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Re�ection of Slow Neutrons from Powder of Nanorods

Two phenomena were recently observed: efˇcient diffuse re�ection of very cold neu-
trons (VCN) from nanostructured matter for any angle of neutron incidence to the matter
surface, and also quasispecular re�ection of cold neutrons (CN) from nanostructured matter
for small angles of neutron incidence to the matter surface. In both cases, powder of diamond
nanoparticles was used as nanostructured matter, and the measured re�ection probabilities by
far exceeded the values known for alternative re�ectors. Both these phenomena are already
used in neutron experiments and for building neutron sources. In the present theoretical work,
we consider an option of further increasing the efˇciency of nanostructured re�ectors due to
replacing spherical nanoparticles by nanorods. We showed that VCN albedo from powder of
randomly oriented nanorods is lower than their albedo from powder of nanospheres of equal
diameter. However, albedo of VCN and quasispecular re�ection of CN from powder of long
nanorods oriented parallel to the powder surface exceed those for powder of nanospheres of
equal diameter.

The investigation has been performed at the Frank Laboratory of Neutron Physics, JINR.
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1. INTRODUCTION

Efˇcient neutron re�ectors are needed in experiments as well as for building
neutron sources. For ultracold neutrons (UCN) [1Ä3] (< 10−7 eV), neutron optical
potential of matter is nearly the ideal re�ector, which provides the probability of
elastic re�ection close to unit, at any temperature of matter. For neutrons with the
energy of up to 10−6(5) eV, one uses multi-layer coatings (supermirrors) [4Ä5],
which provide the probability of specular elastic re�ection of up to 80Ä90%. Until
recently, efˇcient re�ectors of neutrons with the energy of up to 10−2(3) eV had
not been known. At the energy of ∼ 10−2 eV, neutron wavelength is comparable
with interatomic distances thus effects of elastic diffraction and diffuse re�ection
in respectively ordered and disordered matter appear. At even larger energies,
inelastic processes, which provide moderation and re�ection of neutrons in nuclear
reactors [6], prevail.

Two phenomena were observed recently: efˇcient diffuse re�ection of very
cold neutrons (VCN) from nanostructured matter for any angle of neutron in-
cidence to the matter surface, and also quasi-specular re�ection of cold neu-
trons (CN) from nano-structured matter for small angles of neutron incidence
to the matter surface [7Ä14]. In both cases, powder of diamond nanoparticles
was used as nano-structured matter, and the measured re�ection probabilities by
far exceeded the values for known alternative re�ectors. Both these phenomena
are already used in neutron experiments and for building neutron sources. In the
present theoretical work, we consider an option of further increasing the efˇciency
of nanostructured re�ectors due to replacing spherical nanoparticles by nanorods.
For concreteness, we choose two values of neutron velocity: 1) 50 m/s, as nanos-
tructured re�ectors are very efˇcient at this neutron velocity, and 2) 450 m/s, as,
on the one hand, the efˇciency of nanostructured re�ectors made of nanospheres
rapidly decreases at this neutron velocity and, on the other hand, such re�ectors
are highly requested, for instance, for increasing UCN density in UCN sources
based on super�uid helium [15, 16], used in particular for the GRANIT spectrom-
eter [17], aiming at studies of/with quantum states of neutrons in gravitational
and centrifugal potentials [18, 19, 29Ä31].

If optical potential of a nanorod material is much smaller than neutron kinetic
energy and if neutron scattering cross section is much smaller than geometrical
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cross section of the nanorod, then the amplitude of neutron scattering can be
calculated using perturbation theory. These approximations are valid for all cases
of interest in the present work. In this case, the amplitude F (q, l) of neutron
scattering at a nanorod with a radius ρ and a length 2a with an axis along the
unit vector l equals:

F (q, l) = N0b

∫
V1

d3r exp (iq · r) =

= N0b

∫ a

−a

dzl

∫ ρ

0

ρ′dρ′
∫ 2π

0

dϕ exp (iqlzl + iqρρ
′ cosϕ) =

=
4πN0b

ql
sin (qla)

∫ ρ

0

ρ′dρ′J0(qρρ
′) = u0aρ2 sinc (qla)

J1(qρρ)
qρρ

, (1)

where sinc (x) = sin(x)/x, u0 = 4πN0b is the potential of neutron interaction
with the nanorod matter divided by a factor �

2/2m (m is the neutron mass, �

is the reduced Planck constant); N0 is the number of atoms in the unit volume
of the nanorod; b is the length of neutron coherent scattering on a nucleus of the
nanorod matter; q = k0 − k is the transferred momentum; k0, k are momenta of
the neutron before and after scattering; ql = q · l; qρ =

√
q2 − (q · l)2, J0(x)

and J1(x) are Bessel functions; and we also used the following expressions:

J0(x) =
∫ 2π

0

dϕ

2π
exp (ix cos ϕ), and

∫ x

0 x′dx′J0(x′) = xJ1(x).
In this work, we consider neutron scattering on diamond nanorods. The

potential of interaction of a neutron with a nanorod matter is always assumed
to be equal to 300 neV, as it is for neutron scattering at crystal diamond. This
approximation is valid in the ˇrst order for nanospheres [22] as well as for
nanorods [20], because their densities are close to the density of bulk diamond,
and their shells are not very thick [21, 23, 24]. However, more accurate but also
more bulky descriptions will be required for concrete re�ector realizations.

The refection is understood here as albedo, i.e., the probability of neutron
re�ection integrated over all backward angles. We will calculate albedo following
works [25Ä27], and will remind below brie�y the calculation method.

2. METHOD OF ALBEDO CALCULATION

First, we will deˇne notations. A neutron moving along a solid angle Ω
with the polar axis along the internal normal to the matter surface is deˇned by
the state vector |Ω〉. An angular distribution P (Ω) will be characterized by the
state vector

|P 〉 =
∫

4π

P (Ω)dΩ|Ω〉. (2)

2



The norm of this state NP =
∫
4π P (Ω) dΩ is calculated by means of multiplication

of Eq. (2) from the left by a meter |m〉 =
∫
4π

dΩ|Ω〉, using a natural relation
〈Ω||Ω′〉 = δ(Ω−Ω′). In particular, isotropic distribution of incident and re�ected
neutrons corresponds to the state

|Pis〉 =
∫

2π

| cos θ|
π

dΩ|Ω〉. (3)

Its norm is unit.
A scatterer, which transforms a neutron state |Ω′〉 to a state |Ω〉 with a prob-

ability w(Ω ← Ω′), is described by means of an operator Ŵ =
∫
4π

|Ω〉w(Ω ←
Ω′)〈Ω′| dΩdΩ′. A neutron from a state (2) is scattered into the state

|P ′〉 = Ŵ|P 〉 =
∫

4π

|Ω〉w(Ω ← Ω′)P (Ω′)dΩdΩ′ =
∫

4π

P ′(Ω)|Ω〉 dΩ, (4)

where P ′(Ω) =
∫
4π w(Ω ← Ω′)P (Ω′) dΩ′.

In order to calculate albedo RD from a layer of powder with a ˇnite thick-
ness D, one ˇrst calculates albedo R∞ from an inˇnitely thick layer. For this
purpose, one splits a layer of small thickness ξ from the inˇnite one; scattering
on this layer is calculated using perturbation theory, and it is presented in a form
of a re�ection ρ̂ξ and a transmission τ̂ ξ operators. In order to ˇnd the operator

R̂∞ of re�ection from an inˇnitely thick layer for incident neutrons in a state
|Ω0〉, one has to know their distribution |Xξ〉 = X̂ξ|Ω0〉 behind the thin layer.

For the operator X̂ξ, one could write a self-consistent equation

X̂ξ = τ̂ ξ + ρ̂ξR̂∞X̂ξ, (5)

which shows that X̂ξ is constructed from the transmission through the layer ξ and

from the contribution X̂ξ itself, as a neutron behind the layer ξ is re�ected from
the inˇnite layer then is re�ected ones again from the layer ξ, then is returned
to the inˇnitely thick layer, where the state |Xξ〉 is formed together with the part
characterized by the transmission τ̂ ξ .

If we know X̂ξ, we can write an equation for R̂∞:

R̂∞ = ρ̂ξ + τ̂ ξR̂∞X̂ξ. (6)

After expressing X̂ξ via Eq. (5):

X̂ξ =
(
Î − ρ̂ξR̂∞

)−1

τ̂ ξ, (7)

where Î =
∫
4π |Ω〉 dΩ〈Ω| is the unit operator, and substituting the result into

Eq. (6), one gets

R̂∞ = ρ̂ξ + τ̂ ξR̂∞
(
1 − ρ̂ξR̂∞

)−1

τ̂ ξ. (8)

3



Operators ρ̂ξ and τ̂ ξ are related to macroscopic scattering cross sections as

ρ̂ξ = ξΣ̂b, τ̂ ξ = Î + ξΣ̂f − ξΣtŜ, (9)

where

Σ̂b =
∫
nΩ<0

dΩ
∫
nΩ′

>0

|Ω〉Σs(Ω ← Ω′)
dΩ′

cos θ′
〈Ω′| =

=
∫
nΩ>0

dΩ
∫
nΩ′

<0

|Ω〉Σs(Ω ← Ω′)
dΩ′

cos θ′
〈Ω′| (10)

is the operator of back scattering from the left or from the right,

Σ̂f =
∫
nΩ>0

dΩ
∫
nΩ′

>0

|Ω〉Σs(Ω ← Ω′)
dΩ′

cos θ′
〈Ω′| =

=
∫
nΩ<0

dΩ
∫
nΩ′

<0

|Ω〉Σs(Ω ← Ω′)
dΩ′

cos θ′
〈Ω′| (11)

is the operator of forward scattering from the left or right; Σs(Ω ← Ω′) is
the differential macroscopic scattering cross section; Σt = Σs + Σa is the total
macroscopic cross section, consisting of the integral scattering Σs and absorption
Σa cross sections; and

Ŝ =
∫

2π

|Ω′〉 dΩ′

cos θ′
〈Ω′| (12)

is an operator, which takes into account that the number of scatterers along the
neutron path increases with increasing of the incidence angle.

At small value of ξ Eq. (8) can be linearized and reduced to the form

R̂∞Σ̂bR̂∞ +
(
Σ̂f − ΣtŜ

)
R̂∞ + R̂∞

(
Σ̂f − ΣtŜ

)
+ Σ̂b = 0. (13)

We suppose that the distribution of re�ected neutrons is isotropic, and represent
the solution of (13) in the form

R̂∞ = R∞

∫
nΩ<0

|Ω〉 | cos θ|
π

dΩ
∫
nΩ>0

dΩ′〈Ω′| = R∞|Pis〉〈m|. (14)

Substitute it in (13) and multiply (13) from the left by 〈m| and from the right by
|Pis〉. Then we will get

R2
∞Σb + 2R∞ (Σf − Σt) + Σb = 0, (15)
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where

Σb =
∫
nΩ<0

dΩ
∫
nΩ′

>0

Σs(Ω ← Ω′)
dΩ′

2π
=

=
∫
nΩ>0

dΩ
∫
nΩ′

<0

Σs(Ω ← Ω′)
dΩ′

2π
, (16)

Σf =
∫
nΩ<0

dΩ
∫
nΩ′

<0

Σs(Ω ← Ω′)
dΩ′

2π
=

=
∫
nΩ>0

dΩ
∫
nΩ′

>0

Σs(Ω ← Ω′)
dΩ′

2π
(17)

are macroscopic cross sections of backward and forward scattering. Since Σs =
Σt + Σb, then Σt = Σs + Σa = Σt + Σb + Σa, and the solution of Eq. (5) can be
presented in the form

R∞ =
√

2Σb + Σa −
√

Σa√
2Σb + Σa +

√
Σa

=

√
1 + 2Σb/Σa − 1√
1 + 2Σb/Σa + 1

. (18)

In order to calculate albedo from a wall of a ˇnite thickness, one has to know
a law of attenuation of neutron intensity in the matter. It follows from Eq. (7).
After linearization of this expression at small ξ, and substitution of Eq. (14) into
it, as well as multiplication from left by 〈m|, and from right by |Pis〉, one gets
〈m|X̂ξ|Pis〉 ≈ exp (−ξ/L), where

1/L = 2
√

2Σb + Σa

√
Σa = 2Σa

√
1 + 2Σb/Σa. (19)

Thus X̂z at a depth z can be presented in the form

X̂z = |Pis〉 exp (−z/L)〈m|. (20)

For calculating re�ection R̂D and transmission T̂D from/through a layer with
a thickness D, we will use Eqs. (5) and (6) splitting a layer of a ˇnite thickness D
from the inˇnite one.
The equations will look:

X̂D = T̂D + R̂DR̂∞X̂D, R̂∞ = R̂D + T̂DR̂∞X̂D, (21)

and they can be resolved with respect to R̂D and T̂D for known R̂∞ and X̂D .
Assuming R̂D to be isotropic, we get

RD = R∞
1 − exp (−2D/L)

1 − R2
∞ exp (−2D/L)

. (22)
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It follows from Eqs. (18) and (19) that in order to calculate RD, which will
be named below as simply R, one has to get macroscopic cross sections Σa

and Σb, overaged over angles, however for that, one has to know differential
cross sections.

3. CALCULATION OF MACROSCOPIC CROSS SECTIONS

From the scattering amplitude (1), one could calculate the differential cross
section

dσ(q, l)/dΩ = |F (q, l)|2 = u2
0a

2ρ4 sin c2(qla)
∣∣∣∣Ji(qρρ)

qρρ

∣∣∣∣
2

. (23)

Consider an angular distribution of scattered neutrons. The polar axis is
directed along the wave vector k0 of the incidence wave, and the axis x is in the
plane of vectors (k0, l) perpendicular to k0, where l is a unit vector along the
rod axis. Then k0l = k cos θ0 and

ql = k (cos θ0 − cos θ cos θ0 − sin θ sin θ0 cos ϕ) , (24)

where θ ¨ ϕ are the angles of the vector k of the scattered wave. Equation (23)
can be integrated over the azimuth angle ϕ; taking into account the symmetry of
Eq. (24), we get

d

d cos (θ)
σ (θ, θ0) = u2

0a
2ρ4

∫ π

0

2dϕ sinc2 (qla)
∣∣∣∣J1(qρρ)

qρρ

∣∣∣∣
2

. (25)

After multiplication of the differential cross section (25) by a number of nanorods
N1 in the unit volume, we get the macroscopic differential cross section Σ:

Σ(θ, θ0) = N1
d

d cos (θ)
σ(θ, θ0) = A

∫ π

0

2dϕ sinc2(qla)
∣∣∣∣J1(qρρ)

qρρ

∣∣∣∣
2

, (26)

where
A = γ u2

0 aρ2/2π (26a)

and the value γ = N1V1 = N12πρ2 characterizes a fraction of volume occupied
by nanorod matter. In the following, we will assume γ = 0.1. In order to describe
precisely some concrete neutron nanorod re�ectors, we will need a more accurate
model. The dimension of the coefˇcient A is 1/cm, and its value depends on
nanorod parameters. In order to compare neutron cross sections for different
nanorods, we introduce a convenient common dimensional coefˇcient

A0 =
γu2

0 ρ3
0

2π
. (27)
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If the nanorod radius is ρ0 = 10 nm, then A0 = 3.4 μm−1 (for diamond 1/
√

u0 ≈
8.27 nm). The macroscopic cross section of neutron scattering (26) can be
presented in the following form:

Σ(θ, θ0) = A0
ρ̄3

β

∫ π

0

2dϕ sinc2(q̄lα)
∣∣∣∣J1(q̄ραβ)

q̄ραβ

∣∣∣∣
2

, (28)

with dimentionless parameters q̄ = q/k, α = ak, β = ρ/a, ρ̄ = ρ/ρ0. The
macroscopic differential cross section Σ(θ, θ0) of scattering of a neutron on pow-
der of nanorods, in units 2A = 2A0ρ̄

3/β, is shown in Fig. 1 (a = 1000 nm)
and in Fig. 2 (a = 10 nm) as a function of the neutron scattering angle θ pro-
vided the neutron incidence angle θ0 equals 0, π/4 and π/2, the nanorod radius
ρ = ρ0 = 10 nm, for two values of the nanorod half-length a, and for the neutron
velocity v = 450 m/s. Angles are given in radians. Cross sections of neutron
scattering on nanorods with the half-length equals radius a = ρ are approximately
equal to the cross section of neutron scattering on spherical nanoparticles of equal
radius, therefore, in the following, we will use for simplicity the same analyti-
cal expressions for qualitative comparison of results for long nanorods and for
spherical nanoparticles.

The average angle of neutron scattering on nanoparticles is equal approxi-
mately to the ratio of neutron wavelength to nanoparticle size. Thus, neutrons
scatter on long nanorods to smaller angles (Fig. 1), than they scatter on short
nanorods (Fig. 2). And the cross sections of neutron scattering to the zero angles
are equal to each other as well as to π/2. The total scattering cross section is

Fig. 1. Dimensionless differential cross section Σ(θ, θ0) of neutron scattering on a nanorod
as a function of the neutron scattering angle θ and the neutron incidence angle θ0. The
angles are measured relative to the nanorod axis, v = 450 m/s, a = 100ρ = 1000 nm
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Fig. 2. The same as in Fig. 1, but for the nanorod half-length of a = ρ = 10 nm

smaller for larger neutron velocity. This peculiarity of neutron cross sections
essentially explains a sharp decrease in efˇciency of nanoparticle re�ectors, while
the neutron velocity increases from v = 50 m/s to v = 450 m/s. It is interesting
to note some increase of cross sections for backscattering, which is particularly
visible for nanorods.

Taking into account a factor 1/β in Eq. (28), we see that the cross sec-
tion of small-angle neutron scattering on nanorods is much larger than that on
nanospheres of equal diameter. As long nanorods, in contrast to nanospheres, pro-
vide an anisotropy axis (see Fig. 1 and Fig. 2), it is useful to consider separately
the cases of chaotic and ordered orientation of long nanorods in re�ectors.

In Sect. 4, we consider the re�ection of isotropic VCN �ux from a re�ector
built of chaotically oriented nanorods; in Sect. 6, we analyze the re�ection of CN
from a re�ector built of nanorods with the axis parallel to the re�ector surface
while they are isotropically oriented over the azimuth angle.

4. CROSS SECTION OF NEUTRON SCATTERING
ON CHAOTICALLY ORIENTED NANORODS

Averaging over directions l and multiplication by N1 transform Eq. (23) into

dΣs(q, a, ρ)/dΩ = A0
ρ̄3

β

∫ 1

0

d cos ϑ sinc2(cos ϑq̄α)
∣∣∣∣J1(sin ϑq̄αβ)

sin ϑq̄αβ

∣∣∣∣
2

=

= A0
ρ̄3

β

∫ 1

0

dx sinc2(xq̄α)
∣∣∣J1

(√
1 − x2q̄αβ

)
/
√

1 − x2q̄αβ
∣∣∣2 . (29)
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In order to calculate the neutron albedo from powder of nanorods, we should
know the cross section of backward scattering relative to the normal to the powder
surface. We deˇne the normal to surface to be the polar axis directed towards
matter. Then the transferred momentum for backward scattered neutrons is

q̄b =
√

2 (1 + cos θ0 cos θ − sin θ0 sin θ cos ϕ), (30)

where θ and ϕ are the scattered neutron angles, and axis x is in the incidence
plane. We denote y = cos θ0 cos θ − sin θ0 sin θ cos ϕ, integrate over dΩ =
dϕd cos θ, average over directions θ0 of incidence neutrons, and present this
expression, divided by A0ρ̄

3/β, in the form

Σb(α, β, ρ) =
∫ 1

−1

dyδ (y − cos θ0 cos θ + sin θ0 sin θ cos ϕ)

dΩd cos θ0S(y, α, β, ρ), (31)

where

S(y, α, β, ρ) =
∫ 1

0

dx sinc2(x
√

2(1 + y)α)
J1

(√
1 − x2

√
2(1 + y)αβ

)
√

1 − x2
√

2(1 + y)αβ

2

, (32)

and x denotes cosine of the nanorod axis relative to the transferred momentum q.
After integration of Eq. (31) over dϕ, we get

Σb (α, β, ρ) =
∫ 1

−1

dyI(y)S(y, α, β, ρ), (33)

where

I(y) =
∫ 1

0

d cos θ0

∫ 1

0

d cos θ
Θ

(
sin θ2

0 sin θ2 > (cos θ0 cos θ − y)2
)

√
sin θ2

0 sin θ2 − (cos θ0 cos θ − y)2
, (34)

and Θ is the step function, which is equal to 1 provided inequality in its argument,
and is equal zero otherwise. Function I(y) is calculated in (A4). It is equal to

I(y) = πΘ(y > 0) − arctg

(√
1 − y2

y

)
. (35)

Figure 3 shows the dimensionless (in units A0) macroscopic cross section Σbl(v) =
Σb(15.8v, 0.01, 1)/β of neutron scattering as a function of its velocity v for pow-
der of nanorods with the half-length a = 1000 nm, and the dimensionless macro-
scopic cross section Σbs(v) = Σ̃b(0.158v, 1, 1)/β for powder of nanorods with
the half-length of a = 10 nm.
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The cross section Σb(v) shows minimum for the velocity of v = 390 m/s as
the derivative of function |J1(x)/x|2 over x in the vicinity of x ≈ 20π oscillates
rapidly around zero, and therefore integrals (32) and (33) tend this derivative to
zero; this behavior explains minimum in the cross section of backward scattering

Fig. 3. Dimensionless macroscopic cross section of neutron backward scattering Σb(v) (33)
on powder of long nanorods (Σbl(v)) with the half-length of a = 1000 nm and on powder
of short nanorods (Σbs(v)) with the half-length of a = 10 nm. In both cases, the nanorod
radius equals ρ = 10 nm. Note that in spite of the term 1/β, cross sections are equal at
small velocities

Fig. 4. Macroscopic cross section Σb(ρ) of neutron scattering on powder of long nanorods
with the half-length of a = 100ρ nm for the neutron velocity of 450 m/s (Σbl450 (ρ)),
on powder of short nanorods with the half-length a = ρ nm for the neutron velocity of
450 m/s (Σbs450(ρ)), on powder of long nanorods with the half-length a = 100ρ nm
for the neutron velocity of 50 m/s (Σbl50(ρ)), and on powder of short nanorods with the
half-length a = ρ nm for the neutron velocity of 50 m/s (Σbs50(ρ))
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in this point. This feature is apparently characteristic only for powder of nanorods
with the ideal cylindrical shape.

Figure 4 shows dimensionless macroscopic cross section of neutron scattering
Σbl450(ρ) = Σb(15.8 · 450ρ, 0.01, ρ)ρ3/β on powder of nanorods as a function
of their radius ρ, in units 10 nm, for nanorods with the half-length a = 100 ρ
for the neutron velocity of v = 450 m/s, and for nanorods with the half-length
a = ρ: Σbs450(ρ) = Σb(0.158 ·450ρ, 1, ρ), as well as analogous dependences for
the velocity of 50 m/s.

5. ABSORPTION CROSS SECTION

The total cross section is deˇned by the imaginary part of the forward scat-
tering amplitude (1)

Im (F (q, l))q=0 = u′′
0aρ2/2 = N0kσ1(k) aρ2/2 (36)

and it actually describes absorption as scattering in the perturbation theory is not
included in this expression. The macroscopic cross section of absorption is equal:

Σa(k) =
4π

k
N1Im (F (q, l))q=0 =

=
4π

k
N1

1
2
N0kσl(k)aρ2 =

γu2
0ρ

3
0

2π

kT σl(kT )
2kbu0ρ3

0

= A0
Cρ̄

αβ
, (37)

where ρ̄ = ρ/ρ0 α = ka, β = ρ/a and

C =
kT σ(kT )
2u0ρ2

0b
=

σ(kT )
2bkT (u0/k2

T )ρ2
0

. (38)

T denotes the ambient temperature, ρ0 = 10 nm, b = 6.65 fm, and u0/k2
T =

Ec/ET = 12 · 10−6.
In the following, we will consider two cases of particular interest:
1. Nanoparticles at so small temperature that neutron heating in powder can

be neglected, and also neutron cooling would even increase albedo. Also hydrogen
in powder is substituted by deuterium, and neutron absorption in deuterium can
be neglected. It is the case of most efˇcient re�ector, which could be built using
the principle considered in the present article. In this case, absorption cross
section is attributed to one carbon atom; it is equal σl(kT ) = 0.0035 bn, and
C = C0 = 6.28 · 10−7.

2. Nanoparticles at the ambient temperature, with a realistic admixture of
hydrogen. As nanopowder re�ectors are most efˇcient for small neutron energy
compared to the ambient temperature (energy), then inelastic neutron scattering
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is equivalent to neutron loss. And inelastic scattering is governed by a relatively
small admixture of hydrogen in powder. As shown in work [28], the minimum
admixture of hydrogen atoms, which can be achieved by means of heating and
degassing of powder, corresponds to the following composition C12.4±0.2�, and
the cross section of neutron scattering on the atom of residual hydrogen at the
ambient temperature, measured for neutrons with the wavelength of 4.4 �A, equals
108±2 bn. In this case, the efˇcient cross section per one atom of the composition
is σl(kT ) = 3.56 bn. Thus C = Ca = 5.2 · 10−4.

The neutron albedo from an inˇnitely thick layer of nanorods, which we will
call below simply r, instead of R∞, is equal (18) to [25Ä27]:

r(α, β, ρ̄, C) =
√

Σa + 2Σb −
√

Σa√
Σa + 2Σb +

√
Σa

=

√
1 + Q(α, β, ρ̄, C) − 1√
1 + Q(α, β, ρ̄, C) + 1

(39)

where

Q(α, β, ρ̄, C) =
2Σb

Σa
=

2
C

Σb(α, β)
αβ

ρ̄
. (40)

The calculations of neutron albedo from an inˇnitely thick layer of nanorods
as a function of the velocity v of incidence neutrons for long (a = 1000 nm)
and short (a = 10 nm) nanorods, show that neutron albedo from nanostructured
powder for the neutron velocity of v = 450 m/s is signiˇcantly larger than the
coefˇcient of neutron re�ection 5 · 10−9 from continuous matter.

Besides the re�ection from inˇnite matter, albedo is characterized also by the
exponential attenuation in matter exp (−x/L), i.¥., by the attenuation length (8):

L−1 = 2
√

Σa

√
Σa + 2Σb =

= 2Σa

√
1 + Q(α, β, ρ̄, C) = L−1

0 (C)κ−1(α, β, ρ̄, C); (41)

after substituting (37), we get

L0(C) =
1

2CA0
, κ(α, β, ρ̄, C) =

αβ

ρ̄
√

1 + Q(α, β, ρ̄, C)
, (42)

and L0(Ca) = 0.02 cm. Figure 5 shows κ(v) dependences for powders of long
and short nanorods for the coefˇcients of neutron absorption C0 and Ca, which
are denoted respectively κl0(v), κs0(v), κla(v) and κsa(v).

Consider now the neutron re�ection from a layer of nanopowder with a ˇnite
thickness D. Albedo from such a layer is deˇned by the formula

R(D, α, β, ρ̄, C) = r(α, β, ρ̄, C)×

× 1 − exp (−2D/L(α, β, ρ̄, C))
1 − r2(α, β, ρ̄, C) exp (−2D/L(α, β, ρ̄, C))

. (43)
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Fig. 5. Dimensionless diffusion length κ(v) = L(v)/L0(C) for long κl and short κs
nanorods for the loss coefˇcients C0 (κl0 and κs0) and Ca (κla and κsa)

Fig. 6. Albedo R(v) from powder of long, Rl, and short, Rs, nanorods with the thickness
of D = 1 cm for the neutron loss coefˇcients C0 (Rl0 and Rs0) and Ca (Rla and Rsa)
as a function of neutron velocity

Figure 6 shows dependence R(v) for the nanopowder thickness of D = 1 cm for
long and short nanorods with the neutron loss coefˇcients C0 and Ca, denoted
respectively Rl0(v), Rs0(v), Rla(v) and Rsa(v). The ˇgure shows that the
neutron albedo from a sufˇciently thin layer of nanoparticles is higher by 6Ä7
orders of magnitude than neutron re�ection from continuous matter.
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6. AXIS OF NANORODS IS ORIENTED PARALLEL
TO THE INTERFACE

Now nanorods are parallel to the powder surface. We deˇne the polar axis
along the normal to the interface directed towards matter, and axis x is in the
incidence plane. Then

q̄l = q̄ · l = sin θ0 cos χ − sin θ cos (ϕ − χ), (44)

where χ is the azimuth angle of the nanorod orientation, and ϕ is azimuth
scattering angle. Then

q̄ρ =
√

2(1 + cos θ cos θ0 − sin θ sin θ0 cos ϕ)−√
−(sin θ0 cos χ − sin θ cos (ϕ − χ))2. (45)

After averaging over nanorod orientation, integrating over backward scattering
angles, and averaging over angular distribution of incident neutrons, we get

Σb(α, β, ρ) =
∫ 1

0

du

∫ 1

0

dv Σbθ(u, v, α, β, ρ), (46)

where

Σbθ(u, v, α, β, ρ) =

=
ρ̄3

β

∫ 2π

0

dϕ

∫ 2π

0

dχ

2π
sinc2(αq̄l(u, v, ϕ, χ))

∣∣∣∣J1 (q̄ρ(u, v, ϕ, χ)αβ)
q̄ρ(u, v, ϕ, χ)αβ

∣∣∣∣
2

. (47)

Numerical integration of (47) gives an idea on the macroscopic cross section of
neutron backward scattering Σbθ(cos θ, cos θ0, α, β, ρ) as a function of u = cos θ
for given values of ν = cos θ0. This dependence for long nanorods (β = 0.01) at
ρ̄ = 1, the neutron velocity v = 450 m/s and two values of cosine of the incident
angle cos θ0 = 0.3 and 0.8 is shown in Fig. 7. One clearly sees in the ˇgure the
peaks in the vicinity of cos θ = cos θ0, i.¥., quasi-specular re�ection is revealed.

Integration in (46) and substitution into albedo formulas allows one to get
the results shown in Fig. 8. Here we show neutron albedo from a layer with the
thickness of 3 cm as a function of the neutron speed v; the layer consists of long
and short nanorods oriented along the interface but isotropically with respect to
the azimuth around the interface normal. Albedo is calculated for small and large
content of hydrogen. It is seen that albedo from long nanorods is higher than
that from short ones, also that results of calculations are in agreement with the
experimental observations for v in the range 50Ä150 m/s [10].
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Fig. 7. Dependences Σb (cos θ0, cos θ) from the neutron scattering angle θ and the neutron
incidence angle θ0 for long nanorods: a = 1000 nm and ρ = 10 nm for v = 450 m/s

Fig. 8. Albedo R(v) from powder of long (a = 1000 nm) and short (a = 10 nm) nanorods
with the radius ρ = 10 nm with the layer thickness of D = 3 cm for two loss coefˇcients
C0 = 6.28 · 10−7 and Ca = 5.2 · 10−4 as a function of neutron velocity

7. A PROBLEM OF ACCOUNTING
FOR THE REAL ANGULAR DISTRIBUTION

We have assumed above that albedo is calculated for the isotropic distribution
of re�ected and incident neutrons. How would change the results, if one does
not keep these assumptions? In order to answer this question, one has to solve
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Eq. (13) in its general form. It is an extremely complex problem involving a
nonlinear integral equation.

It can be simpliˇed, provided a natural assumption that all functions depend
only on cosines of incidence and re�ected angles. Then the integral equation can
be reduced, following discretization, to a matrix equation of the second order in
the form ẐÂẐ + B̂Ẑ + ẐB̂ + Â = 0. However solving such a quadratic matrix
algebraic equation also is a complex problem. In fact, a quadratic matrix equation
for the matrix N × N is equivalent in the general form to a polynomial equation
with the power 2N2. And even if one calculates numerically all its roots, there
will stay a problem of choosing a proper set of roots.

Nevertheless, one could try to consider an option, which will shed light on a
role of anisotropy. For instance, one could search for a solution of Eq. (13) not
in the purely isotropic form (14), but as a combination of isotropic and specular
distributions in the form (48), where the specular part is presented by the diagonal
term. This option will be considered in the following work:

R̂ = R∞

∫
nΩ<0

|Ω〉 | cos θ|
π

dΩ
∫

nΩ>0

dΩ′〈Ω′| +
∫

nΩ<0

|Ω〉f(θ) dΩ〈Ω|. (48)

CONCLUSION

In the present theoretical work, we considered a possibility to increase ef-
ˇciency of nanostructured re�ectors of slow neutrons by means of substituting
spherical nanoparticles by nanorods. We show that albedo of VCN from powder
of disordered nanorods is smaller than their albedo from powder of nanospheres.
However, albedo of VCN and quasi-specular re�ection of CN from powder of
nanorods oriented parallel to the re�ector surface exceed respective values for
powder of nanospheres.
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APPENDIX

Denote cos θ = v, cos θ0 = u. Then integral (34) is presented in the form

I(y) =
∫ 1

0

du

∫ 1

0

dv
Θ

(
1 − u2 − v2 > y2 − 2yuv

)
√

1 − u2 − v2 − y2 + 2yuv
=

∫ 1

0

du I1(u, y), (A.1)
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where integral I1(u, y), after variable substitution x = (v − uy) /
√

1 − u2
√

1 − y2

is deduced to the form

I1(u, y) =

x2(u,y)∫
−x1(u,y)

dx
Θ

(
x2 < 1

)
√

1 − x2
=

=
π

2
+

π

2
Θ(u >

√
1 − y2)

y

|y| + arcsin (x1(u, y))Θ(u <
√

1 − y2). (A.2)

Limits of integration in (	.2) are

x1(u, y) =
uy√

(1 − u2) (1 − y2)
, x2(u, y) =

1 − uy√
(1 − u2) (1 − y2)

. (A.3)

Modulus of these limits have to be smaller than unit, but x2(u, y) � 1 for
any values of u and y, therefore the upper limit, due to the inequality in the
integral, has to be replaced by unit. The lower limit, |x1(u, y)| � 1, if only
u � u1(y) =

√
1 − y2; if u > u1(y) =

√
1 − y2, then modulus of the lower

limit has to exceed unit and thus the lower limit should be replaced by −1 or +1
in function of a sign of y. Account for all these conditions results to (A.2).
Substitution (	.2) into (	.1) and integration by parts of the term including arcsin
provides the ˇnal result:

I(y) =

1∫
0

du I1(u, y) =
π

2

[
1 +

(
1 −

√
1 − y2

) y

|y|

]
+

√
1 − y2

y

|y|
π

2
−

−

√
1−y2∫
0

uduy

(1 − u2)
√

1 − u2 − y2
= πΘ(y > 0) − arctg

(√
1 − y2

y

)
. (A.4)
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