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Coulomb correction to the screening angular parameter of the Moliére multiple
scattering theory is found. Numerical calculations are presented in the range of
nuclear charge 4 < Z < 82. Comparison with the Moliére result for the screening
angle reveals up to 30% deviation from it for sufficiently heavy elements of the
target material.
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INTRODUCTION

The Coulomb correction (CC) is the difference between the exact in the
parameter £ = Z«/ 3 result and its Born approximation. At intermediate ener-
gies, when kinetic energy of the scattered particles is approximately from 0.1 to
2.0 MeV, formulas for the Coulomb corrections are not available in analytical
form [1]. The analytic formulas for the high-energy CC are known as the Bethe—
Bloch formulas for the ionization losses [2] and those for the Bethe—Heitler cross
section of bremsstrahlung [3, 4].

A similar expression was found for the total cross section of the Coulomb
interaction of compact hadronic atoms with ordinary target atoms [5]. Were also
obtained CC to the cross sections of the pair production in nuclear collisions [4,
6, 7], an interaction potential [8], and the spectrum of bremsstrahlung [4, 9, 10].
The specificity of the expressions presented in this work is that they define the CC
to the Born screening angle x7 and an exponential part of distribution function
of the Moliére multiple scattering theory.

The Moliére theory of multiple scattering [11] is the most used tool for taking
into account the multiple scattering effects in experimental data processing. The
experiment DIRAC and many others [12-16] face the problem of excluding the
multiple scattering effects in matter from obtained data. As the Moliére theory is
currently used in the energy range roughly from 1 MeV to 200 GeV, the role of
the high-energy CC to the parameters of this theory becomes significant.

Of especial importance is the Coulomb correction to the screening angular
parameter, as this parameter also enters other important quantities in the Moliére
theory. In his original paper, Moliére received an approximate semi-analytical
relation for the exact x, and the first-order x7 values of the screening angle:

Xy = Xf\/l +3.34(Za/B)? .
While the first term of this expression is defined quite accurately, the coefficient
in the second term is found only numerically and approximately.
In this work, we have obtained for x, an exact with respect to £ compact
analytical result. To the second order in &, it is given by

X = Xf\/1 +2.13(Za/B)? .
We have also evaluated numerically, in the range 4 < Z < 82, the Coulomb
corrections to the Born approximations of the screening angular parameter. Ad-
ditionally, we have estimated the absolute and relative accuracies of the Moliere
theory in determining these corrections.

The plan of the paper is as follows. In Sec.2, we consider the standard
approach to the multiple scattering theory proposed by Molieére. In Sec.3, we
obtain the analytical and numerical results for the Coulomb corrections to the
screening angular parameter. In Conclusion, we briefly summarize our results.




1. MOLIERE MULTIPLE SCATTERING THEORY

Multiple scattering of a charged high-energy particle on the atoms of a target
is the diffusion process in the angular plane of (6, ¢) = x. The angular phase
volume is dO = 2mxdy, we suppose x = |x| < 1. We define o(x)xdxd¢ as the
differential cross section for the single elastic scattering into the angular interval
X, X + dyx; the Rutherford scattering cross section reads

27¢2\? 1 2y
o,(x) = ( ° ) v=22 e? = 4ra, (1)

mv? | x4t r’

where m and v are the mass of the scattered particle and its velocity at large
distances from the scattering center, which assumed to be at rest; « is the fine
structure constant and Z is the atomic charge number.

Define now W (6,¢)0d0 as the number of electrons scattered in the angular
interval df after traveling through the target of thickness ¢. The normalization
condition [ W (6,t)d?0 = 1. The Boltzmann transport equation is

oW (0,t)
ot

in which ng is the number of the scattered centrum in 1 cm?®, d?y=xdxd¢/(27).
The first term in the right-hand side describes the decreasing in the number of
electrons from the cone 6, and the second one — the increasing in the cone from
the outside of the cone.

Following the Moliére, we introduce the Bessel transformation of the distri-
bution

=—ng W(97t)/0(x)xdx + g / W (6 — x,t)o(x)d*x; (2)

o0.1) = [ 6.a(s6)1V 6. 2)d5 3)
0
W(0,t) =/77Jo(n9)g(n,t)dn- 4)
0
For g(n,t), using the folding theorem, we obtain
dg(n, t T
20 — g gnt) [ o0rilt = ol ®)
0
Its solution is

g(n,t) =exp{N(n) — No}, (6)
N(n) =ngt / a(x)xdxJo(nx)- (7)



Inserting this expression in the Bessel transform of the distribution function
W, we have

1 o0 oo
W(o,t) = Dy / ndnJo(nf) exp § —ngt 2w / a()xdx 1= Jo(mx)] p- (8
0 0

For the screening potential, the differential scattering cross section reads

472 h
T et ©

and the total cross section for the single elastic scattering becomes

T 47a® (Ze )2
277/0 )xdx = (hv)2 . (10)
0

In the case of a thin target ¢ < Is, where [; = 1/(no), the distribution
function may be written as

W(0,t) = nto(0) = %a(e). (11)

Here, N is the number of scattering centers, .S is the area of the thin target surface
(No(0) < S), and W(0,t) = No(0)/S is the probability of single scattering.

For large values of , the cross section o(x) ~ 1/x* decreases rapidly. It is
a complicated function for y ~ x, with

A h
Xo=2, A=—, a=0.885a,2"%3.
a muv

12)

Here, a is the Bohr radius of the particle, and a is the Fermi radius of the atom.
For the reasonable thickness, the width of the multiple scattering distribution
is very large compared with .
Let us write

Z(Z +1)z2%e4
not o(x)xdx = 2)&)((1)(%, X2 = 4wnot%, e? = 4ra, (13)

where z is the charge of the scattered particle; g(x) is the ratio of actual to
Rutherford scattering cross sections. We replace Z? — Z(Z + 1) keeping in
mind the scattering on atomic electrons.



The physical meaning of ). can be understood from the requirement that the
probability of scattering on the angles exceeding X, is unity:

T drngt e Z(Z +1) [ d
2n0t/da(x) —9 O(mv2()2 ) x_>§ —1. (14)
Xec Xec

Typically, x./xo = 100. The quantity g(x) is equal to unity for large values
of x > x. and tends to zero at x = 0. The main x values belong to the
region x ~ Xg. It contains deviation from the Rutherford formulae due to the
effects of screening of atomic electrons and the Coulomb corrections arising from
multiphoton exchanges between the scattered particle and the atomic nuclei.

We obtain in terms of

—Ing(n,t) =2x? / i_x qa(x) [1 = Jo(xn)] - (15)
0

To estimate the value of integral, we introduce (following [11, 17]) some
quantity k from the region (x;, X,):

Xo < k < X (16)
In the region x < k, we can use 1 — Jo(xn) = (xn)?/4:
f d 1 / d
[ b0 =m0 = [ Xato (7
X X
0 0
In the region k < x, we can put ¢(x) = 1:
Oodx 15
X - —
/ vl (xn)] 1 Lu(kn),
k
hz) = 4 [ 50=Jh®)]= 51— Jo(2)] +2 Ji(t),
T dt 1 T dt
2/ t_2 Jl(t) = Ejl(x) + / ? Jo(t), T = kn. (18)



Here, we used

T dt 1 Tdt
[Fn0 = tn@+ [ -
= %]1(90) + /% (Jo(t) - Jlt(t)> , tJ =ty —Ji.

Using [° Jo(t)dt/t =In(2/x) — Cp + O(2?) at z < 1, we obtain

(oo}

[ S ot = 3o [1 - Co =k +0(@n?)] . a9)

x

with the Euler constant C, = 0.577...
Considering the contribution of the region x < k, Moliere introduced the
notion of the screening angle x,,:

k

m /%q(x)ﬁ—w | 20)

—lnxa:kl 5
0

i
Hence, we obtain
1 9 1
—Ing(n,t)=No—N(n) = 5(xen)” | ~In(xam) + 5 +m2-Cp . 2D

Introducing a new variable y = x .1, we get

No - ) = 02 5= (07 |

2 2
7 Xe — Xe

The Moliére transformed equation is

W (6,t)0d6 = AdA/ydyJO(Ay) exp {i@ﬁ [—B +1In G@ﬂ)] } ,
0

A =0/Ye. (23)

This rather simple formula permits us to develop an iteration procedure for W.
Really, putting b = B — In B and introducing the variables z = A\?/B and



u = yv B, one can obtain the expansion of the distribution function in a power
series in 1/B:

1 1 1
- (0) —w® —w®@
W (6)0do XEBGdG {W (x) + BW () + 2 W (x) + .. } )
with
92 262
WO(z) = 2exp <_9_2> . W (z) ~ TR

WM (z) = %ijudujoﬁh/E){iu2h1<iu2)}nexp{——iu2},
0

r=0%/(2B), 6°=a2B.

The result of numerical integration W (™ () was obtained in papers by Moliére,
Bethe and Scott [11, 17] (see also [18]). In practice, the value of B as a solution
of the transcendental equation b = B — In B is large enough B ~ 5 to provide
the convergence of the expansion series.
Let us investigate the expression Ing = N — Ny(n):
y? y2] y’B 1 [yQB yQB}

lng:Z B—lnB—an 24)

1 b—1

Its minimal value is In gpi, = eb- corresponding to the value y2/4 = e

Since €’ ~ (x,/x,)? is of the same order of magnitude as the number of collisions
Ny, the accuracy of the final result of Moliére increases with the number of
collisions as exp{—Ny/e}. As was shown by Bethe,

B2A1.167 (1.13 4 3.76£2)

1.167x2 me
6680t (Z +1)Z/322
B2 A(1+3.34¢€2)°

B Xe 4 t<h>2 (Z +1)Z/3220.8852
- A

(25)

Here, b ~ 8.8, N, = 6.02 x 1023 cm 3 is the Avogadro number, A is the atomic
weight, £ = Za/[ is the «Born parameter», § = v/c, and the thickness ¢ of the

target is measured in units gramm xcm?.

Some comments. The quantity e® = (x./x%)? depends on the screening angle
X, = 1.080x,. The screening angle incorporates the deviation of the potential
from the Coulomb one from both the screening effect of atomic electrons and the
Coulomb corrections.



Estimating the scattering phases within the Thomas—Fermi model

2
V(r):j:ZZG A(’“

—) . a=2Z"Y3 %0466 x 10~ cm,

a
3 ~
’
A(r') = Zaie_b“" ,
i1

a] = 0.1, as = 0.55, asz = 035,
b1 =6, by = 1.2, by = 0.3 (26)

r

in the limit a — oo or the limit of small &, one obtains

X 4/ 3 o 2
Q(X):<X_o> (2_; 5?+(x/><o)2> ' @0

In order to obtain a result valid for large ¢ and also for large angles Y,
Moliere used the WKB method and rather rough approximation in describing the
Coulomb corrections. His result for the screening angle turns out to be only
numerical and approximate. As a result, it leads to the first term xZ x 1.13 of the
expression for screening angle:

X2 = x5(1.13 + 3.76 £%). (28)

In the next section, we will use for these purposes the eikonal approximation
and obtain an exact expression describing the Coulomb correction to the value of
the Born approximation screening angle x7 = v/1.13x,.

2. COULOMB CORRECTION TO THE SCREENING ANGULAR
PARAMETER

Remind now the relations for scattering amplitude in eikonal approximation:

f@ = 5 [ @b epl-iab}S(b). S(b) = exp{-io(b)} - 1.

bS
E
[

1 oo
o [ dUbL), Vb =zZar r=VBTEA @)

where ¢(b) is the eikonal phase (see [19], Appendix E).
It is convenient to define an interaction potential in the Landau—-Pomeran-
chuk—Migdal effect theory (see Appendix A in [8]):

V) = n [ (1-expliab))it@Pd*a,  [f(@)*d*a = dofa).



In the case of the screened Coulomb potential, we have the following expression
for the eikonal phase:

Za T 1 Z b
¢(b) = Ta dz; exp{—g}—QTaKo<> (30)

— 00

where a is the Thomas—Fermi atom radius, and Ky(b/a) is the Macdonald func-
tion of order zero.

The equation for the potential V(b) can be written (after performing the
angular integration) as

22~ [i- nlavdota) (3D

2mn
Comparing this result with

No — N(n)
ngt

= / (1 — Jo(nx)ldo(x), (32)

in which Ny — N(n) = —1Ing(n), we obtain the similarity when accept ¢gb =

nx, ¢ =pn, b=x/p, p=mo.
So the problem of deviation of the potential V' (b) from the Born one

AV(B) = ~Acc[V(D) =
[ 2 exp {0 + ) — 60}~ 1+ 3100+ ) - 92

with Ao [V (b)] = V(b) — VE(b), is similar to our problem of deviation of the
screening angle in the eikonal approximation from its Born value

Al=Ing(n)] = Acclng(n)]= %(Xﬂ?) Ace {ln (Xéﬂ =
x 2 X 2
= (xem)?f(8), (33)

with the Coulomb corrections Acc[In g(n)]=In g(n) —Ing”(n) and Acc[In(x,)]

=In(x,)—In (Xé)B.
The two-dimensional integral calculated in [8] turns out to be

GRS m ¢ = Za/p. (34)



From (33), we obtain

Ace[ln (x)] = £(€) (35)

or, equivalently,
Accn (xg)] = Re[¢(1 + )] + Cx, (36)
with Cp = —1(1). Here, we use the smallness of the ratio z/a < 1, the

b ~ x < a and apply the relevant asymptotic of the Macdonald function Ky(z) =
C —In(z/2) + O(z?). The main reason of such a derivation of relations (33) and
(36) is the significantly different regions of contributions of the screening effects
and the Coulomb corrections. Really, the last ones play the main role in the
region of small impact parameters, where the number of atom electrons is small
and the screening effects are negligible. These results may also be obtained by
using the technique developed in [5].
Finally, we get

Zo\ 2
X2 =1.13y2 |1+ 2.131 (%) o, 37)
which can be compared with the Moliére one
Za\?
X2 =1.13x2 |1 +3.34 <7> +... (38)

To calculate the second-order relative corrections to the first-order results, 5((;23
and 51(3), which correspond to Eqgs. (37) and (38), respectively, and to investigate
their Z-dependence, we first present these equations in the approximate form:

, /B_ Za\? Za\*\ |
(%%4&)_“*ﬂmﬁﬁ>+o<63>>j (39)

(x2) ~ (x2)” _1 + 1.670 (%)2 +0 ((%)j . (40)

Then, (39) and (40) become

(2) (1 2 4

sA(yl) = LE;/(;;“) ~ 1.204 (%) +0 ((%) ) (41)
(2) (7 2 4

sP(xl) = A&%()X;) ~ 1.670 (%) +0 ((%) ) (42)



In order to compare our results and those of Moliére, we also define the
absolute A2, and relative 6°2,, differences between the values of .2 (xs) and

082 (xa):

(2) A(C?C)’IW 65126)‘ - 51(5) 65126)‘
5CCM - (2) - (2) (2) ]- (43)
) ) é
M M M

Table 1 presents the Z-dependence of the second-order corrections to the
first-order results for 3 = 1. It shows that the values of the relative corrections
5(020) for large-Z targets (Z ~ 80) do reach 40%.

Table 1. The Z-dependence of the second-order corrections defined by Egs. (41)-(43)

M| Z | Zao| 05 | 0| =BG | —0¢eu
Be 4 0.029 0.001 0.001 0.000 0.286
Al 13 0.094 0.011 0.015 0.004 0.280
Ti 22 0.160 0.031 0.043 0.012 0.280
Ni 28 0.204 0.050 0.070 0.020 0.286
Mo 42 0.307 0.113 0.157 0.044 0.280
Sn 50 0.365 0.160 0.222 0.062 0.279
Ta 73 0.533 0.342 0.474 0.132 0.278
Pt 78 0.569 0.390 0.541 0.150 0.279
Au 79 0.577 0.400 0.554 0.154 0.278
Pb 82 0.598 0.431 0.598 0.166 0.279

Hence, it is also obvious that with the rise in the nuclear charge the absolute
accuracy A(CQC) u of the Moliére theory in determining the relative CC to x. due
to the difference of the coefficients in (41) and (42) increases to approximately
16%, and the corresponding relative error 5(CQC)M does not depend on Z and is
about 28%. During our analysis, we omit systematically the contribution of order
a compared with that of order 1.

We can also calculate the exact in & absolute correction Agc[In (x,)] = f(€)
and relative correction dcc (x,) to the Born screening angle (Xé)B,

o 1\ B Acc (;
boo(nt) = = Wa) _ Bcela) _ppp ey, (44)

(xa)” (xa)”

10




as well as compare d.. with the Moliére result 51(\42,)

Acori  boc—062  bec

5001\/1 = = =—=—1. (45)
o0 o0&y

For this purpose, we must first calculate the values of the function f(&) =
Re[¢(1 +i€)] + Cp. The digamma series

1 = n n—
¢<1+£)=1—0E—m+;2<—1) [C(n—1)]e" T, (46)

where ( is the Riemann zeta function and |£| < 1, leads to the corresponding
power series for Re[4(1 4 i€)| = Re[¢(i€)] and [¢] < 2:

. 1 — n n
Re[1(i€)] =1~ Cp — e ;(_1) F¢(2n + 1)) €%, (47)

and the function f(&) = &2>°°7  [n(n? 4+ &%)]~! can be represented at [£] < 2 as
[20] (see also [21])

o = 13 52 + Z D" ¢(2n + 1)]€¢2" 48)
— 1 152 +0.2021 €2 — 0.0369 £* + 0.0083 £6 —

An equivalent way to estimate f(£) to four decimal figures is to present the
sum from (34) in the following form [4]:

2

(1+€)" Z )" en+1) — 1], (49)

= (1+ 52) +0.20206 — 0.0369¢% 4 0.0083¢* — 0.002¢6.

Equation (49) is sufficient to evaluate this sum up to £ < 2/3 = 0.667.

The calculation results for » . (49), function f(&) (48), the relative Coulomb
correction 0o (44), their difference Accys, and relative difference doc,, (45)
with the Moliére correction 51(5) (42) at B =1 are given in Table 2

It will be seen from Table 2 that for the light elements up to Z = 28, all
the exact corrections coincide with the corresponding second-order corrections
of Table 1. Beginning with Z = 42, the relative CC are lower than the above-
mentioned 6.2 (X&) > 6cc(xs). and this discrepancy increases approximately to
10% for the heavy elements with Z ~ 80. The magnitude of A.c [In (x})] =

11



Table 2. The Z-dependence of the exact with respect to & corrections (35), (44),
and (45)

M Z Za b)) f(Za) dcc | —Accom | —dcom
Be 4 0.029 1.201 0.001 0.001 0.000 0.286
Al 13 0.094 1.193 0.011 0.011 0.004 0.280
Ti 22 0.160 1.176 0.031 0.031 0.012 0.280
Ni 28 0.204 1.160 0.049 0.050 0.020 0.287
Mo 42 0.307 1.113 0.105 0.110 0.047 0.297
Sn 50 0.365 1.080 0.144 0.154 0.068 0.306
Ta 73 0.533 0.971 0.276 0.318 0.157 0.330
Pt 78 0.569 0.947 0.307 0.359 0.182 0.336
Au 79 0.577 0.941 0.313 0.367 0.187 0.337
Pb 82 0.598 0.926 0.332 0.393 0.205 0.342

f(Za) is about 30% for Z ~ 80. The size of the corresponding relative CC for
these values of Z is approximately 40%. The absolute and relative difference
with Moliére corrections increases to 20% and 34%, respectively, at Z ~ 80.

Thus, in the case of scattering on large-Z targets such corrections to the
Moliére result (42) as Accy and docy, become significant and should be taken
into account in the description of experiments with nuclear targets.

CONCLUSION

We have calculated the Coulomb correction Acc [In (x/)] and the relative
Coulomb correction dcc(x,) to the screening angle x, both analytically and
numerically in the range 4 < Z < 82. We have found that these corrections are
of the order of 30% to 40% for Z ~ 80. Additionally, we evaluated the difference
and relative difference between our results in determining the CC to x . and those
of Moliére, and found that they are about 20% and 30%, respectively, for heavy
atoms of the target material.
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