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Based on lattice QCD-adjusted SU(2)f nonlocal PolyakovÄNambuÄJona-
Lasinio (PNJL) models, we investigate how the location of the critical endpoint
in the QCD phase diagram depends on the strength of the vector meson coupling,
as well as on the Polyakov-loop (PL) potential and the form factors of the covariant
model. The latter are constrained by lattice QCD data for the quark propagator.
The strength of the vector coupling is adjusted so as to reproduce the slope of the
pseudocritical temperature for the chiral phase transition at low chemical potential
extracted recently from lattice QCD simulations. Our study supports the existence
of a critical endpoint in the QCD phase diagram albeit the constraint for the vector
coupling shifts its location to lower temperatures and higher baryochemical potentials
than in the case without it.
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1. INTRODUCTION
The QCD phase diagram has been focus of intense research in the last

decades. The conjecture for the existence of a critical endpoint (CEP) of ˇrst
order phase transitions in the QCD phase diagram is the basis for recent as well
as future beam energy scan (BES) programs in relativistic heavy-ion collision ex-
periments at RHIC, SPS, NICA and FAIR which try to identify the parameters of
its position (TCEP, μCEP). The theoretical situation is very unsatisfactory since
the predictions for this position form merely a skymap in the T−μ plane [1].
Quantitative calculations of the phase diagram based in QCD are extremely com-
plicated in the low energy regime due to its strong coupling. In this region
non-perturbative methods are powerful tools to describe the chiral and decon-
ˇnement transitions. Lattice QCD calculations have the sign problem at ˇnite
chemical potential. Therefore, the effective models play a crucial role to describe
the phase diagram, especially at ˇnite densities.

The now well-established results from lattice QCD at zero and small chemical
potential μ predict coincident chiral and deconˇnement crossover transitions at a
pseudocritical temperature of Tc(0) = (154 ± 9) MeV for 2 + 1 �avors [2] and
a value of Tc(0) ∼ 170 MeV for two �avors [3].

A possible strategy for extending these benchmark results to the so far in-
accessible regions of the QCD phase diagram is to use effective theories for the
low-energy sector of QCD, which reproduce lattice results at vanishing and small
μ, and systematically extend the predictions to high chemical potential without
changing the model inputs ˇxed with lattice results for the QCD vacuum. That
leaves us with a variety of possibilities for the phase structure at nonzero μ,
depending on the effective model.

Among them we want to mention the following ones:
• no CEP at all [4], since the transition is crossover in the whole phase

diagram;
• no CEP, but a Lifshitz point [5];
• one CEP, but with largely differing predictions of its position [1];
• second CEP [6Ä9];
• several CEPs [10, 11];
• CEP and triple point, possibly coincident, due to another phase (i. e., color

superconducting [12] or quarkyonic matter [13]) at low temperatures and high
densities.
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This spectrum of possibilities is rather broad in view of the upcoming experi-
mental programmes. It is crucial to analyze the predictions arising from effective
models for their compatibility with lattice results.

One of the effective models that accounts for dynamical breaking of chiral
symmetry and its restoration at ˇnite T and μ is the NambuÄJona-Lasinio (NJL)
model [14Ä17]. The absence of conˇnement in this model is partially cured
by coupling its chiral quark sector to the Polyakov-loop variable and adjusting
a suitable potential with a temperature dependence that is adjusted to describe
the pressure in accordance with lattice QCD simulations in the pure gauge ˇeld
system [18Ä20]. These PNJL models provide a straightforward approach to
the behavior of chiral and Polyakov-loop order parameters in the T−μ plane
(the phase diagram, see also [21, 22]) and predict a position for the CEP.

It has been shown that the nonlocal version of the PNJL model reproduces
hadron properties at zero density and temperature, and presents some advantages
over the local model [23Ä25]. As another feature, one can add to the model
a vector repulsive interaction which increases the stiffness of quark matter and
is therefore indispensable to discuss, under the observational constraint of 2 M�
neutron stars [26, 27], the possibility of quark matter phases in their interiors [28Ä
32]. Such astrophysical applications have recently also been considered within
the nonlocal PNJL model [33Ä36].

Our aim in the present paper is to make a systematic study of the location
of the CEP based on chiral quark models constrained from lattice results, includ-
ing all interactions mentioned above. We tune the parameters of our model to
reproduce lattice results at zero density and then we extrapolate our predictions
to regions of ˇnite density or chemical potential.

This article is organized as follows. In Sect. 2 we present the description
of the model and the parametrizations we used. In Sect. 3 we show our results
for the different form factors and parameters. Then, in Sect. 4 we present our
conclusions.

2. GENERAL FORMALISM

Let us start describing the general formalism of the model we used. In the
present work we considered a nonlocal SU(2)f chiral model, including vector
interactions as well as quark couplings to the gauge color background ˇelds.

2.1. Nonlocal Chiral Quark Model. The corresponding Lagrangian of the
model used in this work is given by

L = q̄(i �D − m0)q + Lint + U(Φ), (1)

where q is the Nf = 2 fermion doublet q ≡ (u, d)T , and m0 is the current quark
mass (we consider isospin symmetry, that is m0 = mu = md). The covariant
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derivative is deˇned as Dμ ≡ ∂μ − iAμ, where Aμ are color gauge ˇelds.
The nonlocal interaction channels are given by

Lint = −GS

2

[
ja(x)ja(x) − jP (x)jP (x)

]
−GV

2
jV (x) jV (x), (2)

where the nonlocal currents are

ja(x) =
∫

d4z g(z) q̄
(
x +

z

2

)
Γa q

(
x − z

2

)
,

jP (x) =
∫

d4z f(z) q̄
(
x +

z

2

) i
←→�∂

2κp
q
(
x − z

2

)
,

jV (x) =
∫

d4z g(z) q̄
(
x +

z

2

)
γ0 q

(
x − z

2

)
(3)

with Γa = (ΓS , ΓP ) = (11, iγ5�τ) for scalar and pseudoscalar currents respectively,

and u(x′)
←→
∂ v(x) = u(x′)∂xv(x) − ∂x′u(x′)v(x). The functions g(z) and f(z)

are nonlocal covariant form factors. The scalar-isoscalar component of the ja(x)
current is the responsible for the momentum dependence of the quark mass in the
quark propagator. Then, the current jP (x) will generate a momentum-dependent
wave function renormalization (WFR) of this propagator. The mass parameter
κp controls the relative strength between both interaction terms in (3). Finally,
jV (x) represents the vector channel interaction current, whose coupling constant
GV is usually taken as a free parameter. Moreover, we also have considered in
this vector interaction the same nonlocal covariant form factor g(z) used for the
scalar and pseudoscalar currents. Then it is not necessary to include new free
parameter in this term.

After the Fourier transform into momentum space, we have performed a stan-
dard bosonization of the theory introducing the bosonic ˇelds σ1,2(p) and ω(p),
and integrate out the quark ˇelds. Furthermore, as we work within the mean ˇeld
approximation (MFA), we replace the bosonic ˇelds by their vacuum expectation
values σ1,2 and ω, respectively, and the corresponding �uctuations are neglected.
The main motivation of the present work is to study the phase diagram of the
strongly interacting quark matter. As we want to analyze the chiral phase transi-
tion for different choices of the parameters of the model, we have to include the
dependence on the temperature T and quark chemical potential μ in our effective
action.∗ In the present work this is carried out by using the Matsubara imaginary
time formalism. As mentioned above, the quarks are coupled to the gluons in (1)
through the covariant derivative.

∗The corresponding values for baryon chemical potential μB can easily be obtained from the
relation μB = 3μ.
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The coupling of fermions with the gluon ˇelds is taken into account in (1)
through the covariant derivative. Considering the quarks in a color ˇeld back-
ground A0 = g0G

a
μλa/2, where Ga

μ are the SU (3) color gauge ˇelds. At mean

ˇeld level the traced Polyakov loop is given by Φ =
1
3
Tr exp (iβφ), with

φ = iĀ0. Then, in the Polyakov gauge, the matrix φ is given by φ = φ3λ3+φ8λ8.
Considering that the mean ˇeld expectation values of Φ must be real, we set
φ8 = 0 [19, 25]. The mean ˇeld traced Polyakov loop is then given by Φ =
Φ∗ = [1 + 2 cos (φ3/T )]/3. Finally, the Lagrangian (1) also includes an ef-
fective potential U that accounts for gauge ˇeld self-interactions and will be
brie�y described below.

Within this framework the mean ˇeld thermodynamical potential ΩMFA re-
sults

ΩMFA = −4T
∑

c

∑
n

∫
d3�p

(2π)3
ln

[
(ρc

n,�p)
2 + M2(ρc

n,�p)
Z2(ρc

n,�p)

]
+

+
σ2

1 + κ2
p σ2

2

2 GS
− ω2

2GV
+ U(Φ, T ), (4)

where M(p) and Z(p) are given by

M(p) = Z(p) [m + σ1 g(p)] ,

Z(p) = [1 − σ2 f(p)]−1
.

(5)

Finally, as in [37], we have considered(
ρc

n,�p

)2

=
[
(2n + 1)πT − iμ + φc

]2

+ �p 2, (6)

where φc are given by the relation φ = diag(φr , φg, φb). Namely, φc = c φ3

with c = 1,−1, 0 for r, g, b, respectively.
For ˇnite values of the current quark mass, ΩMFA turns out to be divergent.

The regularization procedure used here considers [37, 38]

ΩMFA
(reg) = ΩMFA − Ωfree + Ωfree

(reg), (7)

where Ωfree is obtained from (4) for σ1 = σ2 = 0, and Ωfree
(reg) is the regularized

expression for the thermodynamical potential of a free fermion gas,

Ωfree
(reg) = −4T

d3�p

(2π)3
∑

c

[
ln

(
1 + e−

(√
�p2+m2−μ+iφc

)
/T

)
+

+ ln
(

1 + e−
(√

�p2+m2+μ+iφc

)
/T

) ]
. (8)
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The next step is obtaining the mean ˇeld values of σ1, σ2, ω and Φ as a
function of the chemical potential and the temperature, by solving the following
set of coupled equations:

dΩMFA
(reg)

dσ1
= 0,

dΩMFA
(reg)

dσ2
= 0,

dΩMFA
(reg)

dω
= 0,

dΩMFA
(reg)

dΦ
= 0. (9)

Then we can evaluate the ΩMFA
(reg)(σ1, σ2, ω, Φ, μ, T ) and compute all the rel-

evant thermodynamic quantities needed in our calculation, like the chiral quark
condensate

〈ψ̄ψ〉 =
∂ΩMFA

(reg)

∂m
, ρq = −

∂ΩMFA
(reg)

∂μ
(10)

and the chiral susceptibility χ which can be used to determine the characteristic
of the chiral phase transition

χch = −
∂2ΩMFA

(reg)

∂m2
= −∂〈ψ̄ψ〉

∂m
. (11)

To proceed, we still have to deˇne some quantities like the form factors, the
vector interactions, the effective potential U and also the parameters of the model.
Let us introduce them gradually.

2.2. Form Factors and Wave Function Renormalization. Follow-
ing [37, 39], we have considered two different types of functional dependency
for the form factors g(q) and f(q):

exponential forms

(Set A)
{

g(p) = exp
(
−p2/Λ2

0

)
f(p) = 0 , (12)

(Set B)
{

g(p) = exp
(
−p2/Λ2

0

)
f(p) = exp

(
−p2/Λ2

1

) , (13)

and Lorentzians with WFR

(Set C)

⎧⎪⎪⎨
⎪⎪⎩

g(p) =
1 + αz

1 + αz fz(p)
αm fm(p) − m αzfz(p)

αm − m αz

f(p) =
1 + αz

1 + αz fz(p)
fz(p)

, (14)

where

fm(p) =
[
1 +

(
p2/Λ2

0

)3/2
]−1

, fz(p) =
[
1 +

(
p2/Λ2

1

)]−5/2
, (15)

and αm = 309 MeV, αz = −0.3. All the parameter sets are summarized in table.
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Sets of parameters (see Ref. [39] for a detailed description)

Parameter Set A Set B Set C
m, MeV 5.78 5.7 2.37
Λ0, MeV 752.2 814.42 850.0
GS Λ2

0 20.65 32.03 20.818
Λ1, MeV 0.0 1034.5 1400.0
κp, MeV 0.0 4180.0 6034.0

In addition, we want to include in our analysis the results arising from a
local PNJL model, which allows us to compare them with the results obtained,
for example, in [4]. For that purpose, we started from the Lagrangian in [21]
with two �avors instead of three and we use the same model parameters as in
Refs. [18, 19, 40]:

m = 5.5 MeV, G = 10.1 GeV−2, Λ = 650.0 MeV. (16)

The model inputs can be constrained with results from lattice QCD studies.
In particular, the above-described form factors of the nonlocal interaction have

Fig. 1 (color online). Normalized dynamical masses (a) and wave function renormaliza-
tion (b) for the different nonlocal form factors under study from [37, 39] ˇtted to lattice
data from [41]. For comparison the local model [40] and more recent lattice data from [42]
are also included
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been chosen [39] so as to reproduce the dynamical mass function M(p) and the
WFR Z(p) of the quark propagator in the vacuum [41]. In Fig.1 we show the
shapes of normalized dynamical masses and WFR for the models under discussion
here, i. e., the nonlocal models with set A (rank-one), set B and set C (rank-two)
parametrizations as well as the local limit.

This ˇgure generalizes the corresponding Fig.1 in [39], by including the local
limit for M(p) and showing the line Z(p) = 1 for both, set A and the local case.
For comparison, a more recent lattice data from [42] is also included. It is easy to
recognize the better agreement between the lattice results and the more complete
model, namely, nonlocal PNJL with WFR, in its two form factor parametrizations
given by set B and set C.

2.3. The Vector Coupling. The vector coupling constant GV is considered a
free parameter which in the mean ˇeld approximation (MFA) may be adjusted so
as to reproduce the behavior of the critical temperature, Tc(μ), which has recently
been obtained by Taylor expansion technique in lattice QCD [43],

Tc(μ)/Tc(0) = 1 − κ(μ/T )2 + O[(μ/T )4], (17)

with κ = 0.059(2)(4) being the curvature. Note that this result is not yet based on
continuum extrapolated lattice results, so discretization errors have to be expected.
However, we are interested to present here a scheme for constraining effective
QCD models. The quality of predictions can subsequently be improved by using
better lattice QCD data and constant discretization schemes. In what follows,
the vector coupling strength will be evaluated by considering different ratios of
ηV = GV /GS , and we use this parameter to tune our model to obtain better
agreement with lattice predictions.

We include the vector coupling as a shifting in the chemical potential accord-
ing to

μ̃ = μ − ω g(p) Z(p). (18)

Note that we include the WFR Z(p) in the shifted chemical potential in order to
keep the thermodynamical potential at mean ˇeld level. We found that the results
are quite different if the Z(p) had not been included in the shift. As an example
of that, we show in Fig. 2 the phase diagram for set B with and without WFR in
μ̃, for a particular value of ηV (similar results were obtained within set C) and a
ˇnite value of vector coupling constant.

Finally, we have to include the shifting (18) in (6) deˇning a new ρ̃c
n,�p.

In the case of the local model, we consider that the chemical potential is
shifted by

μ̃ = μ − ω. (19)
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Fig. 2 (color online). Comparative plot of phase diagram obtained with and without the
inclusion of Z(p) in the shifted chemical potential in Eq. (18). Dashed lines represent
crossover transitions, the symbols (dot or square) indicate the critical endpoints location,
and solid lines are ˇrst-order phase transitions

2.4. Polyakov-Loop Potential. In the present work we have chosen a μ-
dependent logarithmic effective potential described in [44]

U(Φ, T, μ) = (a0T
4 + a1μ

4 + a2T
2μ2)Φ2+

+ a3T
4
0 ln (1 − 6Φ2 + 8Φ3 − 3Φ4), (20)

where

a0 = −1.85, a1 = −1.44 · 10−3, a2 = −0.08, a3 = −0.40.

The reason for our particular election is that we want to consider the in�u-
ence of chemical potential on the PL effective potential, and evaluate how this
μ-dependence can modify the phase diagram, tuning the vector coupling. In Fig. 3
we compare the phase diagrams we obtained considering the μ-dependent log-
arithmic effective potential and a non-μ-dependent effective potential described
in Ref. [19]. The results for sets A and C have a similar qualitative behavior.
As expected, at T = 0 and μ = 0 both potentials produce the same critical
temperatures, but there is a signiˇcant difference in the location of the CEPs.
Nevertheless, it is shown in the same ˇgure that this difference turns out to be
smaller when increasing the vector coupling strength.

Another point we have to discuss here is the election of the critical temper-
ature T0 for deconˇnement transition. In the present work we set T0 for decon-
ˇnement by using the value corresponding to two �avors, i. e., T0 = 208 MeV,
as has been suggested in [45] and used in subsequent approaches, including the
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Fig. 3 (color online). Phase diagrams obtained with the μ-dependent effective potential
from [44] used in this work in comparison with the logarithmic PL potential in Ref. [19].
Dashed lines represent crossover transitions, the symbols (dots or squares) indicate the
critical endpoints location, and solid lines are ˇrst-order phase transitions

Fig. 4 (color online). Comparison of phase diagrams determined with two different values
of the deconˇnement critical temperature T0: the pure gauge value (T0 = 270 MeV)
and the two �avor value (T0 = 208 MeV). See Refs. [45Ä47] for details. Dashed lines
represent crossover transitions, the symbols (dots or squares) indicate the critical endpoints
location, and solid lines are ˇrst-order phase transitions

nonlocal PNJL [46], Polyakov loopÄDSE models [47] and entanglement PNJL
(EPNJL) model [48, 49]. This election produces lower Tc values for the chiral
transition (see Fig. 4 as an example), obtaining at zero chemical potential closer
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values to the lattice QCD more accepted result [3] for the critical temperature
Tc(0) = 170 MeV. It is remarkable that within the local model the obtained
critical temperatures are noticeably higher than in the case of nonlocal models, as
is shown in Fig. 4.

In this context it is important to keep in mind the effect that the account for
a hadronic phase can have on the topology of the QCD phase diagram [50, 51],
as well as higher-order quark interactions [52].

3. RESULTS

The ˇrst effect we want to study is how the vector interactions affect the
transitions and the location of the CEP. We built the corresponding phase diagrams
for different values of ηV . In all the cases we observed a variation in the
curvatures even at low chemical potential. As expected, the in�uence of the
vector coupling increases with the chemical potential, then the position of the
CEP and the values of μc(T = 0) re�ect notably this in�uence. We want to
remark that, for increasing ηV , the CEPs tend to be located towards lower T and
higher μ. Similarly to what has been shown in Ref. [53], we observe that for any
of the nonlocal models under study, the CEPs (and the corresponding ˇrst-order
transitions) are still present for all the values of vector coupling constant analyzed
in this work. In Fig. 5 it can be seen that effect for set B (qualitatively similar
behavior was observed for set A and set C). Nevertheless, for the local model,
we observe that by increasing ηV a crossover line without a CEP is obtained, as
is shown in Fig. 6.

Once we have the phase diagrams, the next step is to determine the curvatures.
To do so, we plotted the pseudocritical temperatures of the crossover transitions
as a function of (μ/T )2 for different ηV ratios. Then, the curvatures can be
obtained from the slope of the straight lines in the region of low (μ/T ) values.
An example of this is shown in Fig. 7 for set C (the corresponding plots for the
other sets are qualitatively very similar). The ˇt of the lattice QCD results (17) is
also shown. The grey zone corresponds to the error in the coefˇcient κ obtained
in [43].

In Fig. 8 we compare the lattice result with the values for the coefˇcient κ
obtained within the nonlocal PNJL models and the local one. There, the horizontal
line corresponds to the lattice QCD prediction of κ = 0.059(2)(4) [43] and the
grey zone represents its error. Note that for the more complete model (set B and
set C) the curvatures are closer to each other than in the case of set A and local
ones.

It is important to remark that while the analysis of κ has been performed for
Nf = 2 + 1 simulations, the chemical potential μ concerns only the two light
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Fig. 5 (color online). In�uence of the strength of the vector coupling (here ηV = GV /GS)
on the phase diagram for set B. Dashed lines represent crossover transitions, the symbols
indicate the critical endpoints locations, and solid lines are ˇrst-order phase transitions

Fig. 6 (color online). In�uence of the strength of the vector coupling on the phase
diagram for the local model. Dashed lines represent crossover transitions, the symbols
(dot or square) indicate the critical endpoints location, and solid lines are ˇrst-order phase
transitions. It can be seen that CEPs tend to disappear for GV > 0.1GS , leaving only a
crossover phase transition

�avors. Therefore, our extraction of κ from the nonlocal PNJL models for the
2-�avor case may be in order.

In Fig. 9 the phase diagrams for the nonlocal models discussed in this work
are compared; considering the corresponding ηV values that best ˇt the lattice
QCD prediction of κ = 0.059(2)(4) from [43]. The grey zones correspond to the
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Fig. 7 (color online). Chiral crossover transitions at low values of μ/T for different values
of strengths of the vector coupling ηV = GV /GS for set C. The dashed line corresponds
to the lattice QCD prediction of κ = 0.059(2)(4) [43]

Fig. 8 (color online). Curvature κ of the pseudocritical temperature Tc(μ) of the chiral
crossover transition at low values of μ/T . The horizontal line corresponds to the lattice
QCD prediction of κ = 0.059(2)(4) [43]. The grey zone represents the corresponding
error in the curvature determination

range of ηV values obtained by considering the error in the lattice determination
of κ [43]. Similarly, the error bars in the CEPs indicate the distances to the CEP
positions for the corresponding ηV values that ˇt the error limits.
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Fig. 9 (color online). Phase diagrams obtained with the nonlocal models with the parame-
trizations set A (a), set B (b) and set C (c), for the values of ηV that best ˇt the lattice
QCD prediction in [43]. The grey zones and the error bars of the CEP location represent
the corresponding indetermination for the curvature value

Fig. 10 (color online). Phase diagrams with (pseudo)critical temperatures Tc(μ) and critical
points for nonlocal PNJL models (sets AÄC) compared to the local one. Dashed (full)
lines correspond to crossover (ˇrst-order) transitions. The vector coupling strength ηV is
chosen so that these models reproduce the lattice QCD result κ = 0.059(2)(4) [43] for the
curvature at low μ-values. The corresponding values for Tc(μ = 0) (in MeV) are 169.9,
171.3, 173.2 and 200.9, for sets A, B, C and local, respectively. The highlighted region
denotes the CEP position favored by the present study
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Note that by using the Polyakov loop potential (20) from [44], a crossover
region and a CEP can be obtained for set A, even for T0 = 208 MeV, contrarily to
what has been reported in [46, 47], where the Polyakov loop potential from [19]
has been used.∗

The results summarized in Fig. 10 indicate that the absolute value of the
critical temperature Tc(0) of nonlocal covariant PNJL models is rather insensitive
to the choice of the form factors parametrizing, the momentum dependence of
dynamical (running) mass function and WFR of the quark propagator as measured
on the lattice at zero temperature [41], whereas the position of the CEP and critical
chemical potential at T = 0 strongly depends on it. On the other hand, the value
of Tc(0) in the local model is signiˇcantly different (larger) than in the nonlocal
ones. In addition, note that in the local model to ˇt the lattice QCD value
requires a larger vector coupling, for which the corresponding phase diagram
lacks of CEP and all the chiral phase transition is a crossover. This is another
remarkable difference with respect to the phase diagram obtained with nonlocal
models [4].

The nonlocal model for the set B and set C cases contains WFR and dynamical
(running) quark mass effects, and thus is closer to full QCD. Therefore, we
suggest that statements about the existence and location of the CEP within set A
and the local model should be less trustworthy than those of set B and set C.
As a consequence, a possible region for the CEP location suggested by our study
would be between the results for set B and set C, i. e., around (TCEP, μCEP) =
(129.8, 276.6 MeV) and (69.9, 319.1 MeV), respectively.

This suggests that the search for CEP signatures in the BES programs is
justiˇed and should be continued. The energy range of the NICA and FAIR
facilities shall be particularly promising.

4. SUMMARY AND CONCLUSIONS

In this work, based on nonlocal PNJL models with and without WFR, we
have studied the in�uence of vector coupling strength in the QCD phase diagram.
As shown in Fig. 2, a remarkable difference is observed when the shift of the
chemical potential includes the WFR function, keeping the thermodynamical po-
tential at mean ˇeld level. In a further exploratory step, we show the in�uence
of considering different values for the T0 parameter in the effective potential
on the phase diagrams (see Fig. 4). As expected, a noticeable decrease of the

∗Note that in the low-μ region the differences in the chiral transition obtained with each effective
potential are mainly due to the deˇnition of the corresponding logarithmic term in the Polyakov loop
potential.
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chiral transition critical temperatures is observed, but the smaller the tempera-
ture, the smaller is this decrease, converging to almost the same value when the
critical temperature goes below T = 40 MeV. Also in Fig. 4, one can see from
a comparison between one of the nonlocal models (set B as an example) and
the local one that a remarkable difference of about 25 MeV along all the phase
diagram lines for the same value of T0 is obtained. But the main variation is
in the location of the CEP, which in the case of the local model turns out to be
at a lower T and higher μ than in the nonlocal case. Comparing Figs. 5 and 6
for nonlocal and local models, respectively, it can be observed that the in�uence
of the increasing of the vector coupling strength is qualitatively similar in both
cases, i. e., moving the phase transitions towards higher μ values and lowering
the CEP location. Nevertheless, in the case of the local model the CEP turns out
to disappear for higher values of ηV , leaving only a crossover transition along all
the phase diagrams.

A second step in our work consisted in the determination of the curvatures
in the low μ region as the slope of the straight lines obtained by plotting the
pseudocritical temperatures of the crossover transitions as a function of (μ/T )2.
In Fig. 7 are shown some examples of the lines obtained with set C and several
values of ηV , while in Fig. 8 it can be observed how the curvatures vary with
respect to the vector coupling strength for all the parametrizations considered.

Once the values of ηV have been determined that best reproduce the lattice
QCD result κ = 0.059(2)(4) [43] for the curvature at low μ-values, we have
shown (Fig. 9) the nonlocal model phase diagrams for the obtained values of ηV .

Finally, considering the more elaborated models (nonlocal and with WFR,
i. e., set B and set C), and the corresponding values of ηV adjusted to lattice QCD
results, we suggest in Fig. 10 the most likely zone where, according to our study,
the CEP would be located.

Note that in this exploratory study the lattice QCD data for the quark prop-
agator and for the curvature of the pseudocritical line are obtained with different
lattice actions. A more consistent study should be based on the same discretiza-
tion of the action, provide a continuum extrapolation and work with physical
quark masses.

As a next step it is necessary to investigate the robustness of the results of the
nonlocal PNJL models when modifying the choice of the Polyakov-loop potential
taking into account recent developments [54Ä56] and, in particular, when going
beyond the mean ˇeld approximation. A scheme for going beyond the mean
ˇeld in nonlocal PNJL models by including hadronic correlations (bound states
and their dissociation in the continuum of scattering states) has recently been
developed [57] and shall be generalized for studies of the chiral and deconˇnement
phase transition in the QCD phase diagram. A key quantity for such studies will
be the hadronic spectral function. First results using a generic ansatz [58] for
joining the hadron resonance gas and PNJL approaches are promising [59, 60]
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and have recently been underpinned a microscopic justiˇcation by a treatment
of pion dissociation within the (local) PNJL model [61]. This approach has
recently been generalized by mimicking conˇning properties with an infrared
momentum cutoff [62] in order to bind higher lying mesonic states such as the
sigma meson Å a feature shared with the nonlocal extensions of the (P)NJL
model as, e. g., in [23, 47, 63, 64], to be exploited further in subsequent work.
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