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Measurement of Tube Tension in Straw Detectors

A device and a method for controlling tension of tubes in straw detectors are
presented. The method is based on measuring the resonance frequency of a tube
at electrostatic excitation of its oscillations relative to the reference electrode. The
sensitivity of the device allows the resonance frequency to be detected with an
accuracy of 0.1 Hz. The tension is determined using analytical dependence obtained
by the author. The relative error of the experimental data against the analytical
dependence is below 3%. The device proved to be effective in a range of tensions
from 250 to 1200 g/m used in development of the detectors, and it can be employed
for measuring tension of wires.

The investigation has been performed at the Dzhelepov Laboratory of Nuclear
Problems, JINR.
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INTRODUCTION

Finding the resonance frequency of a cylindrical shell subject to the action
of forces is an often encountered problem of a physical experiment technique.
This problem arises, for example, in development of straw detectors [1Ä3] used
in experimental physics. These detectors consist of cylindrical counters. Many
aspects of the mechanical behavior of thin-wall counters are considered within
the theory of shells [4Ä6]. Note that the shape of the tube changes with time due
to dielectric yield and should therefore be maintained during long-term operation.
The solution to the problem is to tension the tube, which helps maintain its shape
and decreases its sag, thus improving the coordinate resolution of the detector.
The tube can be tensioned by the overpressure of the working gas in the tube [1]
or mechanically. The mechanical option was adopted for straw detectors in
the experiments [2, 3]. Tension affects characteristics of the detector and is an
important parameter controlled by the resonance frequency of tube oscillation.

The purpose of this work was to adapt the method for wire tension measure-
ment [7] to a straw tube and to ˇnd out whether the tension can be controlled
using its dependence on the resonance frequency.

EXCITATION MODE OF TUBE OSCILLATION

An effective way to ˇnd the resonance frequency of the tube is electrostatic
excitation of its oscillation. The oscillation amplitude reaches its maximum under

Fig. 1. Block diagram of the monitor

the action of the excitation force at the
tube resonance frequency. Thus, the
problem of ˇnding the resonance fre-
quency is reduced to ˇnding the maxi-
mum amplitude of the forced tube oscil-
lation while scanning the excitation fre-
quency. Figure 1 shows a block diagram
of the monitor for detection of the straw
tube resonance frequency. Circuit de-
signs of its main units, Driver and Sen-
sor, are presented in [7]. The Driver
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forms a high ac voltage signal applied to the reference electrode that is near the
tube under investigation. The inner surface of the tube has a metal coating and
serves as a cathode, which is connected to the zero potential during tests. The
reference electrode and the cathode of the tube make up a capacitor. The exci-
tation signal induces charges of the opposite signs on the capacitor plates. The
variable force of the Coulomb interaction causes oscillation of the tube. Since
the force acts on both plates, reference electrode oscillations are prevented from
being blocked by increasing the mass of the electrode and ˇxing it in the holder.
The Sensor detects oscillations of the tube. It forms a signal with an amplitude
proportional to the deviation of the tube with respect to the electrode and a fre-
quency coinciding with the frequency of the excitation signal. The excitation
signal is prevented from entering the Sensor circuit by a blocking capacitor Cbl

and a low input resistance of the Sensor circuit.

RESONANCE FREQUENCY OF A STRAW TUBE

The resonance frequency of the tube is found by solving a system of equa-
tions that describes its behavior. The system includes ˇve equations and eight
unknowns [4] and is indeterminate. There are a lot of approaches to description
of tube behavior within the theory of shells [5, 6]. Under the indeterminateness
conditions there are particular solutions governed by the assumptions made. The
basic assumptions are: the linearity of the shell deformation and the validity of
the Hooke law; the effect of the vertical deformation is ignored for being too
small; the behavior of the shell is described in terms of its middle part. A review
of various approaches and corresponding results is given in [8]. The dependence
of the resonance frequency on the tension in the article is obtained from the
condition of the shell equilibrium under the action of axially symmetric forces.
The tube equilibrium equation has the form [4]:

D
∂4w

∂x4 +
Eh

R
w = qz − μ

R
Nx, (1)

where D is the cylindrical stiffness of the tube, D = Eh3/12
(
1 − μ2

)
; E is

the Young modulus; h is the thickness of the tube; μ is the Poisson coefˇcient;
and qz is the vertical component of the acting forces. Figure 2 shows the system
of coordinates, the size of the tube, and the forces acting on the tube.

The vertical component includes a tension force (T · ∂2w/∂x2), an external
force F applied to the tube for exciting oscillations, and an inertial force. In com-
pliance with the d'Alembert principle, the inertial force is taken with the minus
sign (−ρh ·∂2w/∂t2), where ρ is the tube material density. In the theory of shells
it is shown [4Ä6] that the force acting along the coordinates x has an orthogonally
directed component with a coefˇcient μ/R. Therefore, the equilibrium equation
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Fig. 2. Coordinate system of
the tube and forces acting on
it. Tube deviation w along the
x-axis. Characteristics of the
tube: R is the radius, L is the
length, T is the tension, and F
is the external oscillation exci-
tation force

involves the vertical component of the longitudinal force Nx. Since the tube sag
affects the coordinate resolution of the detector, the tube tension force T is high
enough to keep it small. In this case, the tension force can be considered to be
a determining force, and Nx

∼= T . The force Nx acts at a tangent to the shell
surface. For obtaining its projection onto the w-axis, it should be multiplied by
the sine of the shell slope angle with respect to the x-axis, sin ϕ. Considering the
boundary conditions, the amplitude distribution of the shell oscillations along the
x-axis is taken in the form w(x) = w0 · sin nπx/L, where w0 is the amplitude
of the deviation at the middle point of the cylinder. Because of low deviation
amplitude, a deviation along the x-axis can be approximated by a linear depen-
dence. In this case, the tangent of the slope angle will be determined by the
ratio of w0 to L/2, and thus tan ϕ ≈ sin ϕ = 2w/L. The vertical component
of the tension force acts at a normal to the tube surface; therefore, to obtain its
projection on the w-axis, it should be multiplied by cos ϕ, which is taken to be
unity for a small angle.

For a tube under tension T with clamped ends Eq. (1) involves forces acting
inside the shell and the inertial force. All forces in the equation are taken per
unit length of the normal cross section corresponding to them. As a result, the
equation will have the form

D
∂4w

∂x4 +
Eh

R2
w +

T

2πR
· ∂2w

∂x2
+

μT

RL
· 2w

L
= −ρh

∂2w

∂t2
. (2)

The solution of (2) is sought in the form

w = w0 · sin (nπx/L) · cos ωt. (3)

Substituting (3) into (2) and then cancelling out the common factor (3), we obtain
a relation for ˇnding the resonance frequency of a cylindrical tube ωC :

ω2
C =

D

ρh

(nπ

L

)4

+
E

ρR2
+

T

2πRρh

(nπ

L

)2

·
[
1 +

4μ

πn2

]
. (4)
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The resonance frequency is a function of the tension and tube parameters. It
has three components corresponding to the bending ωb, transverse ωt, and longi-
tudinal ωL oscillations. Squares of their resonance frequencies are successively
presented in (4). Let us perform comparative estimation of frequencies for the
ˇrst harmonic (n = 1) of the COMET straw detector tube with the parameters:
T = 9.8 N, L = 0.975 m, inner radius of the shell R = 5 mm, h = 36 μm,
speciˇc weight ρ = 1290 kg/m3, E = 2 · 109 N/m, and μ = 0.3,

ω2
b

ω2
L

=
2πRD

T (1 + 4μ/πn2)
·
(π

L

)2

≈ 28.75 · 10−8,

ω2
t

ω2
L

=
2πhE

T · (1 + 4μ/πn2)R
·
(

L

π

)2

≈ 6.73 · 106.

Since the resonance frequencies are very different, the tension can be controlled
with a high accuracy only in terms of the longitudinal component ωL:

ω2
L =

T

2πRρh

(nπ

L

)2

·
[
1 +

4μ

πn2

]
. (5)

The above dependence agrees with the results obtained in [9]. In both cases,
the square of the resonance frequency linearly depends on the tension. It is,
however, worth noting that (5) involves parameters and tension of the tube, and
thus, unlike the case in [9], there is no need to calculate its moment of inertia
and bending force.

MEASUREMENT MODE OF THE TUBE RESONANCE FREQUENCY

Since the resonance frequency is determined in the mode of forced tube os-
cillations, let us consider characteristics and limitations of this mode. In this case,
the action of the external excitation force F is added to equation of oscillations (2).
The force can be determined from the energy conservation law. The cathode of
the tube and the reference electrode make up a capacitor of capacitance C. The
work done by the force to move the cylinder through the distance dH is equal to
the change in the capacitor energy due to the change in its capacitance dC. From
this equality we ˇnd the force F :

F =
dC

dH
· U2

2
. (6)

In (6), H is the effective distance between the capacitor plates, and U is the
oscillation excitation voltage applied to the reference electrode. To estimate
the distance between the capacitor plates H , the cylindrical shape of the tube
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should be taken into account, which results in that the effective distance increases
by (π − 2)R/π. Capacitance can be estimated by the formula of a �at capacitor
with allowance for the effective distance between the plates

C = ε0 · S/H, (7)

where S is the tubeÄelectrode overlap area. Substituting the capacitance value
into (6), we obtain the force in the explicit form

F = −CU2/2H. (8)

The solution of the equation of forced oscillations is sought in the form
similar to the free-oscillation solution of Eq. (3). To this end, the acting force is
expanded in a Fourier series on the segment (0, L) in the system of orthogonal

functions of the tube deviation
{

sin
nπx

L

}∞

n=1
. Expansion coefˇcients are found

using the FourierÄEuler formula [10, 11]:

fn =
2
L

L∫
0

F (t)
m

· sin nπx

L
· dx =

2F (t)
nπ · 2πRhLρ

(1 − cos nπ). (9)

The coefˇcients fn are zero for even harmonics, and for odd harmon-
ics they are

f2k−1 =
CU2

H · (2k − 1)π2RhLρ
. (10)

It follows from (9) that oscillations of the tube are only possible at the odd-
harmonic frequency. The coefˇcients f2k−1 correspond to the acceleration of the
shell during its oscillation. Note that relation (9) involves the total tube mass
m = 2πRhLρ. In some works [9, 12], they deal with even harmonics of the
resonance frequency of the longitudinal tube oscillations, which contradicts the
results and conclusions of [13], where it is also pointed out that there are only
odd harmonics of longitudinal oscillations ωL and their related frequencies of
transverse oscillations ωt. W. Flugge and G.Chiang made an attempt to eliminate
even harmonics artiˇcially, representing the entire frequency spectrum by two
sets of odd harmonics [14]. However, this approach failed to ˇnd application.
In a general case, the equation of forced oscillations involves the solution of
homogeneous equation (2) and the particular solution related to the action of the
external force F . The particular solution, which is of interest, is taken in the
form of a convolution of the acting force with the temporal behavior function of
the tube [11]:

w (x, t, F ) =
∞∑

k=1

1
ω2k−1

·

⎡
⎣

t∫
0

f2k−1 (τ)·sinω2k−1 · (t − τ) dτ

⎤
⎦ · sin nπx

L
. (11)
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In (11), ω2k−1 are the odd harmonics of the tube eigenmodes. It is reasonable to
take the oscillation excitation voltage in the form U = U0(1 − cos ωt) with
amplitude U0 and frequency ω. This form of the voltage allows a simpler
hardware-based implementation of the detection device. Since the excitation force
is proportional to the square of the voltage, there arises the second harmonic,
which induces oscillations with lower amplitude as compared with those induced
by the ˇrst harmonic

(1 − cos ωt)2 = 1.5 − 2 cos ωt + 0.5 cos 2ωt. (12)

The procedure for calculating integral (11) is presented in [4, 15]. It involves
a sum of three integrals J = J1 + J2 + J3. Since the term J1 is small, its
effect on the oscillation amplitude can be ignored. The amplitude w (J1) is
inversely proportional to the cube of the harmonic number and the square of the
ˇrst-harmonic resonance frequency ω1:

w (J1) =
f2k−1 · [1 − cos ω2k−1t]

ω2
2k−1

. (13)

The term w (J1) characterizes tube oscillations at resonance frequencies in phase
with the excitation signal. When the excitation frequency coincides with the
odd-harmonic frequency of the tube ω = ω2k−1, a resonance occurs, and the
oscillation amplitude is deˇned by the expression

w (J2) =
f2k−1 · t · sin ω2k−1t

ω2k−1
. (14)

The second harmonic cos 2ωt in the excitation signal spectrum also allows exci-
tation of tube oscillations at odd harmonics of the resonance frequency. At the
excitation frequency ω = 0.5ω2k−1, the oscillation amplitude w (J3) is one fourth
of the amplitude w (J2):

w (J3) =
f2k−1 · t · sin ω2k−1t

4ω2k−1
. (15)

Therefore, it is preferable to search for the resonance frequency using the ˇrst
harmonic of the excitation signal. At the resonance the amplitude linearly in-
creases due to the time factor t, and the oscillation phase shifts by π/2 relative
to the excitation signal because of sin ω2k−1t. The amplitude is prevented from
rising above the stationary value by the elastic force of the tube, and its decay is
compensated by the action of the excitation force. Analysis of forced oscillations
for a continuously acting variable excitation force reveals only odd harmonics
and a possibility of exciting the resonance at an excitation frequency equal to half
the odd-harmonic frequency of the tube. The dependence obtained for the tube
resonance frequency (5) was experimentally veriˇed and showed good agreement
with the measurements.
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CHARACTERISTICS OF THE DETECTION SYSTEM

The reference electrode was 400 × 8 × 3 mm in size and was made of
duralumin. It was inserted into the slot in the side of the 30 × 40 × 40 mm
�uoroplastic holder and was fast ˇxed by a clamp strap. During the tests it is
preferable to set the electrode symmetrically about the tube to form symmetry
of the excitation force along the length. Figure 3 shows oscillograms of the
resonance oscillations of the tube excited by the ˇrst (a) and second (b) harmonics
of the excitation signal. In the second case, the frequency of the detected signal
is twice that of the excitation signal. The signal amplitude decreases by a factor
of 3 as compared with the ˇrst case. In both cases, the detected frequency is
equal to ω1 within the measurement error of 0.1 Hz.

The accuracy of the resonance frequency detection depends on the Sensor
sensitivity. To obtain high sensitivity, the Sensor was realized as a resonant

Fig. 3. The tube oscillations at ˇrst resonance frequency. Signals: 1 Å Driver input; 2 Å
Excitation voltage control; 3 Å Sensor high-frequency control signal; 4 Å Sensor output
signal proportional to the oscillation amplitude

Fig. 4. AmplitudeÄfrequency dependence of the readout signal
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LC circuit with the capacitance of the reference electrode relative to the cathode
of the tube used as the circuit capacitance. Figure 4 shows the behavior of the
Sensor signal amplitude near the resonance frequency. The full width at half
maximum (FWHM) of the dependence is 1.1 Hz, which indicates high selectivity
of the circuit. The Sensor sensitivity can be estimated from the variation in
the detected signal amplitude within the excitation frequency range equal to the
distribution half-width. For the ˇrst harmonic, the sensitivity within the tube
resonance frequency range was 530 mV/Hz. This sensitivity allows the resonance
frequency to be determined with an accuracy of 0.1 Hz. For the second excitation
harmonic, the sensitivity was 455 mV/Hz.

TEST RESULTS

The dependence of the resonance frequency on the tension was tested on tubes
of the prototype COMET straw detector with the characteristics given above. The
tubes were rigidly attached to a ˇxed holder using tips glued into their ends.
Inside the tip there was a screw, which was rotated to set a tension. The tension
was controlled using a dynamometer with a measurement accuracy of 25 g. At a
given tension of the tube its resonance frequency was measured.

To obtain the maximum accuracy in determination of the resonance fre-
quency ω1, it was searched for at the ˇrst harmonic of the excitation signal.
The excitation signal amplitude U0 was 350 V. Figure 5 shows the measured
results (•) in comparison with the analytical dependence (5) (curve). Results of
measurements and check of impact factors on resonance frequency determination
are given below.

Fig. 5. Dependence of the resonance frequency on the tube tension
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(i) The deviation of the experimental data from the analytical dependence
in the tension range of 250 to 1000 g is below 1%. The shift of the reference
electrode by 0.5 R relative to the center of the tube does not lead to a change in
the detected frequency, while the signal amplitude decreases by a factor of 2Ä3.

(ii) At a tension of above 1000 g the measured frequency decreases in com-
parison with the analytical value due to the broken tube deformation linearity. At
a tension of 1200 g the deviation is 3.5%.

(iii) It was examined whether other tube oscillation modes can be excited
in the frequency range of 10 to 1500 Hz at the maximum excitation signal am-
plitude U0 = 650 V. Longitudinal oscillations of the tube at other harmonics
cannot be excited due to the strong damping of the oscillation amplitude pro-
portional to the square of the harmonic number and to insufˇcient excitation
force. Transverse oscillations of the tube in the above range cannot be excited
either.

This test conˇrmed that there were no factors affecting the accuracy of the
determination of the tube resonance frequency fL.

CONCLUSIONS

A method of electrostatic excitation of straw tube oscillations is proposed for
determining the tube resonance frequency that allows the tension to be calculated.
This oscillation excitation method is well effective in the tube tension range used
for detectors and is convenient in use.

The device for measuring tube tension is highly sensitive and detects the
resonance frequency with an accuracy of 0.1 Hz. The device can also be used
for measuring the tension of the signal wire. In this case, the excitation signal is
applied to the tested wire, while the cathode is grounded.

Dependence of the tube resonance frequency on the tension is obtained for
controlling the latter. It is shown during determination of the resonance fre-
quency that there are only odd-oscillation harmonics, which is conˇrmed by
other authors. The dependence allows a highly accurate description of the ex-
perimental data. The relative error in the tension range of 250 to 1000 g/m
is 1%, which corresponds to a tension of 15 g and meets the most stringent
requirements on the straw detectors. At a tube tension of above 1000 g/m
the tube suffers nonlinear deformation and the tension determination error in-
creases.
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