его ядра. Относительная точность такого приближения равна \(m_e/m_p \approx 0,001 \) и вполне достаточна для наших целей. Для краткости дальнейшее нахождение протон, налетающий на атом водорода, обозначим символом \(p \), а протон, являющийся ядром этого же атома, — символом \(p' \).
Используем систему центра масс протонов p и p'. В этой системе r, k и E — относительное расстояние между этими протонами, волновой вектор и полная энергия их относительного движения. Как и ранее, предполагаем, что ядерное взаимодействие между протонами p и p' в 1S_0-состоянии парной подсистемы $\{p, p\}$ исследуемой трехчастичной системы $\{p, p', e^{-}\}$ определяется потенциалом Рида (2).

Чтобы свести нашу исходную задачу трех частич p, p' и e^{-} к эффективно-двучастичной задаче рассеяния двух протонов p и p', необходимо учесть эффект экранировки кулоновского поля протона p' в атому водорода его электроном e^-. Наиболее простой способ приближённого учета включения этого эффекта — замена кулоновского отталкивания V_c в полном взаимодействии $V(r) = V_c(r) + V_s(r)$ между протонами p и p' некоторым экранированным центральным взаимодействием $V_s(r)$. Для построения такого взаимодействия применим модель, которую впервые предложил Л.Томас [11] в 1927 г., а годом позже описал Э.Ферми [12]. Подробное обсуждение модели Томаса–Фермии и многочисленные результаты ее несомненно успешных приложений в атомной физике содержатся в первом томе книги [13].

Используя терминологию, принятую в теории электричества [2], напомним ключевые предположения и основные следствия модели Томаса–Фермии. В этой модели ядро атома считается неподвижным центром, имеющим кулоновский заряд $Z|e|$ и помещенным в начальную точку используемой декартовой системы координат в трехмерном координатном пространстве \mathbb{R}^3; в этом пространстве все Z электронов атома описываются статистически как полностью выраженный электронный газ, подчиняющийся квантовой статистике Ферми [13]. Далее вводится две ключевые функции N_e и φ — плотность электронов и электрический потенциал атома на расстоянии r от его ядра и предполагается, что плотность — сферически-симметричной функции, связанной, благодаря полному вырождению электронного газа, с потенциалом φ равенством

$$N_e(r; Z) = \frac{1}{3\pi^2} \left[\frac{2}{|e|a_B} \varphi(r; Z) \right]^{3/2}. \quad (4)$$

В этом равенстве предполагается, что обе функции $N_e(r; Z)$ и $\varphi(r; Z)$ зависят от числа электронов атома Z.

Рис. 1. Сплошная кривая — потенциал Рида (2), прямая линия — функция $V_s^*(r) \equiv 0$.
Затем связь (4) и предложенная симметрия плотности \(N_e(r; Z) \) используются для того, чтобы свести известное в теории электричества [2] уравнение Пуассона
\[
\Delta \varphi(r; Z) = -4\pi \rho(r) = 4\pi |e| N_e(r; Z)
\]
(5)
к следующему одномерному уравнению:
\[
\left[\partial_r^2 + \frac{2}{r} \partial_r \right] \varphi(r; Z) = \frac{1}{3\pi} \left[\frac{27}{|e|a_B} \varphi^3(r; Z) \right]^{1/2}.
\]
(6)
Это уравнение дополняется двумя физически понятными условиями:
\[
\lim_{r \to 0} r \varphi(r; Z) = Z, \quad \int_{R^3} N_e(r; Z) \, dr = Z.
\]
(7)
Первое из них показывает, что вблизи ядра экранировка отсутствует, а второе выражает то обстоятельство, что полное число электронов в рассматриваемом атоме равно \(Z \).

Завершающий этап редукции уравнения Пуассона (5) выполняется безразмеривающей подстановкой
\[
\varphi(r; Z) = \frac{\gamma}{x} f(x), \quad x = \frac{r}{d},
\]
(8)
где размерные константы \(\gamma \) и \(d \) определяются равенствами
\[
d \equiv \left(\frac{9\pi^2}{128Z} \right)^{1/3} a_B, \quad \gamma \equiv \frac{Z|e|}{d}.
\]
(9)
Здесь уместно обратить внимание на два следующих обстоятельства: константа \(d \) обратно пропорциональна кубическому корню из числа \(Z \) электронов атома и довольно велика по меркам ядерной физики:
\[
d \approx Z^{-1/3} 0,885341377 a_B \approx Z^{-1/3} 46850,2346977 \text{ Фм}.
\]
Подстановкой (8) с константами (9) промежуточное уравнение (6) сводится к нелинейному уравнению для функции \(f(x) \) безразмерного аргумента \(x \)
\[
\partial_x^2 f(x) = f(x) \sqrt{f(x)/x}, \quad x > 0,
\]
(10)
а граничные условия (7) преобразуются к довольно простым соотношениям
\[
f(x) = 1, \quad x = 0; \quad f(x) \to 0, \quad x \to \infty.
\]
(11)
Итак, в модели Томаса--Ферми согласно формулам (8) и (9) электрический потенциал \(\varphi(r; Z) \) атома на заданном расстоянии \(r \) от его ядра определяется как произведение \(\varphi(r; Z) = (Z|e|/r)f(x) \) электрического потенциала
ядра, равного \(Z|e|/r\), и экранирующей функции Томаса–Ферми \(f(x)\) безразмерного аргумента \(x = r/d\).

Сформулируем первое важное свойство модели Томаса–Ферми: электрический потенциал \(\varphi(r; Z)\) и размерные константы \(\gamma\) и \(d\) зависят от числа электронов атома \(Z\), а функция \(f(x)\) от числа \(Z\) не зависит и в этом смысле является универсальной для всех атомов.

Уместным представляется следующее предложение. В атомной физике [5] принято использовать в качестве удобной единицы измерения расстояния боровский радиус электрона. По аналогии с атомными единицами представляется логичным назвать параметр \(d\) единицей Томаса–Ферми, тогда переменная \(x = r/d\) будет рассстоянием в единицах Томаса–Ферми.

В модели Томаса–Ферми электрический потенциал атома водорода равен функции \(\varphi(r; Z)\) при \(Z = 1\), т. е. функции \((|e|/r)f(x)\). Согласно теории электричества [2] искомая электрическая потенциальная энергия \(V^c(r)\) системы \(\{p, H\}\), равна произведению \(|e|\varphi(r; Z)\) заряда \(|e|\) нейтрального протона \(p\) и электрического потенциала атома водорода \((|e|/r)f(x)\).

Следуя квантово-механическому определению потенциала, найденную функцию

\[
V^c(r) = |e|\varphi(r; Z) = \frac{e^2}{r}f(x), \quad x = \frac{r}{d},
\]

называем потенциалом Томаса–Ферми для системы \(\{p, p'\}\) двух протонов.

Далее считаем, что рассеяние протона \(p\) атомом водорода эквивалентно рассеянию двух протонов \(p\) и \(p'\), взаимодействующих посредством суперпозиции \(V(r) = V^c(r) + V^f(r)\) ядерного потенциала Рида (2) и потенциала Томаса–Ферми (12).

Для того чтобы выявить физические особенности обоих потенциалов \(V^c(r)\) и \(V^f(r)\), необходимо сначала обсудить известные свойства функции \(f(x)\).

Впервые функцию \(f(x)\) при некоторых значениях ее аргумента \(x\), принадлежащих полуинтервалу \((0, 30]\), вычислил Э. Ферми [12, 13]. Позже эта функция исследовалась многими авторами [14–20]. Упомянем лишь основные результаты этих исследований.

В пределе малых значений аргумента \(x\) любое решение \(f\) уравнения (10), равное единице в точке \(x = 0\), является равномерно сходящимся рядом по целым и полужелтым степеням аргумента \(x\):

\[
f(x) = 1 + A x + \sum_{n=3, 4, \ldots} A_n x^{n/2}, \quad x \to 0.
\]

Числовые коэффициенты \(A_n\) этого ряда подчиняются рекуррентной цепочке алгебраических уравнений и последовательно, т. е. в порядке возрастания ин-
дека n, выражаются в виде полиномов аргумента A, равного первой производной функции f в точке $x = 0$:

$$A \equiv \partial_x f(x)_{x=0}, \quad A_3 = \frac{4}{3}, \quad A_4 = 0, \quad A_5 = \frac{2}{5} A, \quad A_6 = \frac{1}{3},$$

$$A_7 = \frac{3}{70} A^2, \quad A_8 = \frac{2}{15} A, \quad A_9 = \frac{2}{27} - \frac{1}{252} A^3, \quad A_{10} = \frac{1}{175} A^2, \ldots$$

В пределе больших значений аргумента x любое решение f уравнения (10), сходящееся к нулю в пределе $x \to \infty$, представимо в виде произведения функции $144/x^3$ — точного, но неограниченного растущего при $x \to 0$ решения этого же уравнения, и асимптотически сходящегося ряда $S(x)$:

$$f(x) = 144x^{-3} S(x); \quad S(x) = 1 + Bx^{-\gamma} + \sum_{n=2, 3, \ldots} B_n (Bx^{-\gamma})^n. \quad (14)$$

В этом представлении иррациональный показатель γ вычисляется по формуле

$$\gamma = \frac{1}{2} (\sqrt{73} - 7) \approx 0,772002,$$

коэффициент B не определен, все остальные коэффициенты B_n удовлетворяют рекуррентной цепочке алгебраических уравнений и последовательно определяются из этой цепочки в виде дробей, содержащих число γ:

$$B_2 = \frac{9}{36 - 28 \gamma}, \quad B_3 = \frac{18 + 7 \gamma}{18(8 - 7 \gamma)} B_2,$$

$$B_4 = \frac{(648 + \gamma(-252 + \gamma(196 - 343 \gamma)))}{6(18 + 7 \gamma)(15-14 \gamma)} B_2 B_3, \ldots$$

Основная сложность вычисления функции $f(x)$ как решения нелинейной краевой задачи (10), (11) порождается двумя обстоятельствами: левая граница области изменения аргумента x бесконечно велика ($x = \infty$), а значения коэффициентов A и B асимптотик (13) и (14) искомого решения заранее не известны. Наиболее эффективный алгоритм вычисления функции $f(x)$ предложен в работе [19] и основан на аппроксимации этой функции конечными линейными комбинациями восемнадцати полиномов Чебышева [7] переменной $y = 2(x/4)^{1/2} - 1$ на полуинтервале $0 < x \leq 4$ и переменной $y = 2(4/x)^{1/2} - 1$ на полуоси $x > 4$. Как утверждается в цитируемой работе, такой алгоритм позволяет вычислить функцию $f(x)$ с точностью до десяти значащих цифр и с той же точностью найти коэффициенты A и B ее асимптотик (13) и (14):

$$A = -1,5880710226, \quad B = -13,270973848. \quad (15)$$

7
Решение \(f(x) \) краевой задачи (10), (11) равно единице в точке \(x = 0 \) и монотонно убывает с ростом аргумента \(x \), поэтому при любом \(x > 0 \) это решение меньше единицы.

Теперь несложно описать физические особенности потенциала Томаса–Ферми (12). Вследствие неравенств \(0 < f(x) \leq 1 \), где \(x > 0 \), потенциал Томаса–Ферми \(V^f(r) \) является всюду отталкивающим потенциалом, не превышающим кулоновское отталкивание \(V^c(r) = e^2/r \). Следовательно, с физической точки зрения функция \(f(x) \) описывает эффект экранировки кулоновского отталкивания \(e^2/r \) между протонами \(p \) и \(p' \). Поэтому далее эта функция называется экранирующей. По той же причине потенциал \(V^f \) можно называть экранированным потенциалом, удовлетворяющим неравенствам \(0 < V^f(r) < V^c(r) \) при всех \(r > 0 \).

Так как экранирующая функция монотонно убывает и обладает асимптотиками (13) и (14), то потенциал Томаса–Ферми тоже монотонно убывает с ростом расстояния \(r \) между протонами \(p \) и \(p' \) и имеет следующие асимптотики

\[
V^f(r) \sim \frac{e^2}{r}, \quad e^2 \approx 1.4 \text{ МэВ} \cdot \text{Фм}, \quad r/d \to 0; \\
V^f(r) \sim \frac{\beta}{r^4}, \quad \beta \equiv 144e^2d^3 \approx 2 \cdot 10^{16} \text{ МэВ} \cdot \text{Фм}^4, \quad r/d \to \infty. \tag{16}
\]

Следовательно, в пределе малых расстояний этот потенциал становится кулоновским отталкиванием \(V^c(r) = e^2/r \), а в пределе больших расстояний — силовым отталкивающим потенциалом поляризационного типа \(V^p(r) = \beta r^{-4} \) с огромной по меркам ядерной и атомной физики константой \(\beta \).

По определению (1) потенциал \(V^f(r) \) относится к классу дальнодействующих потенциалов. График отношения \(g^p(x) \equiv V^f(r)/V^p(r) \), где \(r = x/d \), этого потенциала к старшему члену \(V^p(r) \) его дальнодействующей асимптотики изображен на рис. 2. Как видно из этого рисунка, функцию \(V^f(r) \) можно аппроксимировать функцией \(V^p(r) \) с относительной точностью лучшей, чем 0,97, только в области \(x > x_p = 3000 \) довольно больших значений безразмерной переменной \(x \). Этой области отвечает область огромных в ядерном масштабе расстояний \(r > r_p \equiv dx_p \approx 1,4055 \cdot 10^8 \text{ Фм} \).

Теперь опишем зависимость функции \(V(r) \) от расстояния \(r \).
Соотношения (3) и (16) порождают следующие асимптотики функции $V(r)$

$$V(r) \sim V_0/r, \quad V_0 = V_0^s + e^2 \approx 6891,42 \text{ МэВ} \cdot \text{Фм}, \quad r/r_\pi \to 0;$$

$$V(r) \sim \beta/r^4, \quad \beta \equiv 144e^2d^3 \approx 2 \cdot 10^{16} \text{ МэВ} \cdot \text{Фм}^4, \quad r/d \to \infty. \quad (17)$$

Эта функция имеет два нуля в точках $r = r_1 \approx 0,6418$ Фм и $r = r_3 \approx 3,4847$ Фм и два экстремума: минимум в точке $r = r_2 \approx 0,8457$ Фм и локальный максимум в точке $r = r_4 \approx 5,6306$ Фм. Минимальное и максимальное значения таковы: $V(r_2) = V_{\min} \approx -95,5527$ МэВ, а $V(r_4) = V_{\max} \approx 204,0784$ кэВ. Функция $V(r)$ меньше нуля на интервале (r_1, r_3) и больше нуля на интервале $(0, r_1)$ и на полуоси $r > r_3$. С ростом аргумента r обсуждаемая функция монотонно убывает на полуинтервале $(0, r_2]$, затем монотонно возрастает на полуинтервале $(r_2, r_3]$ и монотонно убывает на полуоси $r > r_4$, медленно сходясь к нулю в пределе $r/d \to \infty$.

Следовательно, потенциал $V(r)$ имеет сингулярность кулоновского типа в начальной точке $r = 0$, согласно определению (1) относится к классу дальнодействующих потенциалов, на интервале (r_1, r_3) является притягивающим потенциалом, а всюду вне этого интервала — отталкивающим.

Выявим области расстояний, в которых можно пренебречь первым или вторым слагаемым суммы $V = V^f + V^s$. Для этого используем асимптотики (3), (16) и рис. 3, a, b.

Как следует из асимптотик (3) и (16),

$$\lim_{r \to 0} V^s(r)/V^f(r) = V_0^s/e^2 \approx 4784,9 \gg 1.$$

Поэтому в области достаточно малых расстояний $r \ll r_1 \approx 0,6418$ Фм потенциал Рида сильно экранирует потенциал Томаса–Ферми: $V^s(r) \gg V^f(r)$.

Рис. 3. a) Сплошная кривая — функция $g^s(r) = V^s(r)/V^f(r)$, прямая линия — функция $g^s_{\alpha}(x) \equiv 0$; б) сплошная, пунктирная и штрихпунктирная кривые — потенциалы $V(r)$, $V^s(r)$ и $V^f(r)$ соответственно; прямая линия — функция $V^s_{\alpha}(r) \equiv 0$
На рис. 3, a представлен график отношения $g^s(r) \equiv V^s(r)/V^\ell(r)$. Знако-
переменная функция $g^s(r)$ имеет нуль в той же точке $r = r_1^s \approx 0,6402$ Фм,
что и ядерный потенциал V^s. Используя график этой функции, получаем
следующие оценки: $V^\ell(r) < 10|V^s(r)|$, если $r < 0,6241$ Фм или же если
$r \in [0,6579,1,9081]$ Фм. Следовательно, в области расстояний $r < 2$ Фм в
сумме V доминирующим является ядерный потенциал. По той же причине
положение $r = r_1 \approx 0,6418$ Фм первого нуля суммы $V(r)$ близко к положе-
нию нуля $r = r_1^s \approx 0,6402$ Фм потенциала $V^s(r)$, а график потенциала $V(r)$
в области $r < 2$ Фм совпадает в масштабе рис. 1 с изображенным на нем
графиком потенциала $V^s(r)$.

Поведение суммы $V(r)$ и ее слагаемых $V^\ell(r)$ и $V^s(r)$ на отрезке [2, 10] Фм
иллюстрирует рис. 3, b. Слагаемое V^ℓ всюду положительная функция, а слага-
емое V^s согласно рис. 1 меньше нуля, если $r > r_1^s \approx 0,6402$ Фм. Поэтому
сумма V этих слагаемых имеет второй нуль в точке $r_3 \approx 3,4847$ Фм. По
той же причине эта же сумма имеет локальный максимум в точке $r = r_4 \approx
5,6306$ Фм.

В силу асимптотик (3) и (16) при достаточно больших расстояниях в
суперпозиции V доминирующим становится отталкивающий потенциал V^ℓ.
Как видно из обсуждаемого рис. 3, b, областью таких расстояний является
полуось $r > 10$ Фм. Поэтому суперпозиция $V(r)$ в области еще больших рас-
стояний $r > r_p \approx 1405,5$ Å сходится к потенциалу V^p, а график отношения
$g(x) = V(r)/V^p(r)$, $r = dx$, в этой области не отличается в масштабе рис. 2
от изображенного на нем графика отношения $g^p(x) = V^\ell(r)/V^p(r)$.

Из данного выше описания поведения потенциала V следует два важных
для практических расчетов вывода. Во-первых, чтобы с хорошей точно-
стью учесть все особенности этого потенциала и в области малых ($r < 10$ Фм), и в
области больших ($r \geq 10$ Фм) расстояний следует в первой области в качестве
аргумента использовать размерную переменную r, а во второй — безразмер-
ную переменную $x = r/d$. Во-вторых, чтобы с хорошей точностью учесть дальновидующую асимптотику V^p потенциала V, верхнюю границу x_{\max}
изменения переменной x следует полагать намного большей, чем $x_p = 3000$.

Теперь, когда выявлены все физические особенности полного взаимодей-
ствия $V = V^\ell + V^s$ между протонами p и p', несложно предсказать порожда-
емые ими особенности упругого столкновения этих протонов.

Символами a, $\delta(k)$ и $\sigma(E)$ обозначим длину, фазу и сечение рассеяния
потенциалом V. Длина рассеяния и сечение определяются известными фо-
рмулами [1, 4]

$$a \equiv -\lim_{k \to 0} \frac{\delta(k)}{k}, \quad \sigma(E) \equiv \frac{4\pi}{k^2}|\sin \delta(k)|^2. \quad (18)$$

Поэтому в пределах нулевой энергии фаза обращается в нуль по закону
$\delta(k) \sim -ak$, сечение при нулевой энергии выражается через длину рассеяния
формулы \(\sigma(0) = 4\pi a^2 \), а при любой ненулевой энергии сечение ограничено снизу и сверху:

\[
0 = \sigma_{min}(E) \leq \sigma(E) \leq \sigma_{max}(E) \equiv 4\pi/k^2, \quad E > 0.
\]

(19)

Следовательно, прямая линия \(\sigma_{min}(E) \) и кривая \(\sigma_{max}(E) \) могут огибать кривую \(\sigma(E) \).

Предложим физически прозрачную и удобную для дальнейших обсуждений терминологию. Длину рассеяния \(a \) и функцию \(\delta(k) \) и \(\sigma(E) \) энергии назовем ядерно-экранированными; длину рассеяния \(a^s \), фазу \(\delta^s(k) \) и сечение \(\sigma^s(E) \), порожденные слагаемым \(V^s \), назовем экранированными, а длину

рассеяния \(a^\ell \), фазу \(\delta^\ell(k) \) и сечение \(\sigma^\ell(E) \), порожденные слагаемым \(V^\ell \), назовем ядерными.

Выявили два энергетических предела ядерно-экранированной фазы. Для этого используем квазиклассическое представление [1]. Известно [1, 4], что в пределе больших энергий потенциальное рассеяние двух частиц происходит в области малых относительных расстояний, а в пределе низких энергий доминирующим оказывается рассеяние в области больших расстояний. Согласно рис. 3, 6 потенциал \(V \) в точке \(r = r_4 \approx 5,6306 \) Фм имеет локальный максимум: \(V_{max} \approx 204,0784 \) кэВ. Если энергия \(E \) превышает это значение, то происходит надбарьерное рассеяние в классически разрешенной \((E \geq V(r)) \) области расстояний \(r < r_4 \). В этой области ядерный потенциал \(V^s \) сильно экранирует потенциал Томаса–Ферми \(V^f \). Поэтому в пределе больших энергий ядерно-экранированная фаза \(\delta(k) \) становится близкой к ядерной фазе \(\delta^f(k) \). Если же энергия \(E \) меньше, чем высота \(V_{max} \) отталкивающего барьера, то происходит подбарьерное рассеяние в области \(r_4 < r < r_0(E) \) и надбарьерное рассеяние на полуоси \(r > r_0(E) \), где \(r_0(E) \) — классическая точка поворота, равная корню уравнения \(V(r) = E \). В области \(r > r_4 \) потенциал \(V \) аппроксимируется его компонентой \(V^f \). Поэтому в пределе низких энергий ядерно-экранированная фаза \(\delta(k) \) стремится к экранированной фазе \(\delta^f(k) \).

Обсуждаем ожидаемые особенности ядерно-экранированных фазы и сечения. Так как согласно (17) потенциал \(V \) имеет дальнодействующую асимптотику \(V^p = \beta r^{-4} \) с большой константой \(\beta \), то следует ожидать, что длина рассеяния \(a \) будет большой по сравнению с ядерной длиной \(a^s \), а фаза \(\delta(k) \) при небольших значениях энергии превысит по абсолютной величине число, кратное \(\pi \). Так как эта фаза является непрерывной функцией волнового числа \(k \), то представляются возможными два особых случая: в первом случае при некоторых значениях энергии фаза \(\delta(k) \) будет кратна числу \(\pi/2 \), а во втором — числу \(\pi \). Согласно определению (18) соответствующее такой фазе сечение \(\sigma \) в первом случае будет иметь локальный максимум, а во втором обратится в нуль. Так как это сечение — неотрицательная и непрерывная функция энергии, то между каждыми двумя соседними нулями она может
иметь только один локальный максимум. Поэтому следует ожидать осциллирующую зависимость ядерно-экранированного сечения от энергии в области ее достаточно малых значений.

Хорошо известным и ярким примером осциллирующей зависимости S-волнового сечения от энергии является случай кулоновского отталкивания [1]. Напомним его для системы двух протонов. Кулононвая фаза \(\delta'(k) \), порожденная кулоновским отталкиванием \(e^2/r \), бесконечно возрастает в пределе низких энергий по закону

\[
\delta'(k) \sim \pi/4 + \eta (\ln \eta - 1), \quad \eta \equiv 1/(2kR), \quad kR \to 0.
\]

Поэтому эта фаза неограниченное число раз принимает значения, кратные числу \(\pi \), а соответствующее ей кулоновское S-волновое сечение \(\sigma(E) \equiv 4\pi k^{-2} \sin^2 \delta'(k) \) быстро осциллирует в этом пределе и имеет бесконечное, но счетное число нулей. Положения этих нулей сгущаются в точку \(E = 0 \).

Еще одна ожидаемая особенность ядерно-экранированных фазы и сечения является следствием интерференции рассеяния ядерным потенциалом и потенциалом Томаса–Ферми. Поясним эту особенность. Известно [6], что ядерная фаза рассеяния \(\delta'(k) \), порожденная потенциалом Рида (2), всюду неотрицательная функция энергии. Экранированная фаза \(\delta(k) \) порождается отталкивающим потенциалом Томаса–Ферми и поэтому является отрицательной при любой ненулевой энергии. При достаточно большой энергии для ядерно-экранированной фазы \(\delta(k) \) становится справедливым первое борновское приближение [4]:

\[
\delta(k) \approx \delta_B(k) \equiv -k^{-1} \int_0^\infty [V^t(r) + V^s(r)](\sin kr)^2 dr = \delta_B^t(k) + \delta_B^s(k).
\]

В этом приближении фаза \(\delta(k) \) равна сумме борновских ядерной \(\delta_B^t(k) \) и экранированной \(\delta_B^s(k) \) фаз, имеющих противоположные знаки. Поэтому при некотором значении энергии \(E = E_R \) ядерно-экранированные фаза и соответствующее ей S-волновое сечение \(\sigma(E) \) обращаются в нуль, а полное сечение упротого pH-рассеяния при таком значении энергии может иметь локальный минимум.

Предсказанный выше эффект является аналогом давно известного в атомной физике [5] эффекта Рамзауера, впервые обнаруженного при исследовании полного сечения \(\sigma_R \) упротого рассеяния медленноя электрона атомом ксенона. Этот эффект является следствием интерференции рассеяния отталкивающим короткодействующим обменным потенциалом и притягивающим поляризационным потенциалом и проявляется как глубокий локальный минимум сечения \(\sigma_R \).

Отметим, что наличие аналогов эффекта Рамзауера следует ожидать в упротом рассеянии любых медленных частиц, взаимодействующих посредством суперпозиции коротко- и дальнодействующего потенциалов, имеющих
разные знаки. В качестве примера упомянем нейтрон-нейтронный аналог эффекта Рамзауера. Этот аналог предсказан в работах [21, 22] и порождается совместным воздействием ядерного короткодействующего потенциала и дальнодействующего взаимодействия магнитных моментов нейтронов. Вследствие такого воздействия полное сечение триплетного упругого рассеяния нейтронов на нейтроне должно иметь глубокий минимум при энергии столкновения нейтронов, примерно равной 20 кэВ в их системе центра масс.

2. МЕТОДЫ ВЫЧИСЛЕНИЙ И РЕЗУЛЬТАТЫ

К сожалению, в упомянутой работе [19] не указаны ни нижняя, ни верхняя границы a и b области изменения аргумента x, в которой достигается десятизначная аппроксимация функции $f(x)$ рядом Чебышева, кроме того, не исследована точечная невязка $D(x)$ уравнения (10), которую удобно определить как

$$D(x; f) \equiv |\partial_x^2 f(x)/f(x)\sqrt{f(x)/x - 1}|.$$
(20)

В настоящей работе для вычисления функции $f(x)$ использовался иной алгоритм. Опишем его основные этапы.

На отрезке $0 \leq x \leq a \equiv 10^{-5}$ функция $f(x)$ аппроксимировалась суммой $S_a(x)$ двадцати первых слагаемых ее разложения (13). В качестве стартового использовалось значение (15) коэффициента A, полученное в работе [19]. Вычисленные в точке $x = a$ значения $S_a(x)$ и $\partial_x S_a(x)$ запоминались.

Далее на отрезке $[a, b]$, где $b = 100 + a$, строилась равномерная сетка $\Delta_{[a,b]}$ с довольно большим числом узлов $N = 10^4$. Уравнение (10) со свинутыми в точку $x = a$ границными условиями

$$f(x) = S_a(x), \quad \partial_x f(x) = \partial_x S_a(x), \quad x = a,$$
численно интегрировалось на сетке $\Delta_{[a,b]}$ методом Рунге–Кутта пятого порядка [8].

Вычисленные узловые значения функции f и ее производных $\partial_x f$ и $\partial_x^2 f$ использовались для построения интерполирующего эту функцию на отрезке $[a, b]$ сплайна $S_{5,3}(x)$ пятого порядка и дефекта, равного трем [9]. Функция f заменялась этим сплайном в формуле (20), определяющей невязку $D(x; f)$. Полученная таким образом невязка $D(x; S_{5,3})$ вычислялась на трех разных сетках, содержащих 10^6 узлов, не совпадающих с узлами ранее использованной сетки $\Delta_{[a,b]}$. Чтобы минимизировать обсуждаемую невязку $D(x; S_{5,3})$, параметр A варьировался вблизи его стартового значения (15). При значении
$A = -1,58807102262$ удалось минимизировать невязку $D(x; S_{b,3})$ до величина порядка $O(10^{-6})$ на всем отрезке $[a, b]$. При таком же значении параметра A невязка $D(x; S_5)$, вычисленная в тысяче разных точках отрезка $[0, a]$, оказалась величиной того же порядка.

Последний этап вычисления функции $f(x)$ заключался в следующем. В области $x > b$ функция $f(x)$ аппроксимировалась суммой $S_b(x)$ двадцати слагаемых ее разложения (14), содержащей неизвестный параметр B. Его значение $B = -13,270973849$ определялось из условия «ширины» в точке $x = b$ этой суммы и приближенного решения $S_{b,3}$ вычисленного на предыдущем этапе:

$$S_{b,3}(x) = S_5(x), \quad \partial_x S_{b,3}(x) = \partial_x S_5(x), \quad x = b.$$

Найденное значение коэффициента B близко к значению (15), вычисленному в [19]. Определение функции $f(x)$ было завершено оценкой невязки $D(x; S_b)$ в области довольно больших значений аргумента x. В итоге было установлено, что на отрезке $b \leq x \leq 10^4$ такая невязка является числом порядка $O(10^{-6})$.

Описанным выше способом нам удалось не только уточнить ранее известные значения (15) коэффициентов A и B, но и вычислить поточечное, и по крайней мере, шестизначное приближение функции $f(x)$ на всем отрезке $[0, 10^4]$ изменения ее аргумента.

Для вычисления длины рассеяния a и анализа энергетической зависимости фазы $\delta(k)$ и сечения $\sigma(E)$ использовалась нелейная версия метода фазовых функций в квантовой механике [4].

В этой версии длина рассеяния a и фаза $\delta(k)$ определяются как предельные при $r \to \infty$ значения фазовых функций $a(r)$ и $\delta(r; k)$, равных нулю в начальной точке $r = 0$ и подчиненных при $r > 0$ соответствующим нелейным уравнениям

$$\partial_r a(r) = V(r)[r - a(r)]^2,$$
$$\partial_r \delta(r; k) = -k^{-1} V(r)[\sin (kr + \delta(r; k))]^2.$$

Здесь и далее символами V, V^ℓ и V^s обозначаются определенные в предыдущем разделе потенциалы, умноженные на величину m_p/\hbar^2. Переопределенные таким образом потенциалы $V(r)$ и $V^\ell(r)$ и $V^s(r)$ имеют размерность Фм$^{-2}$, а старшее слагаемое $V^p(r)$ дальнодействующей асимптотики потенциалов $V(r)$ и $V^\ell(r)$ определяется формулами

$$V^p(r) = \alpha/r^4, \quad \alpha \equiv (m_p/\hbar^2)\beta \approx 5,138132 \cdot 10^{14} \text{ Фм}^2.$$

Уравнения (21) и (22) обладают несоводимыми преимуществами: они позволяют предсказывать многие важные физические свойства длины и фазы рассеяния до их вычисления.
Обсуждение таких свойств начнем с самого главного из них.

Пусть b — некоторое значение аргумента r. Положим $V(r) \equiv 0$ на полуоси $r > b$, т.е. обрезем потенциал V в точке $r = b$. Тогда на этой полуоси уравнения (21) и (22) выродятся в однородные уравнения $\partial_r a(r) \equiv 0$ и $\partial_r \delta(r; k) \equiv 0$ с граничными условиями $a(r) = a(b)$ и $\delta(r; k) = \delta(b; k)$ в точке $r = b$. Таким уравнениями при всех $r > b$, в том числе и в бесконечно удаленной точке $r = \infty$, удовлетворяют постоянные функции $a(r) \equiv a(b)$ и $\delta(r; k) \equiv \delta(b; k)$.

Следовательно, фазовые функции $a(r)$ и $\delta(r; k)$ имеют прозрачный физический смысл: их значения $a(b)$ и $\delta(b; k)$ в некоторой точке $r = b$ являются длиной и фазой рассеяния потенциалом V, обрезанным в этой точке.

Теперь дополним метод фазовых функций [4] качественным анализом поведения решений уравнений (21) и (22) в случае потенциала, имеющего нули. Для этого выведем следствия обсуждаемой в предыдущем разделе зависимости потенциала $V(r) = V^t(r) + V^s(r)$ от расстояния r. Напомним, что функция V^t равна нулю в точках $r_1 \approx 0.6402$ Фм и $r_3 \approx 3.4847$ Фм; на интервале $r < r_1$ и полуоси $r > r_3$ эта функция положительна, а на отрезке $[r_1, r_3]$ — отрицательна. Согласно уравнениям (21) и (22) всюду, за исключением точек $r = r_1$ и $r = r_3$, производная и потенциал имеют одинаковые знаки, а знаки производной и потенциала — разные. В выделенных точках $r = r_1, r_3$ производные $\partial_r a(r)$ и $\partial_r \delta(r; k)$ равны нулю. Следовательно, в этих и ни в каких других точках ядерно-экранированные функции $a(r)$ и $\delta(r; k)$ имеют локальные экстремумы.

На отрезке $[0, r_1]$ производная $\partial_r a(r)$ неотрицательна. Поэтому на этом отрезке функция $a(r)$ тоже неотрицательна и возрастает с увеличением ее аргумента r от своего нулевого значения в точке $r = 0$ до максимального значения, которое достигается в точке $r = r_1$. На интервале (r_1, r_3) производная $\partial_r a(r)$ отрицательна, поэтому функция $a(r)$ убывает в этой области расстояний и достигает своего минимального значения в точке $r = r_3$. Так как на полуоси $r > r_3$ производная $\partial_r a(r)$ положительна, то с увеличением аргумента функция $a(r)$ возрастает, приближаясь к своему предельному значению $a(\infty)$. Следовательно, справедлива оценка $a(\infty) \leq a(r_3)$. Сформулируем доказанное утверждение следующим образом: длина рассеяния в потенциале, имеющем нули, меньше значения фазовой функции $a(r)$ в точке r, в которой потенциал последний раз обращается в нуль.

Аналогичным способом несложно предсказать поведение фазовой функции $\delta(r; k)$ при любом значении энергии E. На отрезке $[0, r_1]$ эта функция отрицательна и убывает от своего нулевого значения в точке $r = 0$ до минимального значения в точке $r = r_1$. На отрезке $[r_1, r_3]$ обсуждаемая функция возрастает до своего максимального значения в точке $r = r_3$, а на полуоси $r > r_3$ убывает, приближаясь к своему предельному значению $\delta(\infty; k)$. Следовательно, при любой энергии имеет место оценка $\delta(k) \leq \delta(r_3)$.

15
Для определения скорости приближения фазовой функции к ее предельному значению при $r \rightarrow \infty$ удобно использовать функцию

$$g^\delta(t; k) \equiv \delta(t; k)/\delta(\infty; k). \quad (23)$$

Эта функция имеет прозрачный физический смысл: она является относительным вкладом в фазу $\delta(k)$ рассеяния потенциалом $V(r)$, включенным лишь в области расстояний $r \leq t$.

После замены $V \rightarrow V^s$ или $V \rightarrow V^f$ уравнения (21) и (22) становятся уравнениями для ядерных или экранированных фазовых функций $a^s(r)$ и $\delta^s(r; k)$ и $a^f(r)$ и $\delta^f(r; k)$.

Так как потенциалы V^s и $V = V^f(r) + V^s(r)$ — знакопеременные функции, то без вычислений нельзя определить знаки предельных при $r \rightarrow \infty$ значений фазовых функций $a^s(r)$ и $a(r)$, $\delta^s(r; k)$, т.е. знаки длин a^s, a и фаз $\delta^s(r; k)$ и $\delta(k)$ рассеяния. Потенциал V^f — всюду отталкивающий, поэтому фазовая функция $a^f(r)$ всегда положительная, а фазовая функция $\delta^f(r; k)$ всегда отрицательная.

Уравнения (21) и (22) подстановкой

$$\tilde{a}(x) = a(r)/d, \quad \tilde{V}(x) = d^2V(r), \quad \tilde{\delta}(x; q) = \delta(r; k); \quad x = r/d, \quad q = dk,$$

сводятся к следующим уравнениям для безразмерных функций $\tilde{a}(x)$ и $\tilde{\delta}(x; q)$:

$$\partial_x \tilde{a}(x) = \tilde{V}(x)[x + \tilde{a}(x)]^2 \quad (24)$$
$$\partial_x \tilde{\delta}(x; q) = -q^{-1}\tilde{V}(x)[\sin (qx + \tilde{\delta}(x; q))]^2. \quad (25)$$

В этих уравнениях параметр q — безразмерное волновое число, а безразмерный потенциал $\tilde{V}(x)$ в пределе $x \rightarrow \infty$ имеет асимптотику $\tilde{V}_p(x) = \tilde{\alpha}/x^4$. Ее константа $\tilde{\alpha} \approx 2.34089 \cdot 10^5$ на семь порядков меньше, чем константа α потенциала $V^p(r) = \alpha/r^4$, что заметно упрощает вычисления функции $\tilde{a}(x)$ и $\tilde{\delta}(x; q)$ в области больших значений их аргументов x.

Чтобы избежать арифметических операций с очень маленькими или большими числами и учесть все особенности потенциала V и в области малых, и в области больших расстояний, вычисления длин рассеяния a и фазы $\delta(k)$ выполнялись по следующей схеме.

Сначала границные условия для фазовых функций $a(r)$ и $\delta(r)$ свдвигались из полюса $r = 0$ функции V в точку $r = r_0 > 0$. Для этого значения искомых функций в этой точке аппроксимировались первыми итерациями соответствующих уравнений (21) и (22):

$$a(r_0) = \int_0^{r_0} t^2 V(t) \, dt, \quad \delta(r_0; k) = -k^{-1} \int_0^{r_0} V(t) [\sin (kt)]^2 \, dt. \quad (26)$$
Затем, чтобы учесть с хорошей точностью строение слагаемого \(V^s \) функции \(V \) в области малых расстояний \(r < 10 \ \text{Фм} \), уравнения (21) и (22) с найденными граничными условиями (26) численно интегрировались методом Рунге–Кутта пятого порядка [8] на конечном отрезке \([r_0, r_{\text{max}}]\).

Далее, чтобы с хорошей точностью учесть дальнодействующую асимптотику функции \(V \), тем же методом численно интегрировались уравнения (24) и (25) на конечном отрезке \([x_0, x_{\text{max}}]\) с левой границей \(x_0 \equiv r_{\text{max}}/d \). Вычисленные ранее значения \(a(r_{\text{max}}) \) и \(\delta(r_{\text{max}}; k) \) функций \(a(r) \) и \(\delta(r; k) \) использовались как граничные условия \(\tilde{a}(x_0) = a(r_{\text{max}})/d, \delta(x_0; q = d/k) = \delta(r_{\text{max}}; k) \) в точке \(x = x_0 \).

В итоге численных экспериментов удалось доказать, что выбор \(r_0 = 10^{-5} \ \text{Фм}, r_{\text{max}} = 100 \ \text{Фм} \) и \(x_{\text{max}} = 10^4 \) позволяет достичь желаемой точности вычисления функций \(a(r) \) и \(\delta(r; k) \) на всем отрезке \(0 \leq r \leq 10^4d \): шесть значащих цифр этих функций не изменяются при умненьшении указанного значения \(r_0 \), ни при увеличении указанных значений \(r_{\text{max}} \) или \(x_{\text{max}} \). Поэ этому вычисленные в точке \(x = x_{\text{max}} \) значения функций \(\tilde{a}(x) \) и \(\delta(x; q) \) аппроксимируют их предельные при \(x \to \infty \) значения, то есть длину рассеяния \(a \) и фазу \(\delta(k) \), с желаемой точностью. Так как такая точность вполне достаточна для нашего численного анализа, то в качестве длины рассеяния \(a \) и фазы \(\delta(k) \) принимались значения \(\tilde{a}(x_{\text{max}}) \) и \(\delta(x_{\text{max}}; q) \).

Уравнения (22) и (25) определяют значения фаз \(\delta^\ell(k), \delta^s(k) \) и \(\delta(k) \) в радианах. Для обсуждения зависимости этих фаз от энергии и определения графическим способом положений \(E_{\text{нм}} \) нулей сечения \(\sigma(E) \) удобно использовать безразмерные фазы \(\delta^\ell(E) \equiv \delta^\ell(k)/\pi, \quad \delta^s(E) \equiv \delta(k)/\pi \). Графический способ основан на следующих фактах: положения \(E_{\text{нм}} \) нулей сечения \(\sigma(E) \) являются корнями уравнений \(\delta(E) = -n \) с правыми частями \(\pm n = 1, 2, \ldots \), а эти корни равны абсциссам точек пересечения графика фазы \(\delta(E) \) с прямой \(y_n(E) = \pm n \).

![Diagram](image)

Рис. 4. Энергетическая зависимость ядерных фазы и сечения: \(a \) сплошная кривая — ядерная фаза \(\delta^\ell(E) \); \(b \) сплошная кривая — ядерное сечение \(\sigma^\ell(E) \), прямая линия — функция \(\sigma^\ell_{\text{нм}}(E) = 0 \)
Перечислим и обсудим основные результаты вычислений.

Вычисленное значение $a^* \approx -16,98021$ Фм ядерной длины рассеяния довольно близко к ее давно известному [6,10] значению $a^* = -17,0$ Фм. Ядерная фаза $\delta^*(E)$ — ведущая неотрицательная функция энергии, имеющая один максимум $\delta^*(E) \approx 0,35$ в точке $E = E^*_b \approx 1,5$ МэВ. При увеличении энергии эта фаза монотонно возрастает на отрезке $[0, E^*_b]$ от своего нулевого значения в точке $E = 0$ и монотонно убывает области $E > E^*_b$, сходясь к нулю в пределах больших энергий. Ядерное сечение $\sigma^*(E)$, приняв своё максимальное значение $\sigma^*(0) = 4\pi(a^*)^2 \approx 3623,2$ Фм2 при нулевой энергии, монотонно и довольно быстро убывает с ее ростом. Энергетическую зависимость ядерных фазы и сечения иллюстрирует рис. 4.

Вычисленные значения ядерно-экранированных длины рассеяния $a \approx 2,19345 \cdot 10^7$ Фм и сечения при нулевой энергии $\sigma(0) \approx 6,04059 \cdot 10^{15}$ Фм2 на несколько порядков больше соответствующих ядерных величин a^* и $\sigma^*(0)$.

Рис. 5. Энергетическая зависимость фаз: сплошная кривая — ядерно-экранированная фаза $\delta(E)$; а) прямые линии — функции $y_n(E) \equiv -n$, $n = 1, 2, \ldots, 12$; б) пунктирная и штрихпунктирная кривые — экранированная и ядерная фазы $\delta(E)$ и $\delta^*(E)$ соответственно
Ядерно-экранированная фаза $\delta(E)$ обращается в нуль только при двух конечных значениях энергии $E = 0$ и $E = E_R \approx 1,54$ МэВ. Эта фаза принимает свое минимальное значение $\delta(E_a) \approx -12,911$ в точке $E = E_a \approx 11$ эВ, а максимальное $\delta(E_b) \approx 0,13156$ — в точке $E = E_b \approx 4,4$ МэВ. На интервале $E < E_R$ фаза $\delta(E)$ отрицательная, а на полуоси $E > E_R$ — положительная. При увеличении энергии от нуля обсуждаемая фаза монотонно убывает на интервале $E < E_a$, монотонно возрастает на полуоси $E > E_a$ и сходится к нулю в пределе $E \to \infty$. Описанную энергетическую зависимость фазы $\delta(E)$ иллюстрирует рис. 5.

Используя эти рисунки, определим число нулей ядерно-экранированного сечения и опишем распределение их положений по энергии.

При любой энергии фаза $\delta(E)$ удовлетворяет неравенствам

$$-13 < -12,911 \leq \delta(E) \leq 0,13156 < 1.$$

Следовательно, уравнение $\delta(E) = -n$ разрешимо относительно энергии лишь при следующих двенацати значениях $n = 1, 2, \ldots, 12$. Так как фаза $\delta(E)$ имеет только один минимум в точке $E = E_a \approx 11$ эВ, то при каждом допустимом значении n существует два разных корня E_n и E_{n+12}. Эти корни подчиняются неравенствам

$$0 < E_n < E_a < E_{n+12} < E_R.$$

Далее будем нумеровать корни E_n в порядке возрастания их значений: $E_{n+1} > E_n$.

Согласно рис. 5, а график фазы на интервале $E < E_a$ пересекают двенадцать прямых $y_n = -n, n = 1, 2, \ldots, 12$. Абсциссы этих точек пересечения являются двенадцатью корнями E_n. Из того же рисунка видно, что пять прямых $y_n = -n, n = 8, 9, \ldots, 12$ пересекают график функции $\delta(E)$ не только на интервале $E < 11$ эВ, но и на отрезке $[11, 350]$ эВ. Абсциссы пятиточечного пересечения, принадлежащего этому отрезку, являются следующими пятью корнями E_{m}, $m = 13, 14, \ldots, 17$.

Как видно из рис. 5, б, следующие четыре корня E_{m}, $m = 18, 19, 20, 21$, принадлежат отрезку $[0, 5, 7]$ кВ. Из рис. 5, в следует, что оставшиеся два из двенадцати четырёх корней удалены от правой границы этого отрезка и друг от друга: $E_{23} \approx 20$ кВ, а $E_{24} \approx 85$ кВ.

Сформулируем главный вывод выполненного исследования: на полуинтервале $(0, 85]$ кВ имеется двадцать четыре разных значения E_{m} энергии E, при которых фаза $\delta(E)$ принимает отрицательные целые значения $-n = 1, 2, \ldots, 12$; значения E_{m} сходятся к нулю при уменьшении их номера m.

Вычисленные значения ядерно-экранированной и экрацированной фазы $\delta(E)$ и $\delta'(E)$ оказались близкими друг к другу с пятизначной точностью.
при энергиях меньших, чем высота $V_{\text{max}} \approx 204,0784$ кэВ отталкивающего барьера $V(r)$ в области $r > r_3 \approx 3.4847$ Фм. Следовательно, при таких низких энергиях основные вклады в ядерно-экранированные фазы и сечение обусловлены потенциалом Томаса–Ферми V^t; благодаря этому слагаемому суперпозиции $V = V^t + V^s$ фаза $\delta(k)$ принимает отрицательные целые значения, порождающие нули сечения $\sigma(E)$.

Чтобы определить, в какой именно области расстояний потенциал V дает основной вклад в фазу рассеяния $\delta(k)$ при таких энергиях рассеяния ($E < V_{\text{max}}$), функцию (23) вычисляли при двухчать различных значениях E_n^k энергии, равномерно распределенных в области энергий $(0, 200)$ кэВ. В итоге удалось выявить следующую закономерность: при любом из таких значений функция (23) монотонно возрастает на отрезке $100 \leq r \leq 10^4d$ и превышает число 0,2 при $r = 300d$. Следовательно, доминирующий вклад в фазу рассеяния $\delta(k)$ порождается потенциалом V^t, включенным в области довольно больших расстояний $r > 300d$. Согласно рис. 2 этой области отвечает область больших значений $x > 300$, в которой оба потенциала V^t и V близки к своей дальнодействующей асимптотике V^p. Следовательно, как и упоминалось в предыдущем разделе, осцилляции сечения $\sigma(E)$ порождаются именно этой асимптотикой.

Поведение трех фаз $\delta^s(E)$, $\delta^t(E)$ и $\delta(E)$ на интервале энергий $(0,2,10)$ МэВ иллюстрирует рис. 5, 6. Как видно, эти три фазы сравнимы по порядку величины в области энергий $(0,5,10)$ МэВ. Следовательно, в этой области энергий вклады в ядерно-экранированную фазу рассеяния обоих слагаемых V^t и V^s потенциала V имеют один и тот же порядок, а при дальнейшем увеличении энергии доминирующим будет вклад $\delta^s(E)$ от ядерного слагаемого V^s. В обсуждаемой области энергий фазы $\delta^s(E)$ и $\delta^t(E)$ имеют разные знаки: $\delta^s(E) > 0$, а $\delta^t(E) < 0$. Поэтому фаза $\delta(E)$ обращается в нуль только при одном значении энергии $E = E_R \approx 1.54$ МэВ. Эта особенность фазы $\delta(E)$ порождает аналог эффекта Рамзауера.

Теперь, когда выявлено распределение всех положений нулей сечения $\sigma(E)$, можно подробно описать его зависимость от энергии. Сечение $\sigma(E)$, принятое как максимум точное значение $\sigma(0) = 4\pi a^2 \approx 6,04507 \cdot 10^{15}$ Фм2 в точке $E = 0$, при увеличении энергии до ее значения $E = E_{29} \approx 85$ кэВ убывает, осцилляруя. В области $(0,085,1.54)$ МэВ это сечение является гладкой функцией энергии и убывает с ее ростом; при энергии $E = E_R \approx 1.54$ МэВ сечение обращается в нуль, а далее возрастает и, достигнув своего максимального значения $\sigma(E_0) \approx 191,29$ Фм2 в точке $E = E_0 \approx 4,4$ МэВ, монотонно убывает, сходясь к нулю в пределах больших энергий. Энергетическую зависимость сечения $\sigma(E)$ иллюстрирует рис. 6.

На рис. 6, a сплошной кривой представлен график сечения на интервале энергий $(17, 400)$ эВ. Согласно рис. 5, a на этом интервале график фазы $\delta(E)$ дважды пересекает прямая y_{12}, а прямые y_n с индексом $n = 9, 10, 11$ — по
Рис. 6. Энергетическая зависимость сечений: сплошная кривая — ядерно-экранированное сечение $\sigma(E)$; а–е) прямая линия и пунктирная кривая — сечения $\sigma_{\text{min}}(E) = 0$ и $\sigma_{\text{max}}(E) = 4\pi/k^2$ соответственно; з) пунктирная и штрихпунктирная кривые — экранированное и ядерное сечения $\sigma^e(E)$ и $\sigma^j(E)$ соответственно.

одному разу. Поэтому сечение $\sigma(E)$ имеет пять нулей и столько же локальных максимумов.

Как видно из рис. 5, 6, на интервале энергий (0,4, 8) кэВ график фазы $\delta(E)$ по одному разу пересекает каждая из пяти прямых $y_n = -n$ с номером $n = 3, 4, \ldots, 7$. Поэтому на этом интервале сечение $\sigma(E)$, график которого представлен на рис. 6, 6, имеет пять нулей.

График сечения $\sigma(E)$ на интервале энергий (2,60) кэВ изображен на рис. 6, 6. Согласно рис. 5, 6 на этом интервале график фазы $\delta(E)$ по одному разу пересекает три прямые $y_n(E) \equiv -n$, $n = 2, 3, 4$. Поэтому обсуждаемое сечение имеет три нуля.

Для сравнения на рис. 6, 6 представлены графики трех сечений $\sigma^e(E)$, $\sigma^f(E)$ и $\sigma(E)$ в области энергий (0,5, 10) МэВ. В этой области оба сечения
σ\(^s\)(E) и \(σ\(^f\)(E)\) монотонно убывают, а сечение \(σ(E)\) имеет глубокий минимум при энергии \(E = E_R \approx 1.54\) МэВ. Эта особенность сечения \(σ(E)\) является аналогом эффекта Рамана.

Как отмечалось в предыдущем разделе, наличие у ядерно-экранированного сечения \(σ(E)\) нулей в области низких энергий является следствием большой величины константы \(β = 144 e^2 d^3\) дальнодействующей асимптотики потенциала Томаса–Ферми. Этот вывод подтверждают и результаты наших дополнительных вычислений, выполненных по следующей схеме.

Сначала в сумме \(V = V^f + V^s\) потенциал Томаса–Ферми \(V^f\) заменялся потенциалом \(V^f(r; Z) \equiv (e^2/r)f(rd/Z^{1/3})\), константа дальнодействующей асимптотики которого \(β(Z) = 144 e^2 d^3/Z\) убывает с ростом параметра \(Z\). Затем при каждом наперед заданном значении \(Z\) вычислялось минимальное значение \(δ_{min}\) функции \(δ(E)\). Далее из условия \(−n ≥ δ_{min}\) определялось число нулей \(N(Z) = 2n\) сечения \(σ(E; Z)\).

Как и ожидалось, при увеличении \(Z\) константа \(β(Z)\) уменьшается, а функция \(N(Z)\) сходится к нулю. Например, если \(Z = 10^n\), где \(n = 0, 1, 2, \ldots, 7\), то, соответственно, \(N = 24, 16, 10, 6, 4, 2, 0\). Следовательно, если уменьшить константу \(β = 144 e^2 d^3\) в \(10^7\) раз, то сечение \(σ(E; Z)\) будет гладкой функцией энергии.

Стоит отметить, что обсуждённые в настоящем разделе результаты численного анализа энергетической зависимости ядерно-экранированных фазы и сечения подтверждают все выводы выполненного в предыдущем разделе качественного анализа низкоэнергетических особенностей этих функций.

Теперь обобщим основные результаты настоящей работы на случай упругого рассеяния протона любым атомом в модели Томаса–Ферми. Пусть ядро атома имеет заряд \(Z|e|\), тогда эффективно-двухчастичный потенциал взаимодействия протона с атомом определяется выражением \(V^f(r) = (Ze^2/r)f(x)\), где \(r\) — расстояние между протоном и ядром атома, \(x = r/d\), а параметр \(d\) определен последней из списка формул (9). Этот параметр обратно пропорционален числу \(Z^{-1/3}\), а согласно (14) универсальная для всех атомов функция \(f(x)\) имеет при \(r → ∞\) асимптотику \(144/x^3 = 144 d^3 r^{-3}\), обратно пропорциональную числу \(Z\). Поэтому константа \(β\) старшего слагаемого дальнодействующей асимптотики \(V^p(r) = βr^{-4}\) потенциала \(V^f(r) = (Ze^2/r)f(x)\) не зависит от заряда \(Z|e|\) ядра атома:

\[
β = 144 e^2 \left(\frac{9π^2}{128} \right) a_B^3.
\]

Как было показано, в пределе низких энергий столкновения именно это слагаемое порождает все особенности \(S\)-волновых экранированных фазы и сечения рассеяния протона атомом водорода. Следовательно, в модели Томаса–Ферми \(S\)-волновое экранированное сечение рассеяния протона лю-
ЗАКЛЮЧЕНИЕ

Сформулируем основные результаты настоящей работы.

В рамках предложенной эффективно-двухчастичной модели предсказаны и подтверждены расчетами особенности низкоэнергетического поведения S-волновых фаз и сечения упругого столкновения протона с атомом водорода, порожденные медленным убыванием потенциала Томаса-Ферми в пределах больших расстояний и взаимным воздействием на процесс рассеяния этого потенциала и ядерного потенциала Рида.

Особенности ядерно-экранированных фазы $\delta(k)$ и сечения $\sigma(E)$ таковы: в области энергий $(0, 85]$ кэВ фаза 24 раза принимает значения, кратные π, поэтому в этой области соответствующее ей сечение осциллирует и имеет 24 нуля. Еще одна особенность — аналог эффекта Рамзауера — проявляется как глубокий минимум ядерно-экранированного сечения при энергии $E \approx 1,54$ МэВ.

ЛИТЕРАТУРА

2. Тамм И. Е. Основы теории электричества. М.: Наука, 1976.
7. Панковский С. Вычислительные применения многочленов и рядов Чебышева. Пер. с польского. М.: Наука, 1983.

Получено 25 ноября 2011 г.