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OTp XeHue MeJJICHHBIX HEUTPOHOB OT IOPOLIK H HOCTEpXKHEH

Hen BHO 00H pyxeHO siBieHHe 9()(heKTHBHOTO I¥hy3HOr0 OTp KEHUS OYEHb XOJIOIHBIX
HeiitpoHoB (OXH) OT H HOCTPYKTYpHUpOB HHOIO BEIIECTB IpH JIOOOM yIIe MX I ASHUS H
€ro MOBEpXHOCTb, T KX€ KB 3M3€pK JIbHOE OTp XEHHME XOJIOOHBIX HeiTpoHoB (XH) or H -
HOCTPYKTYPUPOB HHOI'O BELIECTB IIPH UX II J€HUU H €ro IOBEPXHOCTb I1OJ M JIBIMHU YIJI MH.
B ob6oux ciyd sIX B K 4ecTBe H HOCTPYKTYPHPOB HHOTO BELIECTB HCIIONB30B JICS MTOPOIIOK
JIM 3HBIX H HOY CTHUI, W3MEPEHHBIE BEPOSITHOCTU OTP KEHHsS H MHOTO IPEBBIII JIX X P K-
TEpUCTHKH H3BECTHBIX JIBTEPH THUBHBIX OTp X Telleil. OO 3TH 4BIEHUS yXe H LUTH IpHUMe-
HEHME B HEHTPOHHOM 9KCIIEpPUMEHTE U IIPU CO3Jl HUU HEHTPOHHBIX UCTOYHUKOB. B H croduieit
TEOPETUYECKO p 6OTE p CCM TPUB €TCS BO3BMOXHOCTD JIONOJIHUTEIIBHOTO yBelTMYeHUs dhhek-
TUBHOCTU H HOCTPYKTYPUDPOB HHBIX OTp X TeJeil IpU 3 MeHe c(hepUd4ecKUX H HOY CTHI H -
HocTepxHAMU. [Iok 3 HO, uto nKOeno OXH oT mopomk p 3ynmopsOOYEHHBIX H HOCTEPXKHEH
HIKe, 4eM UX Jib0eo OT MOpoIiK H Hocgep Toro xe au merp . Onn ko npbeno OXH u
KB 3u3epK JibHOe oTp keHue XH OT MOpoLIK JUIMHHBIX H HOCTEpPXHEH, OPUEHTUPOB HHBIX
I p JJIENBHO €r0 IOBEPXHOCTH, TPEBBIII €T COOTBETCTBYIOIIME 3H YEHHS Ul OTP X Telsd W3
H HOccep TOro Xe Au MeTp .
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Reflection of Slow Neutrons from Powder of Nanorods

Two phenomena were recently observed: efficient diffuse reflection of very cold neu-
trons (VCN) from nanostructured matter for any angle of neutron incidence to the matter
surface, and also quasispecular reflection of cold neutrons (CN) from nanostructured matter
for small angles of neutron incidence to the matter surface. In both cases, powder of diamond
nanoparticles was used as nanostructured matter, and the measured reflection probabilities by
far exceeded the values known for alternative reflectors. Both these phenomena are already
used in neutron experiments and for building neutron sources. In the present theoretical work,
we consider an option of further increasing the efficiency of nanostructured reflectors due to
replacing spherical nanoparticles by nanorods. We showed that VCN albedo from powder of
randomly oriented nanorods is lower than their albedo from powder of nanospheres of equal
diameter. However, albedo of VCN and quasispecular reflection of CN from powder of long
nanorods oriented parallel to the powder surface exceed those for powder of nanospheres of
equal diameter.

The investigation has been performed at the Frank Laboratory of Neutron Physics, JINR.
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1. INTRODUCTION

Efficient neutron reflectors are needed in experiments as well as for building
neutron sources. For ultracold neutrons (UCN) [1-3] (< 10~7 eV), neutron optical
potential of matter is nearly the ideal reflector, which provides the probability of
elastic reflection close to unit, at any temperature of matter. For neutrons with the
energy of up to 1076() eV, one uses multi-layer coatings (supermirrors) [4-5],
which provide the probability of specular elastic reflection of up to 80-90 %. Until
recently, efficient reflectors of neutrons with the energy of up to 10-2(3) eV had
not been known. At the energy of ~ 1072 eV, neutron wavelength is comparable
with interatomic distances thus effects of elastic diffraction and diffuse reflection
in respectively ordered and disordered matter appear. At even larger energies,
inelastic processes, which provide moderation and reflection of neutrons in nuclear
reactors [6], prevail.

Two phenomena were observed recently: efficient diffuse reflection of very
cold neutrons (VCN) from nanostructured matter for any angle of neutron in-
cidence to the matter surface, and also quasi-specular reflection of cold neu-
trons (CN) from nano-structured matter for small angles of neutron incidence
to the matter surface [7-14]. In both cases, powder of diamond nanoparticles
was used as nano-structured matter, and the measured reflection probabilities by
far exceeded the values for known alternative reflectors. Both these phenomena
are already used in neutron experiments and for building neutron sources. In the
present theoretical work, we consider an option of further increasing the efficiency
of nanostructured reflectors due to replacing spherical nanoparticles by nanorods.
For concreteness, we choose two values of neutron velocity: 1) 50 m/s, as nanos-
tructured reflectors are very efficient at this neutron velocity, and 2) 450 m/s, as,
on the one hand, the efficiency of nanostructured reflectors made of nanospheres
rapidly decreases at this neutron velocity and, on the other hand, such reflectors
are highly requested, for instance, for increasing UCN density in UCN sources
based on superfluid helium [15, 16], used in particular for the GRANIT spectrom-
eter [17], aiming at studies of/with quantum states of neutrons in gravitational
and centrifugal potentials [18,19,29-31].

If optical potential of a nanorod material is much smaller than neutron kinetic
energy and if neutron scattering cross section is much smaller than geometrical



cross section of the nanorod, then the amplitude of neutron scattering can be
calculated using perturbation theory. These approximations are valid for all cases
of interest in the present work. In this case, the amplitude F'(q,1) of neutron
scattering at a nanorod with a radius p and a length 2a with an axis along the
unit vector 1 equals:

F(q,1) = Nob | d®r exp(iq-r) =

Vi
a P 27
= Nob / dz / pldp’ / de exp (iqiz; + igyp’ cos @) =
—a 0 0
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where sinc (z) = sin(z)/x, ug = 4mwNpb is the potential of neutron interaction
with the nanorod matter divided by a factor K2 /2m (m is the neutron mass, i
is the reduced Planck constant); Ny is the number of atoms in the unit volume
of the nanorod; b is the length of neutron coherent scattering on a nucleus of the
nanorod matter; q = ky — k is the transferred momentum; ko, k are momenta of

the neutron before and after scattering; ¢; = q-1; ¢, = /a2 — (q-1)2, Jo(z)
and Ji(x) are Bessel functions; and we also used the following expressions:

Jo(z) = fo% ;i—:f exp (iz cos @), and [ 2'd2’ Jo(2') = xJ1(z).

In this work, we consider neutron scattering on diamond nanorods. The
potential of interaction of a neutron with a nanorod matter is always assumed
to be equal to 300 neV, as it is for neutron scattering at crystal diamond. This
approximation is valid in the first order for nanospheres [22] as well as for
nanorods [20], because their densities are close to the density of bulk diamond,
and their shells are not very thick [21,23,24]. However, more accurate but also
more bulky descriptions will be required for concrete reflector realizations.

The refection is understood here as albedo, i.e., the probability of neutron
reflection integrated over all backward angles. We will calculate albedo following
works [25-27], and will remind below briefly the calculation method.

2. METHOD OF ALBEDO CALCULATION

First, we will define notations. A neutron moving along a solid angle 2
with the polar axis along the internal normal to the matter surface is defined by
the state vector |{2). An angular distribution P(2) will be characterized by the
state vector

|P) = [ P(Q)dQ[). 2)

4m



The norm of this state Np = [,  P(£2) d€ is calculated by means of multiplication
of Eq.(2) from the left by a meter |m) = [, dQ|Q), using a natural relation
(Q|1€Y) = 6(2— ). In particular, isotropic distribution of incident and reflected
neutrons corresponds to the state

|P) = / [eos 0] gy, 3)
27

™

Its norm is unit.

A scatterer, which transforms a neutron state |Q) to a state |Q) with a prob-
ability w(Q — ), is described by means of an operator W = S IDw(Q —
QN dQdSY. A neutron from a state (2) is scattered into the state

|P") = W|P> = / | w(Q — Q)P(Q)dQUQ = P(Q)Q)dQ, ()
ar A
where P'(Q) = [, w(Q — Q" )P(Q)d.

In order to calculate albedo Rp from a layer of powder with a finite thick-
ness D, one first calculates albedo R, from an infinitely thick layer. For this
purpose, one splits a layer of small thickness £ from the infinite one; scattering
on this layer is calculated using perturbation theory, and it is presented in a form
of a reflection p, and a transmission 7¢ operators. In order to find the operator

R of reflection from an infinitely thick layer for incident neutrons in a state
|Q), one has to know their distribution |X¢) = X¢|€2) behind the thin layer.
For the operator Xg, one could write a self-consistent equation

Xe = ¢ + peRooXe, (5)

which shows that XE is constructed from the transmission through the layer £ and
from the contribution Xg itself, as a neutron behind the layer ¢ is reflected from
the infinite layer then is reflected ones again from the layer &, then is returned
to the infinitely thick layer, where the state | X¢) is formed together with the part
characterized by the transmission 7.

If we know Xg, we can write an equation for ﬂoo:

R = pe + TeRoo X (6)
After expressing XE via Eq. (5):
. . o1
Xe = (I-peRoc) 7o, (7)

where T = Jir 1) d2(Q] is the unit operator, and substituting the result into
Eq. (6), one gets

Roo = pe + 7eRoo (1 - pgf{m)fl Fe. @®)



Operators p, and 7 are related to macroscopic scattering cross sections as
pe =%y, Fe=1+68; €58, 9)
where

/
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is the operator of back scattering from the left or from the right,

/
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is the operator of forward scattering from the left or right; ¥,(Q « Q') is
the differential macroscopic scattering cross section; >; = Xs + X, is the total
macroscopic cross section, consisting of the integral scattering >4 and absorption
>, cross sections; and

dQY
cos 0’

S=[ |2) (@ (12)
2T

is an operator, which takes into account that the number of scatterers along the
neutron path increases with increasing of the incidence angle.
At small value of £ Eq. (8) can be linearized and reduced to the form

RooERo + (27 = 28) Ree + Rec (57 = B8) + 3 =0, (13)

We suppose that the distribution of reflected neutrons is isotropic, and represent
the solution of (13) in the form

. 0
Ro = Rm/ |Q>Md§2/ AV (| = Roo|Py)(m|.  (14)
nQ<O T nQ>O

Substitute it in (13) and multiply (13) from the left by (m| and from the right by
| P;s). Then we will get

R2.%, + 2R (X5 — ) + X3 = 0, (15)



where
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are macroscopic cross sections of backward and forward scattering. Since X5 =
Yy 4 X, then X = X5 + 3, = Xy 4+ Xp + X4, and the solution of Eq. (5) can be
presented in the form

_ V22 4+ Xe — V2 _ 1 +2Eb/2a -1
V25, 5, +vVE. 1425/, +1
In order to calculate albedo from a wall of a finite thickness, one has to know

a law of attenuation of neutron intensity in the matter. It follows from Eq. (7).
After linearization of this expression at small &, and substitution of Eq. (14) into

it, as well as multiplication from left by (m|, and from right by |P;), one gets
(m[Xe|Prs) ~ exp (—¢/L), where

1/L =225, + Sa/Sa = 25ay/1 + 25, /5. (19)

Thus X, at a depth z can be presented in the form

Roo (18)

X, = |Pss)exp (—z/L){ml|. (20)

For calculating reflection R p and transmission T p from/through a layer with
a thickness D, we will use Eqs. (5) and (6) splitting a layer of a finite thickness D
from the infinite one.
The equations will look:

XDZTD—FRDROOXD, ROOZRD—FTDROOXD, 21)

and they can be resolved with respect to ﬁD and T p for known ﬂoo and X D-
Assuming R p to be isotropic, we get

B 1—exp(—-2D/L)
o = Roog R2 exp (—2D/L)’

(22)



It follows from Eqgs.(18) and (19) that in order to calculate Rp, which will
be named below as simply R, one has to get macroscopic cross sections X,
and 3, overaged over angles, however for that, one has to know differential
cross sections.

3. CALCULATION OF MACROSCOPIC CROSS SECTIONS

From the scattering amplitude (1), one could calculate the differential cross
section

Ji(QpP)

do(q,1)/dQ = |F(q,1)|* = uga®p" sin *(qla) .
P

2
’ (23)

Consider an angular distribution of scattered neutrons. The polar axis is
directed along the wave vector kg of the incidence wave, and the axis x is in the
plane of vectors (kg,1) perpendicular to ko, where 1 is a unit vector along the
rod axis. Then kgl = k cos 0y and

ql = k (cos Oy — cos 6 cos Hy — sin O sin Gy cos ¢), (24)

where 0 u @ are the angles of the vector k of the scattered wave. Equation (23)
can be integrated over the azimuth angle ¢; taking into account the symmetry of
Eq. (24), we get

J1(qpp)

d s
o (0,6) = u8a2p4/ 2dipsinc® (qia)
0 dpp

dcos ()

2
‘ (25)

After multiplication of the differential cross section (25) by a number of nanorods
Nj in the unit volume, we get the macroscopic differential cross section X::

2

J1(qpp) (26)

E(6760) = Nl d
d P

_* — " 2
cos(G)a(e’eo) A/o 2dp sinc*(q;a)

where
A =~yulap®/2n (26a)

and the value v = N1 V; = N127rp2 characterizes a fraction of volume occupied
by nanorod matter. In the following, we will assume v = 0.1. In order to describe
precisely some concrete neutron nanorod reflectors, we will need a more accurate
model. The dimension of the coefficient A is 1/cm, and its value depends on
nanorod parameters. In order to compare neutron cross sections for different
nanorods, we introduce a convenient common dimensional coefficient

2 3
Ag = L20P0 27)
2m



If the nanorod radius is pg = 10 nm, then Ay = 3.4 um~" (for diamond 1 [/ up =
8.27 nm). The macroscopic cross section of neutron scattering (26) can be
presented in the following form:

2

J1(gpaB) (28)

_3 T
14 .92,

3(6,6p) = Ag— 2d

.00 = 40 [ 2dpsinct o) | 2122

0

with dimentionless parameters ¢ = ¢/k, o = ak, 8 = p/a, p = p/po. The
macroscopic differential cross section 3(6, 6y) of scattering of a neutron on pow-
der of nanorods, in units 24 = 24,5/, is shown in Fig.1 (¢ = 1000 nm)
and in Fig.2 (¢ = 10 nm) as a function of the neutron scattering angle 6 pro-
vided the neutron incidence angle 6y equals 0, /4 and 7/2, the nanorod radius
p = po = 10 nm, for two values of the nanorod half-length a, and for the neutron
velocity v = 450 m/s. Angles are given in radians. Cross sections of neutron
scattering on nanorods with the half-length equals radius a = p are approximately
equal to the cross section of neutron scattering on spherical nanoparticles of equal
radius, therefore, in the following, we will use for simplicity the same analyti-
cal expressions for qualitative comparison of results for long nanorods and for
spherical nanoparticles.

The average angle of neutron scattering on nanoparticles is equal approxi-
mately to the ratio of neutron wavelength to nanoparticle size. Thus, neutrons
scatter on long nanorods to smaller angles (Fig. 1), than they scatter on short
nanorods (Fig.2). And the cross sections of neutron scattering to the zero angles
are equal to each other as well as to w/2. The total scattering cross section is
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Fig. 1. Dimensionless differential cross section X (0, 6o) of neutron scattering on a nanorod
as a function of the neutron scattering angle 6 and the neutron incidence angle 6y. The
angles are measured relative to the nanorod axis, v = 450 m/s, a = 100p = 1000 nm
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Fig. 2. The same as in Fig. 1, but for the nanorod half-length of a = p = 10 nm

smaller for larger neutron velocity. This peculiarity of neutron cross sections
essentially explains a sharp decrease in efficiency of nanoparticle reflectors, while
the neutron velocity increases from v = 50 m/s to v = 450 m/s. It is interesting
to note some increase of cross sections for backscattering, which is particularly
visible for nanorods.

Taking into account a factor 1/8 in Eq.(28), we see that the cross sec-
tion of small-angle neutron scattering on nanorods is much larger than that on
nanospheres of equal diameter. As long nanorods, in contrast to nanospheres, pro-
vide an anisotropy axis (see Fig. 1 and Fig. 2), it is useful to consider separately
the cases of chaotic and ordered orientation of long nanorods in reflectors.

In Sect. 4, we consider the reflection of isotropic VCN flux from a reflector
built of chaotically oriented nanorods; in Sect. 6, we analyze the reflection of CN
from a reflector built of nanorods with the axis parallel to the reflector surface
while they are isotropically oriented over the azimuth angle.

4. CROSS SECTION OF NEUTRON SCATTERING
ON CHAOTICALLY ORIENTED NANORODS

Averaging over directions I and multiplication by V; transform Eq. (23) into

_3 1
d¥s(q,a,p)/dQd = Ao% / d cos 1 sinc?(cos Yqa) ‘
0

-3 1
= Ao%/ da sinc? (zqa) ‘Jl <\/ 1-— x2(jaﬁ) /V1-— xQ(jaﬁ‘z. (29)
0

J1(sin ¥gaf) 2 B
sin Yqa3



In order to calculate the neutron albedo from powder of nanorods, we should
know the cross section of backward scattering relative to the normal to the powder
surface. We define the normal to surface to be the polar axis directed towards
matter. Then the transferred momentum for backward scattered neutrons is

@ = /2 (1 + cos 6 cos 6 — sin Oy sin 6 cos @), (30)
where 6 and ¢ are the scattered neutron angles, and axis z is in the incidence
plane. We denote y = cos 0y cos 6 — sin O sin 0 cos ¢, integrate over df) =
dedcos 6, average over directions 6y of incidence neutrons, and present this
expression, divided by Agp®//3, in the form

1
(e, B, p) = / dyd (y — cos Oy cos 0 + sin Oy sin 0 cos @)
~1
dQdcos 0pS(y,a, 3, p), (31)

where

. Ji (¢1 —22,/2(1 +y)a5) 2
= sinc? (z «
S(y,a,@p)—/o da sinc? (z1/2(1 + y)a) V1—22/2(1+y)ap

and x denotes cosine of the nanorod axis relative to the transferred momentum gq.
After integration of Eq. (31) over dp, we get

,» (32)

1
¥ (o, B,p) = /_1 dyl(y)S(y,a, B3, p), (33)

1 1 C) (sin 62 sin 6% > (cos 6y cos O — y)2)
I(y) = / dcos 90/ dcos 0 , (34
0 0 \/sin 02 sin 62 — (cos b cos 0 — y)*

and © is the step function, which is equal to 1 provided inequality in its argument,
and is equal zero otherwise. Function I(y) is calculated in (A4). It is equal to

7V1_y2> ) (35)

I(y) = mO(y > 0) — arctg ( ;

Figure 3 shows the dimensionless (in units Ag) macroscopic cross section X5l (v) =
Y4(15.8v,0.01, 1)/ of neutron scattering as a function of its velocity v for pow-
der of nanorods with the half-length a = 1000 nm, and the dimensionless macro-
scopic cross section Ybs(v) = %5(0.158v,1,1)/3 for powder of nanorods with
the half-length of @ = 10 nm.



The cross section Xb(v) shows minimum for the velocity of v = 390 m/s as
the derivative of function |.J;(z)/x|? over x in the vicinity of = ~ 207 oscillates
rapidly around zero, and therefore integrals (32) and (33) tend this derivative to
zero; this behavior explains minimum in the cross section of backward scattering

— Shi(v)
- =—————— "I

Dimensionless scattering cross section
—_

100 200 300 400
Speed, m/s

Fig. 3. Dimensionless macroscopic cross section of neutron backward scattering 3 (v) (33)
on powder of long nanorods (Xbl(v)) with the half-length of & = 1000 nm and on powder
of short nanorods (Xbs(v)) with the half-length of @ = 10 nm. In both cases, the nanorod
radius equals p = 10 nm. Note that in spite of the term 1/, cross sections are equal at
small velocities
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Fig. 4. Macroscopic cross section X (p) of neutron scattering on powder of long nanorods
with the half-length of a = 100p nm for the neutron velocity of 450 m/s (Xb1450 (p)),
on powder of short nanorods with the half-length a = p nm for the neutron velocity of
450 m/s (3bs450(p)), on powder of long nanorods with the half-length a = 100p nm
for the neutron velocity of 50 m/s (Xbl50(p)), and on powder of short nanorods with the
half-length @ = p nm for the neutron velocity of 50 m/s (Xbs50(p))
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in this point. This feature is apparently characteristic only for powder of nanorods
with the ideal cylindrical shape.

Figure 4 shows dimensionless macroscopic cross section of neutron scattering
$b1450(p) = ¥(15.8 - 450p,0.01, p)p®/3 on powder of nanorods as a function
of their radius p, in units 10 nm, for nanorods with the half-length a = 100 p
for the neutron velocity of v = 450 m/s, and for nanorods with the half-length
a = p: Lbsd50(p) = X3(0.158-450p, 1, p), as well as analogous dependences for
the velocity of 50 m/s.

S. ABSORPTION CROSS SECTION

The total cross section is defined by the imaginary part of the forward scat-
tering amplitude (1)

Im (F(q,1)),—y = ugap®/2 = Noko (k) ap®/2 (36)

and it actually describes absorption as scattering in the perturbation theory is not
included in this expression. The macroscopic cross section of absorption is equal:

Ya(k) = 4%Nﬂm (F(a,1),—o =

4T 1 yu2pp kroy(kr) Cp
— 22 N:ZN, 2 — 0~ ML VNV — ~F
¢ NigNokou(kjag? = TXR 0 = 402, 37)
where p = p/po @ = ka, § = p/a and
_ kTU(kT) _ O'(kT) (38)

2uop3b 20k (uo/R3)

T denotes the ambient temperature, po = 10 nm, b = 6.65 fm, and ug/ k2 =
E./Er =12-1075.

In the following, we will consider two cases of particular interest:

1. Nanoparticles at so small temperature that neutron heating in powder can
be neglected, and also neutron cooling would even increase albedo. Also hydrogen
in powder is substituted by deuterium, and neutron absorption in deuterium can
be neglected. It is the case of most efficient reflector, which could be built using
the principle considered in the present article. In this case, absorption cross
section is attributed to one carbon atom; it is equal o;(k7) = 0.0035 bn, and
C=Cy=6.28-10"".

2. Nanoparticles at the ambient temperature, with a realistic admixture of
hydrogen. As nanopowder reflectors are most efficient for small neutron energy
compared to the ambient temperature (energy), then inelastic neutron scattering

11



is equivalent to neutron loss. And inelastic scattering is governed by a relatively
small admixture of hydrogen in powder. As shown in work [28], the minimum
admixture of hydrogen atoms, which can be achieved by means of heating and
degassing of powder, corresponds to the following composition Ci2 4+0.2H, and
the cross section of neutron scattering on the atom of residual hydrogen at the
ambient temperature, measured for neutrons with the wavelength of 4.4 A, equals
108+2 bn. In this case, the efficient cross section per one atom of the composition
is 07(kr) = 3.56 bn. Thus C' = C, = 5.2-107%.

The neutron albedo from an infinitely thick layer of nanorods, which we will
call below simply r, instead of R, is equal (18) to [25-27]:

_V2a+22 _\/Z_a_ 1+Q(C¥,,6,ﬁ,0)_1

,B,p,C) = = 39
’I"(aﬁp ) /720,"‘2217"‘\/2_@ \/1—|—Q(O¢’ﬂ’ﬁ’0)+1 ( )

where o5, 5 3
Qe 3,p,C) = 5+ = 5&(&5)% (40)

The calculations of neutron albedo from an infinitely thick layer of nanorods
as a function of the velocity v of incidence neutrons for long (¢ = 1000 nm)
and short (¢ = 10 nm) nanorods, show that neutron albedo from nanostructured
powder for the neutron velocity of v = 450 m/s is significantly larger than the
coefficient of neutron reflection 5- 10~ from continuous matter.

Besides the reflection from infinite matter, albedo is characterized also by the
exponential attenuation in matter exp (—x/L), i.e., by the attenuation length (8):

L7 =2/S0 /20 + 2% =
= 2%4\/1+Q(a, 8,p,C) = Ly (C)x ™ (a, 8,5, C);  (41)
after substituting (37), we get

1 _ o
0( ) K(O‘7ﬁ7p7 ) ﬁ\/l +Q(Oé,ﬂ, 57 C)

20A0°
and Lo(C,) = 0.02 cm. Figure 5 shows x(v) dependences for powders of long
and short nanorods for the coefficients of neutron absorption Cy and C,, which
are denoted respectively xl0(v), ks0(v), kla(v) and ksa(v).
Consider now the neutron reflection from a layer of nanopowder with a finite
thickness D. Albedo from such a layer is defined by the formula

; (42)

R(D,a,3,p,C) =r(a, 8, p,C)x
« 1- eXp (_2D/L(a7/67 12 C))
1- T2(aaﬂa ﬁ? C) €xXp (—QD/L(Oé,ﬂ, ﬁv C)) ’

(43)
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Fig. 6. Albedo R(v) from powder of long, R, and short, Rs, nanorods with the thickness
of D = 1 cm for the neutron loss coefficients Co (RI0 and Rs0) and C, (Rla and Rsa)
as a function of neutron velocity

Figure 6 shows dependence R(v) for the nanopowder thickness of D = 1 cm for
long and short nanorods with the neutron loss coefficients Cjy and C,, denoted
respectively RI0(v), RsO(v), Rla(v) and Rsa(v). The figure shows that the
neutron albedo from a sufficiently thin layer of nanoparticles is higher by 6-7
orders of magnitude than neutron reflection from continuous matter.
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6. AXIS OF NANORODS IS ORIENTED PARALLEL
TO THE INTERFACE

Now nanorods are parallel to the powder surface. We define the polar axis
along the normal to the interface directed towards matter, and axis x is in the
incidence plane. Then

@ =q-1=sin 0y cos x — sin O cos (¢ — X), (44)

where x is the azimuth angle of the nanorod orientation, and ¢ is azimuth
scattering angle. Then

dp = \/2(1 + cos 6 cos Gy — sin O sin Oy cos p)—

\/—(sin g cos x —sin fcos (¢ — x))2.  (45)

After averaging over nanorod orientation, integrating over backward scattering
angles, and averaging over angular distribution of incident neutrons, we get

1 1
Eb(OZ,ﬂ,p) :/ dU/ d’UZbg(U,U,O&,ﬁ,ﬂ), (46)
0 0
where
Eb@(uvvva7ﬁ7p) =

-3 27 2 _ 2
P dX .9, J1 (Qp(uava(p7X)aﬂ)

= d / —= sinc? (aq; (u, v, @, ‘ - N CY
/6 /O 4 0 2w ( l( 4 X)) QP(u71)7907X)aﬁ

Numerical integration of (47) gives an idea on the macroscopic cross section of
neutron backward scattering ¥yg(cos 6, cos 0y, o, 3, p) as a function of u = cos 6
for given values of v = cos 6. This dependence for long nanorods (8 = 0.01) at
p = 1, the neutron velocity v = 450 m/s and two values of cosine of the incident
angle cos 6y = 0.3 and 0.8 is shown in Fig.7. One clearly sees in the figure the
peaks in the vicinity of cosf = cosf, i.e., quasi-specular reflection is revealed.

Integration in (46) and substitution into albedo formulas allows one to get
the results shown in Fig. 8. Here we show neutron albedo from a layer with the
thickness of 3 cm as a function of the neutron speed v; the layer consists of long
and short nanorods oriented along the interface but isotropically with respect to
the azimuth around the interface normal. Albedo is calculated for small and large
content of hydrogen. It is seen that albedo from long nanorods is higher than
that from short ones, also that results of calculations are in agreement with the
experimental observations for v in the range 50-150 m/s [10].

14
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7. A PROBLEM OF ACCOUNTING
FOR THE REAL ANGULAR DISTRIBUTION
We have assumed above that albedo is calculated for the isotropic distribution

of reflected and incident neutrons. How would change the results, if one does
not keep these assumptions? In order to answer this question, one has to solve
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Eq.(13) in its general form. It is an extremely complex problem involving a
nonlinear integral equation.

It can be simplified, provided a natural assumption that all functions depend
only on cosines of incidence and reflected angles. Then the integral equation can
be reduced, following discretization, to a matrix equation of the second order in
the form ZAZ + BZ + ZB + A = 0. However solving such a quadratic matrix
algebraic equation also is a complex problem. In fact, a quadratic matrix equation
for the matrix N x N is equivalent in the general form to a polynomial equation
with the power 2N2. And even if one calculates numerically all its roots, there
will stay a problem of choosing a proper set of roots.

Nevertheless, one could try to consider an option, which will shed light on a
role of anisotropy. For instance, one could search for a solution of Eq.(13) not
in the purely isotropic form (14), but as a combination of isotropic and specular
distributions in the form (48), where the specular part is presented by the diagonal
term. This option will be considered in the following work:

R = Ro oy e ¥ dQ’(Q’|+/ 1Q)£(0) dUQ.  (48)

n<0 T n2>0 n<0

CONCLUSION

In the present theoretical work, we considered a possibility to increase ef-
ficiency of nanostructured reflectors of slow neutrons by means of substituting
spherical nanoparticles by nanorods. We show that albedo of VCN from powder
of disordered nanorods is smaller than their albedo from powder of nanospheres.
However, albedo of VCN and quasi-specular reflection of CN from powder of
nanorods oriented parallel to the reflector surface exceed respective values for
powder of nanospheres.
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and A. V. Strelkov.

APPENDIX

Denote cos 6 = v, cos 8y = u. Then integral (34) is presented in the form

! L o(l-u?—v2>y? -2 !
I(y):/ du/ P Gl etk y““)z/ duTi(u,y), (AD)
0 0 V1—u2 —v2 —y2 4+ 2yuw 0
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where integral I (u, y), after variable substitution z = (v — uy) /v1 — u?/1 — y?
is deduced to the form

z2(u,y)

O (2 < 1)
I = de——=—~% =
l(uvy) €L m
—z1(u,y)
= g + g@(u > /11— y%% + arcsin (z1(u,y)) Ou < v/1—1y2). (A2)

Limits of integration in (A.2) are

uy 1—uy
, xo(u,y) = . A3
ooy Moy MY

Modulus of these limits have to be smaller than unit, but zo(u,y) > 1 for
any values of u and y, therefore the upper limit, due to the inequality in the
integral, has to be replaced by unit. The lower limit, |x1(u,y)| > 1, if only
u < u(y) = /1 —92% if u > ui(y) = /1 —y?2, then modulus of the lower
limit has to exceed unit and thus the lower limit should be replaced by —1 or +1
in function of a sign of y. Account for all these conditions results to (A.2).
Substitution (A.2) into (A.1) and integration by parts of the term including arcsin
provides the final result:

z1(u,y) =

1
_ _T A2\ 2L —2t T
_/dull(u,y)—2{l+<l V1 y)y}—k 1 \y|2

0
1 2
/ y uduy 20y > 0) —arcte [ YL} (A
J (1 —u2)/1—u?—y2 Y & Y . '
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