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INTRODUCTION

The Coulomb correction (CC) is the difference between the exact in the
parameter ξ = Zα/β result and its Born approximation. At intermediate ener-
gies, when kinetic energy of the scattered particles is approximately from 0.1 to
2.0 MeV, formulas for the Coulomb corrections are not available in analytical
form [1]. The analytic formulas for the high-energy CC are known as the BetheÄ
Bloch formulas for the ionization losses [2] and those for the BetheÄHeitler cross
section of bremsstrahlung [3, 4].

A similar expression was found for the total cross section of the Coulomb
interaction of compact hadronic atoms with ordinary target atoms [5]. Were also
obtained CC to the cross sections of the pair production in nuclear collisions [4,
6, 7], an interaction potential [8], and the spectrum of bremsstrahlung [4, 9, 10].
The speciˇcity of the expressions presented in this work is that they deˇne the CC
to the Born screening angle χB

a and an exponential part of distribution function
of the Moli�ere multiple scattering theory.

The Moli�ere theory of multiple scattering [11] is the most used tool for taking
into account the multiple scattering effects in experimental data processing. The
experiment DIRAC and many others [12Ä16] face the problem of excluding the
multiple scattering effects in matter from obtained data. As the Moli�ere theory is
currently used in the energy range roughly from 1 MeV to 200 GeV, the role of
the high-energy CC to the parameters of this theory becomes signiˇcant.

Of especial importance is the Coulomb correction to the screening angular
parameter, as this parameter also enters other important quantities in the Moli�ere
theory. In his original paper, Moli�ere received an approximate semi-analytical
relation for the exact χa and the ˇrst-order χB

a values of the screening angle:

χa = χB

a

√
1 + 3.34 (Zα/β)2 .

While the ˇrst term of this expression is deˇned quite accurately, the coefˇcient
in the second term is found only numerically and approximately.

In this work, we have obtained for χa an exact with respect to ξ compact
analytical result. To the second order in ξ, it is given by

χa = χB

a

√
1 + 2.13 (Zα/β)2 .

We have also evaluated numerically, in the range 4 � Z � 82, the Coulomb
corrections to the Born approximations of the screening angular parameter. Ad-
ditionally, we have estimated the absolute and relative accuracies of the Moli�ere
theory in determining these corrections.

The plan of the paper is as follows. In Sec. 2, we consider the standard
approach to the multiple scattering theory proposed by Moli�ere. In Sec. 3, we
obtain the analytical and numerical results for the Coulomb corrections to the
screening angular parameter. In Conclusion, we brie
y summarize our results.
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1. MOLI�ERE MULTIPLE SCATTERING THEORY

Multiple scattering of a charged high-energy particle on the atoms of a target
is the diffusion process in the angular plane of (θ, φ) = χ. The angular phase
volume is dO = 2πχdχ, we suppose χ = |χ| � 1. We deˇne σ(χ)χdχdφ as the
differential cross section for the single elastic scattering into the angular interval
χ, χ + dχ; the Rutherford scattering cross section reads

σR(χ) =
(

2Ze2

mv2

)2 1
χ4

, U =
e2Z

r
, e2 = 4πα, (1)

where m and v are the mass of the scattered particle and its velocity at large
distances from the scattering center, which assumed to be at rest; α is the ˇne
structure constant and Z is the atomic charge number.

Deˇne now W (θ, t)θdθ as the number of electrons scattered in the angular
interval dθ after traveling through the target of thickness t. The normalization
condition

∫
W (θ, t)d2θ = 1. The Boltzmann transport equation is

∂W (θ, t)
∂t

= −n0 W (θ, t)
∫

σ(χ)χdχ + n0

∫
W (θ − χ, t)σ(χ)d2χ, (2)

in which n0 is the number of the scattered centrum in 1 cm3, d2χ=χdχdφ/(2π).
The ˇrst term in the right-hand side describes the decreasing in the number of
electrons from the cone θ, and the second one Å the increasing in the cone from
the outside of the cone.

Following the Moli�ere, we introduce the Bessel transformation of the distri-
bution

g(η, t) =

∞∫
0

θJ0(ηθ)W (θ, t)dθ, (3)

W (θ, t) =

∞∫
0

ηJ0(ηθ)g(η, t)dη. (4)

For g(η, t), using the folding theorem, we obtain

∂g(η, t)
∂t

= −n0 g(η, t)

∞∫
0

σ(χ)χdχ[1 − J0(ηχ)]. (5)

Its solution is

g(η, t) = exp {N(η) − N0} , (6)

N(η) = n0 t

∫
σ(χ)χdχJ0(ηχ). (7)
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Inserting this expression in the Bessel transform of the distribution function
W , we have

W (θ, t) =
1
2π

∞∫
0

ηdηJ0(ηθ) exp

⎧⎨
⎩−n0 t 2π

∞∫
0

σ(χ)χdχ [1 − J0(ηχ)]

⎫⎬
⎭ . (8)

For the screening potential, the differential scattering cross section reads

σ(χ) =
4Z2e4

(vp)2(χ2 + χ2
0)2

, χ0 =
�

pa
, (9)

and the total cross section for the single elastic scattering becomes

σ = 2π

∞∫
0

σ(χ)χdχ =
4πa2(Ze2)2

(�v)2
. (10)

In the case of a thin target t � ls, where ls = 1/(nσ), the distribution
function may be written as

W (θ, t) = ntσ(θ) =
N

S
σ(θ). (11)

Here, N is the number of scattering centers, S is the area of the thin target surface
(Nσ(θ) � S), and W (θ, t) = Nσ(θ)/S is the probability of single scattering.

For large values of χ, the cross section σ(χ) ∼ 1/χ4 decreases rapidly. It is
a complicated function for χ ∼ χ0 with

χ0 =
λ

a
, λ =

�

mv
, a = 0.885 a0Z

−1/3 . (12)

Here, a0 is the Bohr radius of the particle, and a is the Fermi radius of the atom.
For the reasonable thickness, the width of the multiple scattering distribution

is very large compared with χ0.
Let us write

n0t σ(χ)χdχ = 2χ2
cχdχ

q(χ)
χ4

, χ2
c = 4πn0t

Z(Z + 1)z2e4

(pv)2
, e2 = 4πα, (13)

where z is the charge of the scattered particle; q(χ) is the ratio of actual to
Rutherford scattering cross sections. We replace Z2 → Z(Z + 1) keeping in
mind the scattering on atomic electrons.
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The physical meaning of χc can be understood from the requirement that the
probability of scattering on the angles exceeding χc is unity:

2n0t

∞∫
χc

dσ(χ) = 2
4πn0t e4Z(Z + 1)

(mv2)2

∞∫
χc

dχ

χ3
= 1. (14)

Typically, χc/χ0 = 100. The quantity q(χ) is equal to unity for large values
of χ � χc and tends to zero at χ = 0. The main χ values belong to the
region χ ∼ χ0. It contains deviation from the Rutherford formulae due to the
effects of screening of atomic electrons and the Coulomb corrections arising from
multiphoton exchanges between the scattered particle and the atomic nuclei.

We obtain in terms of χc

− ln g(η, t) = 2 χ2
c

∞∫
0

dχ

χ3
q(χ) [1 − J0(χη)] . (15)

To estimate the value of integral, we introduce (following [11, 17]) some
quantity k from the region (χ0, χc):

χ0 � k � χc. (16)

In the region χ < k, we can use 1 − J0(χη) = (χη)2/4:

k∫
0

dχ

χ3
q(χ) [1 − J0(χη)] =

1
4
η2

k∫
0

dχ

χ
q(χ). (17)

In the region k < χ, we can put q(χ) = 1:

∞∫
k

dχ

χ
[1 − J0(χη)] =

1
4
η2I1(kη),

I1(x) = 4

∞∫
x

dt

t3
[1 − J0(t)] =

2
x2

[1 − J0(x)] + 2

∞∫
x

dt

t2
J1(t),

2

∞∫
x

dt

t2
J1(t) =

1
x

J1(x) +

∞∫
x

dt

t
J0(t), x = kη. (18)
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Here, we used

∞∫
x

dt

t2
J1(t) =

1
x

J1(x) +

∞∫
x

dt

t
J ′

1(t) =

=
1
x

J1(x) +

∞∫
x

dt

t

(
J0(t) −

J1(t)
t

)
, tJ ′

1 = tJ0 − J1.

Using
∫∞

x
J0(t)dt/t = ln(2/x) − CE + O(x2) at x � 1, we obtain

∞∫
x

dχ

χ3
[1 − J0(χη)] =

1
4

η2
[
1 − CE − ln(kη) + O

(
(kη)2

)]
, (19)

with the Euler constant CE = 0.577 . . .
Considering the contribution of the region χ < k, Moli�ere introduced the

notion of the screening angle χa:

− ln χa = lim
k→∞

⎡
⎣ k∫

0

dχ

χ
q(χ) +

1
2
− ln k

⎤
⎦ . (20)

Hence, we obtain

− ln g(η, t) = N0 − N(η) =
1
2
(χcη)2

[
− ln(χaη) +

1
2

+ ln 2 − CE

]
. (21)

Introducing a new variable y = χcη, we get

N0 − N(η) =
1
4
y2

[
b̃ − ln

(
1
4
y2

)]
,

b̃ = ln
χ2

c

χ2
a

+ 1 − 2CE ≡ ln
χ2

c

(χ′
a)2

. (22)

The Moli�ere transformed equation is

W (θ, t)θdθ = λdλ

∞∫
0

ydyJ0(λy) exp
{

1
4
y2

[
−b̃ + ln

(
1
4
y2

)]}
,

λ = θ/χc. (23)

This rather simple formula permits us to develop an iteration procedure for W .
Really, putting b̃ = B − ln B and introducing the variables x = λ2/B and
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u = y
√

B, one can obtain the expansion of the distribution function in a power
series in 1/B:

W (θ)θdθ =
1

χ2
cB

θdθ

[
W (0)(x) +

1
B

W (1)(x) +
1

B2
W (2)(x) + . . .

]
,

with

W (0)(x) = 2 exp
(
−θ2

θ̄2

)
, W (1)(x) ≈ 2θ̄2

θ4
, . . . ,

W (n)(x) =
1
n!

∞∫
0

uduJ0(u
√

x)
[
1
4
u2 ln

(
1
4
u2

)]n

exp
{
−1

4
u2

}
,

x = θ2/(χ2
cB), θ2 = x2

cB.

The result of numerical integration W (n)(x) was obtained in papers by Moli�ere,
Bethe and Scott [11, 17] (see also [18]). In practice, the value of B as a solution
of the transcendental equation b̃ = B − ln B is large enough B ≈ 5 to provide
the convergence of the expansion series.

Let us investigate the expression ln g = N − N0(η):

ln g =
y2

4

[
B − ln B − ln

y2

4

]
=

y2B

4
− 1

B

[
y2B

4
ln

y2B

4

]
. (24)

Its minimal value is ln gmin = eb̃−1 corresponding to the value y2
0/4 = eb̃−1.

Since eb̃ ≈ (χc/χa)2 is of the same order of magnitude as the number of collisions
N0, the accuracy of the ˇnal result of Moli�ere increases with the number of
collisions as exp{−N0/e}. As was shown by Bethe,

eb̃ =
χ2

c

1.167χ2
a

= 4πNAt

(
�

mc

)2 (Z + 1)Z1/3z2 0.8852

β2A 1.167 (1.13 + 3.76ξ2)
=

=
6680 t

β2

(Z + 1)Z1/3z2

A (1 + 3.34 ξ2)
. (25)

Here, b̃ ≈ 8.8, NA = 6.02× 1023 cm−3 is the Avogadro number, A is the atomic
weight, ξ = Zα/β is the ®Born parameter¯, β = v/c, and the thickness t of the
target is measured in units gramm×cm2.

Some comments. The quantity eb̃ = (χc/χ′
a)2 depends on the screening angle

χ′
a = 1.080χa. The screening angle incorporates the deviation of the potential

from the Coulomb one from both the screening effect of atomic electrons and the
Coulomb corrections.
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Estimating the scattering phases within the ThomasÄFermi model

V (r) = ±zZe2

r
Λ

( r

a

)
, a = Z−1/3 × 0.466 × 10−8 cm,

Λ(r′) =
3∑

i=1

aie
−b̃ir

′
,

a1 = 0.1, a2 = 0.55, a3 = 0.35,

b̃1 = 6, b̃2 = 1.2, b̃3 = 0.3 (26)

in the limit a → ∞ or the limit of small ξ, one obtains

q(χ) =
(

χ

χ0

)4
(

3∑
i=1

ai

b̃2
i + (χ/χ0)2

)2

. (27)

In order to obtain a result valid for large ξ and also for large angles χ,
Moli�ere used the WKB method and rather rough approximation in describing the
Coulomb corrections. His result for the screening angle turns out to be only
numerical and approximate. As a result, it leads to the ˇrst term χ2

0 × 1.13 of the
expression for screening angle:

χ2
a = χ2

0(1.13 + 3.76 ξ2). (28)

In the next section, we will use for these purposes the eikonal approximation
and obtain an exact expression describing the Coulomb correction to the value of
the Born approximation screening angle χB

a =
√

1.13χ0.

2. COULOMB CORRECTION TO THE SCREENING ANGULAR
PARAMETER

Remind now the relations for scattering amplitude in eikonal approximation:

f(q) =
1

2πi

∫
d2b exp{−iqb}S(b), S(b) = exp{−iφ(b)} − 1,

φ(b) =
1
v

∞∫
−∞

dzU(b, z), U(b, z) = Zα/r, r =
√

b2 + z2, (29)

where φ(b) is the eikonal phase (see [19], Appendix E).
It is convenient to deˇne an interaction potential in the LandauÄPomeran-

chukÄMigdal effect theory (see Appendix A in [8]):

V (b) = n

∫ (
1 − exp{iqb}

)
|f(q)|2d2q, |f(q)|2d2q = dσ(q).
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In the case of the screened Coulomb potential, we have the following expression
for the eikonal phase:

φ(b) =
Zα

v

∞∫
−∞

dz
1
r

exp
{
− r

a

}
= 2

Zα

v
K0

(
b

a

)
, (30)

where a is the ThomasÄFermi atom radius, and K0(b/a) is the Macdonald func-
tion of order zero.

The equation for the potential V (b) can be written (after performing the
angular integration) as

V (b)
2πn

=
∫

[1 − J0(qb)]dσ(q). (31)

Comparing this result with

N0 − N(η)
n0t

=
∫

[1 − J0(ηχ)]dσ(χ), (32)

in which N0 − N(η) = − ln g(η), we obtain the similarity when accept qb =
ηχ, q = pη, b = χ/p, p = mv.

So the problem of deviation of the potential V (b) from the Born one

ΔV (b) = −ΔCC

[
V (b)] =

= n

∫
d2x

[
exp

{
i[φ(b + x) − φ(x)]

}
− 1 +

1
2

[φ(b + x) − φ(x)]2
]

,

with ΔCC

[
V (b)] ≡ V(b)−VB(b), is similar to our problem of deviation of the

screening angle in the eikonal approximation from its Born value

Δ
[
− ln g(η)

]
= ΔCC [ln g(η)] =

1
2
(χcη)2ΔCC

[
ln

(
χ ′

a

)2
]

=

= (χcη)2
1
2π

∫
d2x

[(
(x + b)2

x 2

)iξ

− 1 +
ξ2

2
ln2 (x + b)2

x 2

]
=

= (χcη)2f(ξ), (33)

with the Coulomb corrections ΔCC

[
ln g(η)

]
≡ln g(η)− ln gB(η) and ΔCC [ln

(
χ ′

a

)
]

≡ ln
(
χ ′

a

)
− ln

(
χ ′

a

)B
.

The two-dimensional integral calculated in [8] turns out to be

f(ξ) = ξ2
∞∑

n=1

1
n(n2 + ξ2)

, ξ = Zα/β. (34)
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From (33), we obtain

ΔCC[ln
(
χ ′

a

)
] = f(ξ) (35)

or, equivalently,

ΔCC [ln
(
χ ′

a

)
] = Re

[
ψ(1 + iξ)

]
+ CE , (36)

with CE = −ψ(1). Here, we use the smallness of the ratio x/a � 1, the
b ∼ x � a and apply the relevant asymptotic of the Macdonald function K0(z) =
C − ln(z/2)+ O(z2). The main reason of such a derivation of relations (33) and
(36) is the signiˇcantly different regions of contributions of the screening effects
and the Coulomb corrections. Really, the last ones play the main role in the
region of small impact parameters, where the number of atom electrons is small
and the screening effects are negligible. These results may also be obtained by
using the technique developed in [5].

Finally, we get

χ2
a = 1.13χ2

0

[
1 + 2.131

(
Zα

β

)2

+ . . .

]
, (37)

which can be compared with the Moli�ere one

χ2
a = 1.13χ2

0

[
1 + 3.34

(
Zα

β

)2

+ . . .

]
. (38)

To calculate the second-order relative corrections to the ˇrst-order results, δ
(2)
CC

and δ
(2)
M , which correspond to Eqs. (37) and (38), respectively, and to investigate

their Z-dependence, we ˇrst present these equations in the approximate form:

(
χ ′

a

)
≈

(
χ ′

a

)B

[
1 + 1.204

(
Zα

β

)2

+ O

((
Zα

β

)4
)]

, (39)

(
χ ′

a

)
≈

(
χ ′

a

)B

[
1 + 1.670

(
Zα

β

)2

+ O

((
Zα

β

)4
)]

. (40)

Then, (39) and (40) become

δ
(2)
CC

(
χ ′

a

)
=

Δ(2)
CC

(
χ ′

a

)
(
χ ′

a

)B ≈ 1.204
(

Zα

β

)2

+ O

((
Zα

β

)4
)

, (41)

δ
(2)
M

(
χ ′

a

)
=

Δ(2)
M

(
χ ′

a

)
(
χ ′

a

)B ≈ 1.670
(

Zα

β

)2

+ O

((
Zα

β

)4
)

. (42)
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In order to compare our results and those of Moli�ere, we also deˇne the

absolute Δ(2)
CCM and relative δ

(2)
CCM differences between the values of δ

(2)
M

(
χ ′

a

)
and

δ
(2)
CC

(
χ ′

a

)
:

δ
(2)
CCM =

Δ(2)
CCM

δ
(2)
M

=
δ
(2)
CC − δ

(2)
M

δ
(2)
M

=
δ
(2)
CC

δ
(2)
M

− 1. (43)

Table 1 presents the Z-dependence of the second-order corrections to the
ˇrst-order results for β = 1. It shows that the values of the relative corrections

δ
(2)
CC for large-Z targets (Z ∼ 80) do reach 40%.

Table 1. The Z-dependence of the second-order corrections deˇned by Eqs. (41)Ä(43)

M Z Zα δ
(2)
CC δ

(2)
M −Δ

(2)
CCM −δ

(2)
CCM

Be 4 0.029 0.001 0.001 0.000 0.286

Al 13 0.094 0.011 0.015 0.004 0.280

Ti 22 0.160 0.031 0.043 0.012 0.280

Ni 28 0.204 0.050 0.070 0.020 0.286

Mo 42 0.307 0.113 0.157 0.044 0.280

Sn 50 0.365 0.160 0.222 0.062 0.279

Ta 73 0.533 0.342 0.474 0.132 0.278

Pt 78 0.569 0.390 0.541 0.150 0.279

Au 79 0.577 0.400 0.554 0.154 0.278

Pb 82 0.598 0.431 0.598 0.166 0.279

Hence, it is also obvious that with the rise in the nuclear charge the absolute

accuracy Δ(2)
CCM of the Moli�ere theory in determining the relative CC to χ ′

a due
to the difference of the coefˇcients in (41) and (42) increases to approximately

16%, and the corresponding relative error δ
(2)
CCM does not depend on Z and is

about 28%. During our analysis, we omit systematically the contribution of order
α compared with that of order 1.

We can also calculate the exact in ξ absolute correction ΔCC [ln
(
χ ′

a

)
] = f(ξ)

and relative correction δCC

(
χ ′

a

)
to the Born screening angle

(
χ ′

a

)B
,

δCC

(
χ ′

a

)
=

χ ′
a −

(
χ ′

a

)B(
χ ′

a

)B =
ΔCC

(
χ ′

a

)
(
χ ′

a

)B = exp [f (ξ)] − 1, (44)
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as well as compare δCC with the Moli�ere result δ
(2)
M :

δCCM =
ΔCCM

δ
(2)
M

=
δCC − δ

(2)
M

δ
(2)
M

=
δCC

δ
(2)
M

− 1 . (45)

For this purpose, we must ˇrst calculate the values of the function f(ξ) =
Re

[
ψ(1 + iξ)

]
+ CE . The digamma series

ψ(1 + ξ) = 1 − CE − 1
1 + ξ

+
∞∑

n=2

(−1)n
[
ζ(n − 1)

]
ξn−1, (46)

where ζ is the Riemann zeta function and |ξ| < 1, leads to the corresponding
power series for Re

[
ψ(1 + iξ)

]
= Re

[
ψ(iξ)

]
and |ξ| < 2:

Re
[
ψ(iξ)

]
= 1 − CE − 1

1 + ξ2
+

∞∑
n=1

(−1)n+1
[
ζ(2n + 1)

]
ξ2n, (47)

and the function f(ξ) = ξ2
∑∞

n=1[n(n2 + ξ2)]−1 can be represented at |ξ| < 2 as
[20] (see also [21])

f(ξ) = 1 − 1
1 + ξ2

+
∞∑

n=1

(−1)n+1
[
ζ(2n + 1)

]
ξ2n (48)

= 1 − 1
1 + ξ2

+ 0.2021 ξ2 − 0.0369 ξ4 + 0.0083 ξ6 − . . .

An equivalent way to estimate f(ξ) to four decimal ˇgures is to present the
sum from (34) in the following form [4]:

∑
=

(
1 + ξ2

)−1 +
∞∑

n=1

(
− ξ2

)n−1[
ζ(2n + 1) − 1

]
, (49)

=
(
1 + ξ2

)−1 + 0.20206− 0.0369ξ2 + 0.0083ξ4 − 0.002ξ6.

Equation (49) is sufˇcient to evaluate this sum up to ξ < 2/3 = 0.667.
The calculation results for

∑
(49), function f(ξ) (48), the relative Coulomb

correction δCC (44), their difference ΔCCM , and relative difference δCCM (45)
with the Moli�ere correction δ

(2)
M (42) at β = 1 are given in Table 2.

It will be seen from Table 2 that for the light elements up to Z = 28, all
the exact corrections coincide with the corresponding second-order corrections
of Table 1. Beginning with Z = 42, the relative CC are lower than the above-

mentioned δ
(2)
CC

(
χ ′

a

)
> δCC

(
χ ′

a

)
, and this discrepancy increases approximately to

10% for the heavy elements with Z ∼ 80. The magnitude of ΔCC

[
ln

(
χ ′

a

)]
=

11



Table 2. The Z-dependence of the exact with respect to ξ corrections (35), (44),
and (45)

M Z Zα Σ f(Zα) δCC −ΔCCM −δCCM

Be 4 0.029 1.201 0.001 0.001 0.000 0.286

Al 13 0.094 1.193 0.011 0.011 0.004 0.280

Ti 22 0.160 1.176 0.031 0.031 0.012 0.280

Ni 28 0.204 1.160 0.049 0.050 0.020 0.287

Mo 42 0.307 1.113 0.105 0.110 0.047 0.297

Sn 50 0.365 1.080 0.144 0.154 0.068 0.306

Ta 73 0.533 0.971 0.276 0.318 0.157 0.330

Pt 78 0.569 0.947 0.307 0.359 0.182 0.336

Au 79 0.577 0.941 0.313 0.367 0.187 0.337

Pb 82 0.598 0.926 0.332 0.393 0.205 0.342

f(Zα) is about 30% for Z ∼ 80. The size of the corresponding relative CC for
these values of Z is approximately 40%. The absolute and relative difference
with Moli�ere corrections increases to 20% and 34%, respectively, at Z ∼ 80.

Thus, in the case of scattering on large-Z targets such corrections to the
Moli�ere result (42) as ΔCCM and δCCM become signiˇcant and should be taken
into account in the description of experiments with nuclear targets.

CONCLUSION

We have calculated the Coulomb correction ΔCC

[
ln

(
χ ′

a

)]
and the relative

Coulomb correction δCC

(
χ ′

a

)
to the screening angle χ ′

a both analytically and
numerically in the range 4 � Z � 82. We have found that these corrections are
of the order of 30% to 40% for Z ∼ 80. Additionally, we evaluated the difference
and relative difference between our results in determining the CC to χ ′

a and those
of Moli�ere, and found that they are about 20% and 30%, respectively, for heavy
atoms of the target material.
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