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We propose a fast algorithm for evaluation of interpolating spline surfaces
with C2 continuity over uniform grids that utilizes a recently proved approxima-
tion property between biquartic and bicubic polynomials. Thanks to this property,
the size of the tridiagonal systems are reduced to the half. The comparison of the
proposed algorithm with the classical de Boor's one shows that the former needs less
multiplication operations and its explicit formulas can be parallelized automatically.
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1. INTRODUCTION

Surfaces play a key role in many ˇelds, such as data modelling, computa-
tional physics or computer graphics. The paper improves the standard de Boor's
sequential algorithm [2] for construction of interpolating spline surfaces based
on new model equations, in derivation of which biquartic polynomials played an
essential role. The proposed algorithm results in reduced systems and less number
of multiplications.

The idea of using quartic and biquartic polynomials in uniform cubic and
bicubic spline construction, respectively, comes from [9], where the interrelation
of quartic and cubic polynomials within a two-part approximation model was
proven. The reduced system approach to spline curve construction was introduced
in paper [10].

Paper [5] showed the validity of the 2 × 2-part approximation model with
bicubic and biquartic polynomials. The algorithm with decreased number of
equations presented in this paper generalizes the results of [10] and [5] to surfaces.

The structure of the article is as follows. Section 2 is devoted to problem
statement and to a short description of the spline order's in	uence on the smooth-
ness of the spline surface. The next section discusses the interrelation of the
bicubic and biquartic polynomials and their role in the computational schema.
Section 4 contains the proposed sequential computational algorithm based on re-
duced systems. The efˇciency of the proposed algorithm is shown in the last but
one section by computing the theoretical speedup that is approximately 1.4. The
Appendix provides the deˇnition of bicubic and biquartic polynomials.

2. PROBLEM STATEMENT

The section deˇnes the inputs for a spline surface based on which it can be
constructed. The in	uence of the spline order on the smoothness of the spline
surfaces is discussed shortly, too.

Consider a uniform grid

[u0, u1, . . . , u2m] × [v0, v1, . . . , v2n], (1)

where
ui = u0 + ihx, i = 1, 2, . . . , 2m, m ∈ N,

vj = v0 + jhy, j = 1, 2, . . . , 2n, n ∈ N.
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According to [2], the spline surface is deˇned by given values

zi,j, i = 0, 1, . . . , 2m, j = 0, 1, . . . , 2n (2)

at the equispaced grid-points, and given ˇrst directional derivatives

dx
i,j , i = 0, 2m, j = 0, 1, . . . , 2n (3)

at boundary verticals,

dy
i,j , i = 0, 1, . . . , 2m, j = 0, 2n (4)

at boundary horizontals and cross derivatives

dx,y
i,j , i = 0, 2m, j = 0, 2n (5)

at the four corners of the grid.
Figure 1 depicts the schema of the inputs: directional derivatives dx, dy

are given only on the boundaries and at the inner grid-points there are only

Fig. 1. Inputs for a uniform bicubic clam-
ped spline of C2

function values z.
The task is to deˇne a quadruple

[zi,j , d
x
i,j , d

y
i,j , d

x,y
i,j ] at every grid-point

[ui, vj ], where

zi,j = S(ui, vj), dy
i,j =

∂S(ui, vj)
∂y

,

dx
i,j =

∂S(ui, vj)
∂x

, dx,y
i,j =

∂2S(ui, vj)
∂x∂y

,

in such a way that the resulting uniform
bicubic clamped spline surface S will be
of class C2, i.e., the adjacent spline seg-
ments will be twice continuously differ-

entiable. Our aim is to solve this task with less equations and less multiplications
than the standard spline construction algorithm [2]. We will achieve this by
means of Hermite splines and using a recently derived relationship property be-
tween biquartic and bicubic polynomials.

Let as have a short look at the differences between bicubic spline surfaces
of class C1 and C2. Hermite spline surfaces, see Appendix, are by default of
class C1, see [3,6,8]. It is sufˇcient to take any ˇnite values for the quadruples at
the grid-points and the spline will be automatically of class C1 due to its deˇnition.
However, the derivatives within the computed quadruples can be selected in such
a way that the second derivatives of the adjacent surface segments will be also
continuous and so the resulting bicubic spline will be of class C2.

2



Fig. 2. Differences of the Franke function and the spline surfaces of classes C1 and C2

Fig. 3. Second derivatives of the spline surfaces of classes C1 and C2

Whether to use C1 or C2 bicubic spline surfaces depends on the character
of the solving problem. The peaks and valleys can be better approximated with
C1 spline surfaces; however, the second derivatives of such a spline will be
discontinuous. Figure 2 illustrates the differences of the Franke function and the
corresponding interpolating spline surfaces of class C1 (on the left) and C2 (on the
right) over a 9× 9 grid. The differences on the left are approximately four times
smaller. Figure 3 contains the second derivatives of the spline surfaces. Notice
that the second derivatives of the spline surface of class C1 are not continuous.
So, to have less bumpy, more smooth surface for modelling data with continuous
second derivatives, choose a model based on C2 splines.

3. BIQUARTIC POLYNOMIALS AND BICUBIC SPLINES

The section discusses shortly the interrelation of bicubic and biquartic poly-
nomials and gives some details about the role of the biquartic polynomials that
are absent in de Boor's algorithm but played a crucial task in the design of the
proposed one.
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Works [5,7] prove how a biquartic polynomial is approximated by four bicu-
bic polynomials. We want to apply this idea in our new approach to computing
uniform bicubic splines of class C2. The point of the approach is to solve
only one half of derivatives from equations, and to compute the second half of
derivatives from simple formulas that are derived from corresponding biquartic
polynomials.

We provide here the interpretation of the main result of [5]: a 2×2-component
bicubic Hermite spline of class C1 will be of class C2, if the grid-points are
equispaced and the unknown derivatives of the bicubic spline components at
them are computed from a corresponding biquartic polynomial that is uniquely
determined by the spline problem of Section 2 for the [u0, u1, u2]×[v0, v1, v2] grid.

This interrelation between a biquartic and four bicubic polynomials is illus-
trated by the schema in Fig. 4. The biquartic polynomial F over [u0, u2]× [v0, v2]
is deˇned by given nine function values z and sixteen derivatives d that set up
four quadruples [z, dx, dy, dx,y], two pairs [z, dx], two pairs [z, dy] and a single z.
Every bicubic spline component is deˇned by four quadruples [z, dx, dy, dx,y].
The nine quadruples in the ˇgure are depicted around nine grid-points. Those
eleven directional and cross ˇrst derivatives that are computed from the biquartic
polynomial F and that are needed to construct the four bicubic spline components
S = {S0,0, S0,1, S1,0, S1,1} are denoted by δ.

The algorithm proposed below was developed by generalizing the above-
described interrelation between biquartic and bicubic polynomials. First biquartic
polynomials were handled and then, based on them, new model equations and
formulas for unknown derivatives of the bicubic spline surface were derived.

In case of (2m + 1)(2n + 1) grid-points, to fulˇll the complete spline task
means to construct (2m)(2n) spline components using (2m + 1)(2n + 1) various
quadruples [z, dx, dy, dx,y]. The input comprises (2m + 1)(2n + 1) z values,
2(2n + 1) dx, 2(2m + 1) dy and 4 dx,y derivatives. The unknown derivatives
require computation.

Fig. 4. Schema of objects of a 2 × 2-component bicubic Hermite spline surface

4



Fig. 5. Schema of objects of a (2m + 1) × (2n + 1)-component bicubic Hermite spline
surface

Figure 5 illustrates the schema of the proposed computational algorithm for
(2m+1)×(2n+1) bicubic spline surface of class C2. There are 2m+1 verticals
and 2n + 1 horizontals. Rectangles and thick rectangles indicate the boundary
of bicubic spline components and biquartic polynomials, respectively. There are
two types of objects at grid-points: known and unknown ones. The given values
and derivatives are denoted by z, d and the unknown ˇrst derivatives by D, δ.
Notice that z is provided at every grid-point and d only along the total grid's
boundary. The most important is where the unknown D and δ parameters are.
The D parameters are located only along the thick rectangles, but never in their
center. As we shall see later, the D parameters will be computed from equations
and the δ parameters from explicit formulas. The equations were derived from
the equality of second derivatives of spline components and the formulas from
the biquartic polynomials.

Let us have a closer look at biquartic polynomials and their role in the
algorithm's design. One biquartic polynomial Fi,j(x, y) needs 25 parameters, see
Deˇnition 2. We distinguish between four types of F polynomials, see Fig. 5:

1) at the corners,
2) at boundary horizontals,
3) at boundary verticals,
4) over the inside grid-points.
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While, for example, for the biquartic polynomial F over inside grid-points
all the sixteen derivatives are unknown, they are D parameters, for F from the
corners only seven are unknown and nine are given, these are the d parameters.
After obtaining the D parameters, the remaining derivatives are computed based
on F . From every F , eleven delta parameters can be obtained: two pairs of type
[δx, δx,y], two pairs of type [δy, δx,y] and one triple [δx, δy, δx,y]. Naturally, δ
parameters are functions of D parameters, see [5].

The derived new model equations for the unknown D derivatives of the
spline surface segments and parts of the explicit formulas for δ are generalization
of model equations and formulas of the unknown derivatives of spline curve
segments, see [9].

4. REDUCED SYSTEM ALGORITHM

This section presents a new sequential algorithm for computing the unknown
ˇrst derivatives of a C2-class uniform bicubic spline surface. Its efˇciency will
be shown in the next section. The central part of the algorithm is three new model
equations and ˇve new explicit formulas. We do not derive these model equations
and explicit formulas, only mention that for their derivation we had to (see Fig. 5)
thoroughly analyse the structure of the bicubic and biquartic polynomials, specify
which derivatives should be the D and which the δ parameters, understand which
polynomials are critical for obtaining the equations and formulas, and for all this
the following steps were needed:

1) construction of some biquartic polynomials Fi,j , see (22),
2) construction of δ parameters as functions, see (23),
3) construction of some appropriate Hermite spline components S, see (20),

for comparing of their second derivatives, see (21).
The algorithm proposed below can be characterized from two aspects:
• what it computes,
• the quality of its outcome.
The algorithm computes D and δ coefˇcients for bicubic spline surface com-

ponents from inputs given at equispaced grid-points described in Section 2. The
D coefˇcients are computed from linear systems based on equations (6), (8),
(10)Ä(13). The δ coefˇcients are gained from explicit formulas (7), (9), (14)Ä
(16). Since the equations for the D parameters were derived from the equality
of second derivatives of spline components and the formulas for the δ parameters
were gained from biquartic polynomials that, as we know, grant C2 continuity
of their components, the algorithm provides such coefˇcients that the uniform
bicubic spline surface will be of class C2.
Algorithm for computing the unknown ˇrst derivatives of a C2-class uniform
bicubic spline surface in three main steps with reduced systems.
Inputs: z and d values, see (2)Ä(5).
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Step 1a. Computation of Dx parameters along the horizontals from equation
systems

For each horizontal we construct a system of linear equations to compute the
Dx values, located on the inside odd grid-points. Each horizontal represents an
independent tridiagonal system of linear equations.

For each horizontal, see Fig. 5, j = 0, 1, . . . , 2n, a tridiagonal system is
constructed based on equations

Dx
2(i+1),j − 14Dx

2i,j + Dx
2(i−1),j =

=
3
hx

(z2(i+1),j − z2(i−1),j) −
12
hx

(z2i+1,j − z2i−1,j), (6)

where i = 1, 2, . . . , m − 1.
Step 1b. Computation of δx parameters from explicit formulas

To ˇnish the computation of all ˇrst partial derivatives with respect to x, we
have to calculate

δx
i,j =

3
4hx

(zi+1,j − zi−1,j) −
1
4
(dx

i+1,j + dx
i−1,j), (7)

where i = 1, 3, . . . , 2m− 1, j = 1, 3, . . . , 2n− 1.
Step 2a. Computation of Dy parameters along the horizontals from equation
systems

For each vertical we construct a system of linear equations to compute the
Dy values, located on the inside odd grid-points. Each vertical represents an
independent system of linear equations.

For each vertical, i = 0, 1, . . . , 2m, a tridiagonal system is constructed based
on equations

Dy
i,2(j+1) − 14Dy

i,2j + Dy
i,2(j−1) =

=
3
hy

(zi,2(j+1) − zi,2(j−1) −
12
hy

(zi,2j+1 − zi,2j−1), (8)

where j = 1, 2, . . . , n − 1.
Step 2b. Computation of δy parameters from explicit formulas

To ˇnish the computation of all ˇrst partial derivatives with respect to y, we
have to calculate

δy
i,j =

3
4hy

(zi,j+1 − zi,j−1) −
1
4
(dy

i,j+1 + dy
i,j−1), (9)

where i = 1, 3, . . . , 2m− 1, j = 1, 3, . . . , 2n− 1.
At this moment all directional derivatives are known: some were provided

and the unknown D and δ directional ones were computed in Steps 1 and 2. In
the further steps all directional derivatives will be denoted by d and contained in
the right-hand side of equations and formulas.
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Step 3a. Computation of Dx,y parameters along the bottom and top horizon-
tals, and left vertical from equation systems

We construct systems of linear equations for bottom and top horizontals, and
left verticals by [2]; therefore, the left-hand sides of equations contain 4 instead
of −14. The system for the bottom boundary horizontal is

Dx,y
i+1,0 + 4Dx,y

i,0 + Dx,y
i−1,0 =

3
hx

(dy
i+1,0 − dy

i−1,0), (10)

where i = 1, . . . , 2m − 1;
for the top boundary horizontal is

Dx,y
i+1,2n + 4Dx,y

i,2n + Dx,y
i−1,2n =

3
hx

(dy
i+1,2n − dy

i−1,2n), (11)

where i = 1, . . . , 2m − 1;
and for the left boundary vertical is

Dx,y
0,j+1 + 4Dx,y

0,j + Dx,y
0,j−1 =

3
hy

(dx
0,j+1 − dx

0,j−1), (12)

where j = 1, 2, . . . , 2n − 1.
Step 3b. Computation of Dx,y parameters from the inside grid-points using
systems of equations

For the odd verticals, i = 2, 4, 6, . . . , 2m, a tridiagonal system is constructed
based on equations

Dx,y
i,j+2 − 14Dx,y

i,j + Dx,y
i,j−2 =

1
7
(dx,y

i−2,j+2 + dx,y
i−2,j−2) − 2dx,y

i−2,j +

+
3

7hx
(dy

i−2,j+2 + dy
i−2,j−2) +

3
7hy

(−dx
i−2,j+2 + dx

i−2,j−2)+

+
9

7hx
(dy

i,j+2 + dy
i,j−2) +

9
7hxhy

(−zi−2,j+2 + zi−2,j−2)+

+
12
7hx

(−dy
i−1,j+2 − dy

i−1,j−2) +
12
7hy

(dx
i−2,j+1 − dx

i−2,j−1)+

+
3
hy

(dx
i,j+2 − dx

i,j−2) +
27

7hxhy
(−zi,j+2 + zi,j−2)+

+
36

7hxhy
(zi−1,j+2 − zi−1,j−2 + zi−2,j+1 − zi−2,j−1)−

− 6
hx

dy
i−2,j +

12
hy

(dx
i,j+1 + dx

i,j−1) +
108

7hxhy
(zi,j+1 − zi,j−1)−

− 18
hx

dy
i,j +

144
7hxhy

(−zi−1,j+1 + zi−1,j−1) +
24
hx

dy
i−1,j , (13)

where j = 4, 6, . . . , 2n − 4.
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Mention must be made that this step was the most critical. At ˇrst, after
computation of Dx,y unknowns along the bottom and top horizontals in Step 3a
we got equations with six Dx,y unknowns in the left side. If we compute the
Dx,y parameters along the left vertical using de Boor's equations, as was done
in Step 3a, then three of six Dx,y parameters can be moved to the right side as
computed.
Step 3c. Computation of δx,y parameters from explicit formulas

To ˇnish the computation of all ˇrst cross derivatives, we have to calculate
for the even verticals and the even horizontals

δx,y
i,j =

1
16

(dx,y
i+1,j+1 + dx,y

i+1,j−1 + dx,y
i−1,j+1 + dx,y

i−1,j−1)−

− 3
16hy

(dx
i+1,j+1 − dx

i+1,j−1 + dx
i−1,j+1 − dx

i−1,j−1)−

− 3
16hx

(dy
i+1,j+1 + dy

i+1,j−1 − dy
i−1,j+1 − dy

i−1,j−1)+

+
9

16hxhy
(zi+1,j+1 − zi+1,j−1 − zi−1,j+1zi−1,j−1), (14)

where i = 1, 3, . . . , 2m− 1, j = 1, 3, . . . , 2n− 1;
for the even verticals and the odd horizontals

δx,y
i,j =

3
4hy

(dx
i,j+1 − dx

i,j−1) −
1
4
(dx,y

i,j+1 + dx,y
i,j−1), (15)

where i = 1, 3, . . . , 2m− 1, j = 2, 4, . . . , 2(n − 1);
and for the odd verticals and the even horizontals

δx,y
i,j =

3
4hy

(dx
i,j+1 − dx

i,j−1) −
1
4
(dx,y

i,j+1 + dx,y
i,j−1), (16)

where i = 2, 4, . . . , 2m− 1, j = 1, 3, . . . , 2n− 1.
The proposed algorithm's beneˇt is that lesser number of unknown derivatives

(D parameters) are computed from systems of equations, see further in Table 2,
compared to de Boor's algorithm [2]. The remaining derivatives (δ parameters)
are computed from explicit formulas. This was achieved thanks to using mn
biquartic polynomials Fi,j(x, y) behind the scene, whose deˇnitions use only
(m + 1)(n + 1) quadruples.

The algorithm's drawback is that it uses more types of relations than de Boor's
algorithm. While the latter uses four types of model equations, our algorithm six
types of model equations and ˇve types of explicit formulas. Nevertheless, it has
to compute approximately 12/5 times less equations within systems, see Table 4.

After introducing the new algorithm and giving some insight into its design
in the previous section, the next one is devoted to its quantitative characterization.
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5. NUMBER OF MULTIPLICATIONS

The tridiagonal linear systems of equations for de Boor's and the proposed
algorithm are diagonally dominant with elements 1, 4, 1 and 1, −14, 1. One of
the standard ways of solving a tridiagonal linear system

⎡
⎢⎢⎢⎢⎢⎣

b 1 0
1 b 1
0 1 b

. . .
. . .

. . .
. . .

b

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎢⎢⎣

d1

d2

d3

...
dK

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
d

=

⎡
⎢⎢⎢⎢⎢⎣

r1 − d0

r2

r3

...
rK − dK+1

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
r

is using the LU factorization A d = L U d︸︷︷︸
y

= r, where

L =

⎡
⎢⎢⎢⎢⎢⎣

1 0
l2 1
0 l3 1

. . .
. . .

. . .
. . .

lK 1

⎤
⎥⎥⎥⎥⎥⎦ , U =

⎡
⎢⎢⎢⎢⎢⎣

u1 1 0
0 u1 1

u2

. . .
. . .

. . .

uK

⎤
⎥⎥⎥⎥⎥⎦ ,

the ui and li elements are computed as, see [1],

L U : u1 = b,

{
li =

1
ui−1

, ui = b − li

}
, i = 2, . . . , K, (17)

and the forward (Fw) and backward (Bw) steps of the solution are

Forward: L y = r, y1 = r1, {yi = ri − liyi−1}, i = 2, . . . , K; (18)

Backward: U d = y, dK =
yK

uK
,

{
di =

1
ui

(yi − xi+1)
}

, i = K − 1, . . . , 1.

(19)
The LU and backward steps contain a division that is indicated by γ, the ratio

between division and multiplication: the performance of a division operation is
equivalent to γ multiplications.

The proposed and de Boor's algorithms differ in
• number of systems of equations,
• number of equations within systems,
• number of multiplication operations in the right-hand side (RHS) of equa-

tions.
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Table 1. Count of multiplications in one system of equations

Dim. LU (17) Fw (18) Bw (19) RHS Total mult.

K × K γK K γK βK 2γK + βK + K

Table 1 presents the number of multiplications for solving one general tridiag-
onal system with a K×K matrix, where β denotes the number of multiplications
in the right-hand side of an equation.

The second and third columns of Table 2 provide the count of equations
within the given algorithmic steps (equations) and the count of equations within
a system, respectively, for a grid of size (2m + 1) × (2n + 1).

Table 2. Count based characteristics Ä proposed algorithm

Proposed System Equation

Step 1a (6) 2n + 1 m − 1

Step 2a (8) 2m + 1 n − 1

Step 3a (10) 1 2m − 1

Step 3a (11) 1 2m − 1

Step 3a (12) 1 2n − 1

Step 3b (13) m n − 1

In the proposed algorithm we evaluate in addition to the solution of the
reduced tridiagonal systems of equations the δ parameters using explicit formulas,
see Table 3.

Table 3. Count based characteristics Ä explicit formulas in proposed algorithm

Proposed Formula

Step 1b (7) m(2n + 1)

Step 2b (9) (2m + 1)n

Step 3c (14) mn

Step 3c (15) m(n − 1)

Step 3c (16) mn

Table 4 shows how the total count of multiplications in the reduced and
remainder tasks of the algorithm were gained from the total count of equations
and formulas, respectively. For comparison the table contains also the number
of multiplications of de Boor's algorithm, see [4]. We can see from it that
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Table 4. The total count of multiplications

Algorithm de Boor Proposed

Equations 12mn + 2m + 2n − 5 5mn + 2m + n − 5

Formulas 7mn + n

24γmn + 24mn+ 10γmn + 30mn+

Mult. in equations +4γm + 4γn+ +4γm + 2γn−
+4m + 4n − 10γ − 1 −13m + n − 10γ − 12

Mult. in formulas 16mn + 2n

the number of multiplications in the proposed algorithm is less. The theoretical
speedup is given by the ratio

24γmn + 24mn

10γmn + 46mn
,

which is equivalent under assumption that γ ≈ 4 to

96mn + 24mn

40mn + 46mn
=

120
86

.= 1.4.

Mention must be made that the proposed algorithm has also a very nice
property from the viewpoint of parallel computation: the explicit formulas based
calculation of the second half of unknowns within the remainder tasks of the
algorithm can be parallelized automatically, because the formulas are independent
of each other. Naturally, parallel methods, suggested for solving tridiagonal
systems, can be used for solution of our tridiagonal systems as well. Therefore,
the proposed reduced system based algorithm may be preferable to de Boor's
algorithm not only for sequential, but also for parallel computation.

6. CONCLUSION

The paper suggested a new efˇcient sequential algorithm for bicubic spline
surfaces over an equispaced grid utilizing biquartic polynomials. As a conse-
quence of this biquartic polynomial based approach to constructing spline sur-
faces, the total computational task broke down to reduced tasks and remainder
ones, where the latter compute the bigger part of unknown derivatives using
simple explicit formulas. The comparison of the proposed and classical com-
putational algorithm shows that the former needs less multiplication operations
resulting in non-negligible speedup.

12



APPENDIX

The tensor product formulas of bicubic Hermite spline components, see [6],
and biquaric polynomials are given by the following two deˇnitions.

Deˇnition 1. On grid (1) the bicubic Hermite spline components Si,j(x, y) for

i = 0, 1, 2, . . . , 2m − 1, j = 0, 1, 2, . . . , 2n − 1,

x ∈ [ui, ui+1], y ∈ [vj , vj+1]

are deˇned as follows:

Si,j(x, y) = λT (x, ui, hx) · ϕi,j · λ(y, vj , hy), (20)

where λ is a vector of basis functions

λ(t, t0, h) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1 + 2

t − t0
h

)
(t − t1)2

h2

(t − t0)2
(

1 − 2
t − t1

h

)

h2

(t − t0)(t − t1)2

h2

(t − t0)2(t − t1)
h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

,

t1 = t0 + h and ϕ is a matrix of function values and ˇrst derivatives

ϕi,j =

⎛
⎜⎜⎜⎜⎜⎜⎝

zi,j zi,j+1 dy
i,j dy

i,j+1

zi+1,j zi+1,j+1 dy
i+1,j dy

i+1,j+1

dx
i,j dx

i,j+1 dx,y
i,j dx,y

i,j+1

dx
i+1,j dx

i+1,j+1 dx,y
i+1,j dx,y

i+1,j+1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

For the spline components the following conditions hold:

Si,j(uk, vl) = zk,l, k = i, i + 1, l = j, j + 1,

∂Si,j(uk, vl)
∂x

= dx
k,l, k = i, i + 1, l = j, j + 1,

∂Si,j(uk, vl)
∂y

= dy
k,l, k = i, i + 1, l = j, j + 1,

∂2Si,j(uk, vl)
∂x∂y

= dx,y
k,l , k = i, i + 1, l = j, j + 1.
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Based on (20) the second derivatives of Si,j(x, y) can be expressed effec-
tively, e.g.,

∂2Si,j(x, y)
∂x2

=
∂2λT (x, ui, hx)

∂x2
· ϕi,j · λ(y, vj , hy), (21)

where

∂2λ(t, t0, h)
∂t2

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6(2t − 2t0 − h)
h3

6(−2t + 2t0 + h)
h3

2(3t− 3t0 − 2h)
h2

2(3t − 3t0 − h)
h2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.

The biquartic polynomials are also deˇned by tensor product.
Deˇnition 2. On grid (1) the biquartic polynomials Fi,j(x, y) for

i = 0, 2, 4, . . . , 2(m − 1), j = 0, 2, 4, . . . , 2(n − 1),

x ∈ [ui, ui+2], y ∈ [vj , vj+2],

are deˇned as follows:

Fi,j(x, y) = LT(x, ui, hx) · Φi,j · L(y, vj , hy), (22)

where L is a vector of basis functions

L(t, t0, h) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
(

1 + 2
t − t0

h

)
(t − t1)(t − t2)2

4h3

(t − t0)2(t − t2)2

h4

(t − t0)2(t − t1)
(

1 − 2
t − t2

h

)

4h3

−(t − t0)(t − t1)(t − t2)2

4h3

(t − t0)2(t − t1)(t − t2)
4h3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

,
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t1 = t0 +h, t2 = t0 +2h and Φ is a matrix of function values and ˇrst derivatives

Φi,j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

zi,j zi,j+1 zi,j+2 dy
i,j dy

i,j+2

zi+1,j zi+1,j+1 zi+1,j+2 dy
i+1,j dy

i+1,j+2

zi+2,j zi+2,j+1 zi+2,j+2 dy
i+2,j dy

i+2,j+2

dx
i,j dx

i,j+1 dx
i,j+2 dx,y

i,j dx,y
i,j+2

dx
i+2,j dx

i+2,j+1 dx
i+2,j+2 dx,y

i+2,j dx,y
i+2,j+2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For uk, vl deˇned in (1) the following conditions hold:

Fi,j(uk, vl) = zk,l, k = j, j + 1, j + 2, l = j, j + 1, j + 2,

∂Fi,j(uk, vl)
∂x

= dx
k,l, k = i, i + 2, l = j, j + 1, j + 2,

∂Fi,j(uk, vl)
∂y

= dy
k,l, k = i, i + 1, i + 2, l = j, j + 2,

∂2Fi,j(uk, vl)
∂x∂y

= dx,y
k,l , k = i, i + 2, l = j, j + 2.

The tensor product deˇnition of Fi,j(x, y) by (22) provides a compact way
to express ˇrst derivatives, e.g.,

∂Fi,j(x, y)
∂y

= LT(x, ui, hx) · Φi,j ·
∂L(y, vj , hy)

∂y
. (23)
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